Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting
In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing wireless energy for a set of ground devices (GDs) deployed in an area. We focus on the design of UAV trajectory subject to the maximum flight spe...
Saved in:
Published in | IEEE transactions on wireless communications Vol. 20; no. 2; pp. 1105 - 1121 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1536-1276 1558-2248 |
DOI | 10.1109/TWC.2020.3030773 |
Cover
Abstract | In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing wireless energy for a set of ground devices (GDs) deployed in an area. We focus on the design of UAV trajectory subject to the maximum flight speed limit, in order to maximize the minimum harvested energy among GDs over a particular charging duration. Different from prior works that considered simplified linear energy harvesting models, this paper for the first time takes into account the realistic nonlinear energy harvesting model for the UAV trajectory design. However, the formulated trajectory design problem is highly non-convex and has infinite number of variables, thus making it be challenging to be solved optimally. To tackle this difficulty, we adopt the following three-step approach to obtain an efficient solution. First, we rigorously characterize that the optimal trajectory follows a new successive-hover-and-fly (SHF) structure, where the UAV hovers at a certain set of points for efficiently transferring energy, and flies among these hovering points with the maximum speed following certain arcs (not necessarily straight lines). Next, based on this SHF structure, we transform the original problem to a new one for finding a set of turning point variables during the maximum-speed flight, at which the UAV changes the flight direction without hovering. Finally, we use the techniques of convex approximation to solve the transformed problem. According to the convexity of the nonlinear energy harvesting model, we iteratively solve a series of convex optimization problems to update the UAV trajectory towards a high-quality solution. Numerical results show the convergence of the proposed approach, and validate its performance gain over conventional designs. |
---|---|
AbstractList | In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing wireless energy for a set of ground devices (GDs) deployed in an area. We focus on the design of UAV trajectory subject to the maximum flight speed limit, in order to maximize the minimum harvested energy among GDs over a particular charging duration. Different from prior works that considered simplified linear energy harvesting models, this paper for the first time takes into account the realistic nonlinear energy harvesting model for the UAV trajectory design. However, the formulated trajectory design problem is highly non-convex and has infinite number of variables, thus making it be challenging to be solved optimally. To tackle this difficulty, we adopt the following three-step approach to obtain an efficient solution. First, we rigorously characterize that the optimal trajectory follows a new successive-hover-and-fly (SHF) structure, where the UAV hovers at a certain set of points for efficiently transferring energy, and flies among these hovering points with the maximum speed following certain arcs (not necessarily straight lines). Next, based on this SHF structure, we transform the original problem to a new one for finding a set of turning point variables during the maximum-speed flight, at which the UAV changes the flight direction without hovering. Finally, we use the techniques of convex approximation to solve the transformed problem. According to the convexity of the nonlinear energy harvesting model, we iteratively solve a series of convex optimization problems to update the UAV trajectory towards a high-quality solution. Numerical results show the convergence of the proposed approach, and validate its performance gain over conventional designs. |
Author | Yuan, Xiaopeng Xu, Jie Yang, Tianyu Schmeink, Anke Hu, Yulin |
Author_xml | – sequence: 1 givenname: Xiaopeng orcidid: 0000-0002-1888-8680 surname: Yuan fullname: Yuan, Xiaopeng email: yuan@isek.rwth-aachen.de organization: School of Electronic Information, Wuhan University, Wuhan, China – sequence: 2 givenname: Tianyu orcidid: 0000-0002-6731-9775 surname: Yang fullname: Yang, Tianyu email: tianyu.yang@tu-berlin.de organization: Communications and Information Theory Group, TU Berlin, Berlin, Germany – sequence: 3 givenname: Yulin orcidid: 0000-0002-1047-9436 surname: Hu fullname: Hu, Yulin email: yulin.hu@ieee.org organization: School of Electronic Information, Wuhan University, Wuhan, China – sequence: 4 givenname: Jie orcidid: 0000-0002-4854-8839 surname: Xu fullname: Xu, Jie email: xujie@cuhk.edu.cn organization: Network of Intelligence Institute (FNii), The Chinese University of Hong Kong, Shenzhen, Shenzhen, China – sequence: 5 givenname: Anke orcidid: 0000-0002-9929-2925 surname: Schmeink fullname: Schmeink, Anke email: schmeink@isek.rwth-aachen.de organization: ISEK Research Area, RWTH Aachen University, Aachen, Germany |
BookMark | eNp9kEtPAjEURhuDiYDuTdw0cT3Yx7QzXRJEMcHHAmQ5KcMdLBlbbGc0_HuLEBcuXN1HvnNvcnqoY50FhC4pGVBK1M1sMRowwsiAE06yjJ-gLhUiTxhL886-5zKhLJNnqBfChhCaSSG6aDXzegNl4_wO30Iwa4sr5_F8-JqMrV7WsMKPbd2YNoDHC-OhhhDwi_uKY0RtqH72zRt-crY2FrTHYwt-vcMT7T8hNMauz9FppesAF8faR_O78Ww0SabP9w-j4TQpmaJNwmQmWCl0xhUpuUrzUii1lNVSccFEyYQQSvIcMg6UVCCZpqtqxXVFQUqiUt5H14e7W-8-2vi72LjW2_iyiBbyLE0lkTElD6nSuxA8VEVpGt0YZxuvTV1QUuyNFtFosTdaHI1GkPwBt968a7_7D7k6IAYAfuOK8TTm-TfSg4Jz |
CODEN | ITWCAX |
CitedBy_id | crossref_primary_10_1109_JSAC_2022_3196108 crossref_primary_10_1109_TVT_2022_3160746 crossref_primary_10_3390_s23042345 crossref_primary_10_1109_OJCOMS_2024_3377706 crossref_primary_10_1109_TCOMM_2023_3274165 crossref_primary_10_3390_s22239215 crossref_primary_10_1109_TAES_2023_3332588 crossref_primary_10_1109_TVT_2021_3090849 crossref_primary_10_1109_JIOT_2024_3400522 crossref_primary_10_7717_peerj_cs_864 crossref_primary_10_1016_j_iot_2024_101463 crossref_primary_10_1109_TVT_2024_3461333 crossref_primary_10_1007_s11276_023_03421_6 crossref_primary_10_3390_s23156873 crossref_primary_10_1007_s00607_022_01087_0 crossref_primary_10_1109_JIOT_2023_3268316 crossref_primary_10_1109_TCOMM_2022_3169468 