An RIP Condition for Exact Support Recovery With Covariance-Assisted Matching Pursuit

The covariance-assisted matching pursuit (CAMP) algorithm has recently been proposed for recovering sparse signals <inline-formula><tex-math notation="LaTeX">\boldsymbol {f}</tex-math></inline-formula> from noisy linear measurements based on a priori knowledge of th...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 26; no. 3; pp. 520 - 524
Main Authors Ge, Huanmin, Wang, Libo, Wen, Jinming, Xian, Jun
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2019.2896543

Cover

More Information
Summary:The covariance-assisted matching pursuit (CAMP) algorithm has recently been proposed for recovering sparse signals <inline-formula><tex-math notation="LaTeX">\boldsymbol {f}</tex-math></inline-formula> from noisy linear measurements based on a priori knowledge of the covariance and mean of the nonzero coefficients of <inline-formula><tex-math notation="LaTeX">\boldsymbol {f}</tex-math></inline-formula>. It utilizes the a priori knowledge by incorporating the Gauss-Markov theorem into the orthogonal matching pursuit (OMP) algorithm and has a significantly better reconstruction performance than OMP. This letter develops sufficient conditions of exact support recovery of any <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula>-sparse signals <inline-formula><tex-math notation="LaTeX">\boldsymbol {f}</tex-math></inline-formula> via CAMP in <inline-formula><tex-math notation="LaTeX">k</tex-math></inline-formula> iterations, under the <inline-formula><tex-math notation="LaTeX">\ell _2</tex-math></inline-formula>-bounded and Gaussian noises. These sufficient conditions are based on the restricted isometry constant of the sensing matrix and minimum magnitude of the nonzero elements of <inline-formula><tex-math notation="LaTeX">\boldsymbol {f}</tex-math></inline-formula>, and are much better than the existing ones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2019.2896543