crossref_primary_10_1109_JSEN_2023_3329483 crossref_primary_10_1109_TMC_2024_3470831 crossref_primary_10_1016_j_tcs_2022_12_030 crossref_primary_10_1109_TWC_2022_3204915 crossref_primary_10_3390_drones7100628 crossref_primary_10_1109_TVT_2022_3186787 crossref_primary_10_1155_2022_9921885 crossref_primary_10_3390_rs13132611 crossref_primary_10_1109_JIOT_2023_3274549 crossref_primary_10_1016_j_aej_2024_01_039 crossref_primary_10_1016_j_vehcom_2023_100632 crossref_primary_10_1109_JIOT_2024_3395779 crossref_primary_10_1109_TMC_2023_3240763 crossref_primary_10_1109_TGCN_2021_3093718 crossref_primary_10_3390_drones7060354 crossref_primary_10_1109_TNSE_2023_3348759 crossref_primary_10_3390_drones6040095 crossref_primary_10_1109_JSEN_2024_3378844 crossref_primary_10_1109_TVT_2022_3150004 crossref_primary_10_3390_photonics11121136 crossref_primary_10_1109_TWC_2022_3162704 crossref_primary_10_3390_en17071617 crossref_primary_10_1109_TVT_2022_3178021 crossref_primary_10_1109_TGCN_2022_3157735 crossref_primary_10_1109_TWC_2023_3281730 crossref_primary_10_1109_TVT_2024_3387752 crossref_primary_10_1109_JIOT_2022_3186065 crossref_primary_10_1109_TWC_2022_3222067 crossref_primary_10_1109_TGCN_2021_3085867 crossref_primary_10_1109_TVT_2023_3319480 crossref_primary_10_3390_drones6070177 crossref_primary_10_1109_JSAC_2021_3088682 crossref_primary_10_1016_j_comnet_2022_109071 crossref_primary_10_1109_TVT_2023_3275758 crossref_primary_10_3390_drones8110668 crossref_primary_10_1016_j_vehcom_2024_100831 crossref_primary_10_1109_TCOMM_2022_3162249 crossref_primary_10_32604_cmc_2023_037154 crossref_primary_10_1109_JIOT_2022_3150178 crossref_primary_10_1109_JSAC_2025_3531543 crossref_primary_10_1109_TWC_2021_3104742 crossref_primary_10_3390_electronics13214237 crossref_primary_10_1007_s11235_024_01153_2 crossref_primary_10_1016_j_comcom_2022_12_003 crossref_primary_10_1109_TVT_2021_3116101 |
Cites_doi | 10.1109/WCSP.2017.8170970 10.1109/ROBOT.2009.5152549 10.1109/LWC.2017.2776922 10.1109/TCOMM.2016.2611512 10.1109/LCOMM.2016.2528260 10.1017/CBO9780511804441 10.1109/TCOMM.2019.2911294 10.1109/LCOMM.2016.2553103 10.1109/LCOMM.2016.2633248 10.1109/TWC.2018.2838134 10.1109/TVT.2018.2811942 10.1109/TWC.2017.2688328 10.1109/TWC.2019.2902559 10.1109/JSAC.2018.2872361 10.1109/TSP.2016.2601284 10.1109/MCOM.2015.7081084 10.1109/COMST.2015.2495297 10.1109/JIOT.2018.2875446 10.1109/TWC.2019.2946153 10.1109/LCOMM.2015.2478460 10.1109/MMM.2014.2309499 10.1109/MCOM.2016.7470933 10.1109/TAES.2012.6178054 10.1109/JIOT.2019.2958975 10.1109/TVT.2020.2980683 10.1109/TCOMM.2020.2971488 10.1007/978-3-030-17513-9_1 10.1561/2200000050 10.1109/LWC.2019.2947430 10.1109/ICCCBDA49378.2020.9095679 10.1109/LCOMM.2018.2800737 10.1109/COMST.2014.2368999 10.1007/s10846-015-0175-5 10.1109/JSAC.2018.2872615 10.1109/TCOMM.2006.877962 10.1109/LWC.2014.2342736 10.1109/ACCESS.2019.2941278 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TWC.2020.3030773 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-2248 |
EndPage | 1121 |
ExternalDocumentID | 10_1109_TWC_2020_3030773 9234110 |
Genre | orig-research |
GrantInformation_xml | – fundername: DFG grantid: SCHM 2643/16 funderid: 10.13039/501100001659 – fundername: Natural Science Foundation of China grantid: 61871137 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2018YFB1800800 – fundername: Guangdong Province Key Area Research and Development Program grantid: 2018B030338001 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c291t-26752c5a7390c3948c599b6fb93525c25559638e73e10fe62a1dfd3af1e660943 |
IEDL.DBID | RIE |
ISSN | 1536-1276 |
IngestDate | Fri Jul 25 12:20:44 EDT 2025 Thu Apr 24 23:04:33 EDT 2025 Tue Jul 01 04:13:28 EDT 2025 Wed Aug 27 05:44:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-26752c5a7390c3948c599b6fb93525c25559638e73e10fe62a1dfd3af1e660943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4854-8839 0000-0002-1047-9436 0000-0002-1888-8680 0000-0002-9929-2925 0000-0002-6731-9775 |
PQID | 2488744606 |
PQPubID | 105736 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1109_TWC_2020_3030773 proquest_journals_2488744606 ieee_primary_9234110 crossref_citationtrail_10_1109_TWC_2020_3030773 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-Feb. 2021-2-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-Feb. |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on wireless communications |
PublicationTitleAbbrev | TWC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 bubeck (ref37) 2014; 8 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 valenta (ref25) 2014; 15 ref38 ref16 ref19 ref18 ref24 ref23 ref26 ref20 ref22 ref21 abdulkarim (ref36) 2015; 4 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 boyd (ref35) 2017 |
References_xml | – ident: ref23 doi: 10.1109/WCSP.2017.8170970 – ident: ref34 doi: 10.1109/ROBOT.2009.5152549 – ident: ref11 doi: 10.1109/LWC.2017.2776922 – ident: ref9 doi: 10.1109/TCOMM.2016.2611512 – ident: ref22 doi: 10.1109/LCOMM.2016.2528260 – ident: ref39 doi: 10.1017/CBO9780511804441 – year: 2017 ident: ref35 publication-title: Convex Optimization Course Notes – ident: ref17 doi: 10.1109/TCOMM.2019.2911294 – volume: 4 start-page: 76 year: 2015 ident: ref36 article-title: Comparison of algorithms for solving traveling salesman problem publication-title: International Journal of Advanced Engineering Technology – ident: ref10 doi: 10.1109/LCOMM.2016.2553103 – ident: ref4 doi: 10.1109/LCOMM.2016.2633248 – ident: ref16 doi: 10.1109/TWC.2018.2838134 – ident: ref12 doi: 10.1109/TVT.2018.2811942 – ident: ref7 doi: 10.1109/TWC.2017.2688328 – ident: ref8 doi: 10.1109/TWC.2019.2902559 – ident: ref13 doi: 10.1109/JSAC.2018.2872361 – ident: ref30 doi: 10.1109/TSP.2016.2601284 – ident: ref14 doi: 10.1109/MCOM.2015.7081084 – ident: ref2 doi: 10.1109/COMST.2015.2495297 – ident: ref19 doi: 10.1109/JIOT.2018.2875446 – ident: ref6 doi: 10.1109/TWC.2019.2946153 – ident: ref27 doi: 10.1109/LCOMM.2015.2478460 – volume: 15 start-page: 108 year: 2014 ident: ref25 article-title: Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems publication-title: IEEE Microw Mag doi: 10.1109/MMM.2014.2309499 – ident: ref1 doi: 10.1109/MCOM.2016.7470933 – ident: ref33 doi: 10.1109/TAES.2012.6178054 – ident: ref24 doi: 10.1109/JIOT.2019.2958975 – ident: ref31 doi: 10.1109/TVT.2020.2980683 – ident: ref20 doi: 10.1109/TCOMM.2020.2971488 – ident: ref21 doi: 10.1007/978-3-030-17513-9_1 – volume: 8 start-page: 231 year: 2014 ident: ref37 article-title: Convex optimization: Algorithms and complexity publication-title: Found Trends Mach Learn doi: 10.1561/2200000050 – ident: ref18 doi: 10.1109/LWC.2019.2947430 – ident: ref29 doi: 10.1109/ICCCBDA49378.2020.9095679 – ident: ref5 doi: 10.1109/LCOMM.2018.2800737 – ident: ref15 doi: 10.1109/COMST.2014.2368999 – ident: ref32 doi: 10.1007/s10846-015-0175-5 – ident: ref26 doi: 10.1109/JSAC.2018.2872615 – ident: ref38 doi: 10.1109/TCOMM.2006.877962 – ident: ref3 doi: 10.1109/LWC.2014.2342736 – ident: ref28 doi: 10.1109/ACCESS.2019.2941278 |
SSID | ssj0017655 |
Score | 2.5941951 |
Snippet | In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1105 |
SubjectTerms | Airspeed Convexity energy fairness Energy harvesting Hovering Hovering flight multiple users nonlinear energy harvesting (EH) Radio frequency Speed limits Straight lines successive-hover-and-fly (SHF) Superhigh frequencies Trajectory optimization Turning Unmanned aerial vehicle (UAV) Unmanned aerial vehicles Wireless communication Wireless power transmission |
Title | Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting |
URI | https://ieeexplore.ieee.org/document/9234110 https://www.proquest.com/docview/2488744606 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcXplBy8CHZrkzZtjmNuiLDhYdPdSr6q6Nhkdgf9681Lu-IX4q2UBALvJe_r994PoXMqWGgUCb0kEMwLA-l7MuGJJ2XENYNCjoaE_nDErifhzTSa1tBl1QtjjHHgM9OGT1fL1wu1glRZxzojYQD9VBtWzYperapiEDPHcGovMPDKxFVJ0ued8X3PBoLExqeg0TH9YoIcp8qPh9hZl8EOGq7PVYBKnturXLbV-7eRjf89-C7aLt1M3C30Yg_VzHwfbX0aPthA2pqpJ5ezf8NXDseBrQOLJ907r-8aqjR23bmQxsAAkp3ZRxHfAqsadhYuc__zRzwqxm2IJe67TkIMhEMwvWP-cIAmg_64d-2VnAueIjzIPWIDCKIiEVPuK8rDREWcS5ZJDnNTlQ1AIriyJqYm8DPDiAh0pqnIAsMYoBQPUX2-mJsjhGmYqVhQxhURoWBSEqkjJTSnLONZHDRRZy2GVJUDyYEXY5a6wMTnqRVcCoJLS8E10UW146UYxvHH2gbIoVpXiqCJWmtJp-VtfU2JfcViGxf77Pj3XSdokwCWxaG1W6ieL1fm1DojuTxzWvgB1x3aPw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOMAeeK8oTx_2gkTaxE6c-IigqDxacWgXbpFfAQEqCNID_Ho8ThotsELcosiWLH1jz3zzBPjDJI-tpnGQRZIHcaTCQGUiC5RKhOEYyDHo0O8PeG8Un10n1zNw0NTCWGt98plt46eP5ZtHPUFXWccZI3GE9VRziWMVWVWt1cQMUu5nnLorjJNl0iYoGYrO8OrIUUHqGCrKdMo-KCE_VeXLU-z1y8kS9Kcnq9JK7tuTUrX126emjT89-jIs1oYmOawkYwVm7HgVfv3TfnANjFNUd95r_0qOfSYHcSYsGR3-Dbq-pMoQX5-LjgyCabIP7lkklzhXjXgdV_j_5S0ZVA035DPp-lpCgiOHsH_H-GYdRifd4VEvqKcuBJqKqAyooxBUJzJlItRMxJlOhFC8UAI7p2pHQRK8tDZlNgoLy6mMTGGYLCLLOeYp_obZ8ePYbgBhcaFTybjQVMaSK0WVSbQ0gvFCFGnUgs4UhlzXLclxMsZD7qlJKHIHXI7A5TVwLdhvdjxV7Ti-WbuGODTraghasD1FOq_v60tOnTiljhmHfPP_u_ZgvjfsX-QXp4PzLVigmNnic7e3YbZ8ntgdZ5qUatdL5Dt9Nt2S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Design+for+UAV-Enabled+Multiuser+Wireless+Power+Transfer+With+Nonlinear+Energy+Harvesting&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Yuan%2C+Xiaopeng&rft.au=Yang%2C+Tianyu&rft.au=Hu%2C+Yulin&rft.au=Xu%2C+Jie&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=20&rft.issue=2&rft.spage=1105&rft.epage=1121&rft_id=info:doi/10.1109%2FTWC.2020.3030773&rft.externalDocID=9234110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon |