Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting

In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing wireless energy for a set of ground devices (GDs) deployed in an area. We focus on the design of UAV trajectory subject to the maximum flight spe...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on wireless communications Vol. 20; no. 2; pp. 1105 - 1121
Main Authors Yuan, Xiaopeng, Yang, Tianyu, Hu, Yulin, Xu, Jie, Schmeink, Anke
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1276
1558-2248
DOI10.1109/TWC.2020.3030773

Cover

Abstract In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing wireless energy for a set of ground devices (GDs) deployed in an area. We focus on the design of UAV trajectory subject to the maximum flight speed limit, in order to maximize the minimum harvested energy among GDs over a particular charging duration. Different from prior works that considered simplified linear energy harvesting models, this paper for the first time takes into account the realistic nonlinear energy harvesting model for the UAV trajectory design. However, the formulated trajectory design problem is highly non-convex and has infinite number of variables, thus making it be challenging to be solved optimally. To tackle this difficulty, we adopt the following three-step approach to obtain an efficient solution. First, we rigorously characterize that the optimal trajectory follows a new successive-hover-and-fly (SHF) structure, where the UAV hovers at a certain set of points for efficiently transferring energy, and flies among these hovering points with the maximum speed following certain arcs (not necessarily straight lines). Next, based on this SHF structure, we transform the original problem to a new one for finding a set of turning point variables during the maximum-speed flight, at which the UAV changes the flight direction without hovering. Finally, we use the techniques of convex approximation to solve the transformed problem. According to the convexity of the nonlinear energy harvesting model, we iteratively solve a series of convex optimization problems to update the UAV trajectory towards a high-quality solution. Numerical results show the convergence of the proposed approach, and validate its performance gain over conventional designs.
AbstractList In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing wireless energy for a set of ground devices (GDs) deployed in an area. We focus on the design of UAV trajectory subject to the maximum flight speed limit, in order to maximize the minimum harvested energy among GDs over a particular charging duration. Different from prior works that considered simplified linear energy harvesting models, this paper for the first time takes into account the realistic nonlinear energy harvesting model for the UAV trajectory design. However, the formulated trajectory design problem is highly non-convex and has infinite number of variables, thus making it be challenging to be solved optimally. To tackle this difficulty, we adopt the following three-step approach to obtain an efficient solution. First, we rigorously characterize that the optimal trajectory follows a new successive-hover-and-fly (SHF) structure, where the UAV hovers at a certain set of points for efficiently transferring energy, and flies among these hovering points with the maximum speed following certain arcs (not necessarily straight lines). Next, based on this SHF structure, we transform the original problem to a new one for finding a set of turning point variables during the maximum-speed flight, at which the UAV changes the flight direction without hovering. Finally, we use the techniques of convex approximation to solve the transformed problem. According to the convexity of the nonlinear energy harvesting model, we iteratively solve a series of convex optimization problems to update the UAV trajectory towards a high-quality solution. Numerical results show the convergence of the proposed approach, and validate its performance gain over conventional designs.
Author Yuan, Xiaopeng
Xu, Jie
Yang, Tianyu
Schmeink, Anke
Hu, Yulin
Author_xml – sequence: 1
  givenname: Xiaopeng
  orcidid: 0000-0002-1888-8680
  surname: Yuan
  fullname: Yuan, Xiaopeng
  email: yuan@isek.rwth-aachen.de
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 2
  givenname: Tianyu
  orcidid: 0000-0002-6731-9775
  surname: Yang
  fullname: Yang, Tianyu
  email: tianyu.yang@tu-berlin.de
  organization: Communications and Information Theory Group, TU Berlin, Berlin, Germany
– sequence: 3
  givenname: Yulin
  orcidid: 0000-0002-1047-9436
  surname: Hu
  fullname: Hu, Yulin
  email: yulin.hu@ieee.org
  organization: School of Electronic Information, Wuhan University, Wuhan, China
– sequence: 4
  givenname: Jie
  orcidid: 0000-0002-4854-8839
  surname: Xu
  fullname: Xu, Jie
  email: xujie@cuhk.edu.cn
  organization: Network of Intelligence Institute (FNii), The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
– sequence: 5
  givenname: Anke
  orcidid: 0000-0002-9929-2925
  surname: Schmeink
  fullname: Schmeink, Anke
  email: schmeink@isek.rwth-aachen.de
  organization: ISEK Research Area, RWTH Aachen University, Aachen, Germany
BookMark eNp9kEtPAjEURhuDiYDuTdw0cT3Yx7QzXRJEMcHHAmQ5KcMdLBlbbGc0_HuLEBcuXN1HvnNvcnqoY50FhC4pGVBK1M1sMRowwsiAE06yjJ-gLhUiTxhL886-5zKhLJNnqBfChhCaSSG6aDXzegNl4_wO30Iwa4sr5_F8-JqMrV7WsMKPbd2YNoDHC-OhhhDwi_uKY0RtqH72zRt-crY2FrTHYwt-vcMT7T8hNMauz9FppesAF8faR_O78Ww0SabP9w-j4TQpmaJNwmQmWCl0xhUpuUrzUii1lNVSccFEyYQQSvIcMg6UVCCZpqtqxXVFQUqiUt5H14e7W-8-2vi72LjW2_iyiBbyLE0lkTElD6nSuxA8VEVpGt0YZxuvTV1QUuyNFtFosTdaHI1GkPwBt968a7_7D7k6IAYAfuOK8TTm-TfSg4Jz
CODEN ITWCAX
CitedBy_id crossref_primary_10_1109_JSAC_2022_3196108
crossref_primary_10_1109_TVT_2022_3160746
crossref_primary_10_3390_s23042345
crossref_primary_10_1109_OJCOMS_2024_3377706
crossref_primary_10_1109_TCOMM_2023_3274165
crossref_primary_10_3390_s22239215
crossref_primary_10_1109_TAES_2023_3332588
crossref_primary_10_1109_TVT_2021_3090849
crossref_primary_10_1109_JIOT_2024_3400522
crossref_primary_10_7717_peerj_cs_864
crossref_primary_10_1016_j_iot_2024_101463
crossref_primary_10_1109_TVT_2024_3461333
crossref_primary_10_1007_s11276_023_03421_6
crossref_primary_10_3390_s23156873
crossref_primary_10_1007_s00607_022_01087_0
crossref_primary_10_1109_JIOT_2023_3268316
crossref_primary_10_1109_TCOMM_2022_3169468
crossref_primary_10_1109_JSEN_2023_3329483
crossref_primary_10_1109_TMC_2024_3470831
crossref_primary_10_1016_j_tcs_2022_12_030
crossref_primary_10_1109_TWC_2022_3204915
crossref_primary_10_3390_drones7100628
crossref_primary_10_1109_TVT_2022_3186787
crossref_primary_10_1155_2022_9921885
crossref_primary_10_3390_rs13132611
crossref_primary_10_1109_JIOT_2023_3274549
crossref_primary_10_1016_j_aej_2024_01_039
crossref_primary_10_1016_j_vehcom_2023_100632
crossref_primary_10_1109_JIOT_2024_3395779
crossref_primary_10_1109_TMC_2023_3240763
crossref_primary_10_1109_TGCN_2021_3093718
crossref_primary_10_3390_drones7060354
crossref_primary_10_1109_TNSE_2023_3348759
crossref_primary_10_3390_drones6040095
crossref_primary_10_1109_JSEN_2024_3378844
crossref_primary_10_1109_TVT_2022_3150004
crossref_primary_10_3390_photonics11121136
crossref_primary_10_1109_TWC_2022_3162704
crossref_primary_10_3390_en17071617
crossref_primary_10_1109_TVT_2022_3178021
crossref_primary_10_1109_TGCN_2022_3157735
crossref_primary_10_1109_TWC_2023_3281730
crossref_primary_10_1109_TVT_2024_3387752
crossref_primary_10_1109_JIOT_2022_3186065
crossref_primary_10_1109_TWC_2022_3222067
crossref_primary_10_1109_TGCN_2021_3085867
crossref_primary_10_1109_TVT_2023_3319480
crossref_primary_10_3390_drones6070177
crossref_primary_10_1109_JSAC_2021_3088682
crossref_primary_10_1016_j_comnet_2022_109071
crossref_primary_10_1109_TVT_2023_3275758
crossref_primary_10_3390_drones8110668
crossref_primary_10_1016_j_vehcom_2024_100831
crossref_primary_10_1109_TCOMM_2022_3162249
crossref_primary_10_32604_cmc_2023_037154
crossref_primary_10_1109_JIOT_2022_3150178
crossref_primary_10_1109_JSAC_2025_3531543
crossref_primary_10_1109_TWC_2021_3104742
crossref_primary_10_3390_electronics13214237
crossref_primary_10_1007_s11235_024_01153_2
crossref_primary_10_1016_j_comcom_2022_12_003
crossref_primary_10_1109_TVT_2021_3116101
Cites_doi 10.1109/WCSP.2017.8170970
10.1109/ROBOT.2009.5152549
10.1109/LWC.2017.2776922
10.1109/TCOMM.2016.2611512
10.1109/LCOMM.2016.2528260
10.1017/CBO9780511804441
10.1109/TCOMM.2019.2911294
10.1109/LCOMM.2016.2553103
10.1109/LCOMM.2016.2633248
10.1109/TWC.2018.2838134
10.1109/TVT.2018.2811942
10.1109/TWC.2017.2688328
10.1109/TWC.2019.2902559
10.1109/JSAC.2018.2872361
10.1109/TSP.2016.2601284
10.1109/MCOM.2015.7081084
10.1109/COMST.2015.2495297
10.1109/JIOT.2018.2875446
10.1109/TWC.2019.2946153
10.1109/LCOMM.2015.2478460
10.1109/MMM.2014.2309499
10.1109/MCOM.2016.7470933
10.1109/TAES.2012.6178054
10.1109/JIOT.2019.2958975
10.1109/TVT.2020.2980683
10.1109/TCOMM.2020.2971488
10.1007/978-3-030-17513-9_1
10.1561/2200000050
10.1109/LWC.2019.2947430
10.1109/ICCCBDA49378.2020.9095679
10.1109/LCOMM.2018.2800737
10.1109/COMST.2014.2368999
10.1007/s10846-015-0175-5
10.1109/JSAC.2018.2872615
10.1109/TCOMM.2006.877962
10.1109/LWC.2014.2342736
10.1109/ACCESS.2019.2941278
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TWC.2020.3030773
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2248
EndPage 1121
ExternalDocumentID 10_1109_TWC_2020_3030773
9234110
Genre orig-research
GrantInformation_xml – fundername: DFG
  grantid: SCHM 2643/16
  funderid: 10.13039/501100001659
– fundername: Natural Science Foundation of China
  grantid: 61871137
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2018YFB1800800
– fundername: Guangdong Province Key Area Research and Development Program
  grantid: 2018B030338001
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-26752c5a7390c3948c599b6fb93525c25559638e73e10fe62a1dfd3af1e660943
IEDL.DBID RIE
ISSN 1536-1276
IngestDate Fri Jul 25 12:20:44 EDT 2025
Thu Apr 24 23:04:33 EDT 2025
Tue Jul 01 04:13:28 EDT 2025
Wed Aug 27 05:44:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-26752c5a7390c3948c599b6fb93525c25559638e73e10fe62a1dfd3af1e660943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4854-8839
0000-0002-1047-9436
0000-0002-1888-8680
0000-0002-9929-2925
0000-0002-6731-9775
PQID 2488744606
PQPubID 105736
PageCount 17
ParticipantIDs crossref_primary_10_1109_TWC_2020_3030773
proquest_journals_2488744606
ieee_primary_9234110
crossref_citationtrail_10_1109_TWC_2020_3030773
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Feb.
2021-2-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on wireless communications
PublicationTitleAbbrev TWC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
bubeck (ref37) 2014; 8
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
valenta (ref25) 2014; 15
ref38
ref16
ref19
ref18
ref24
ref23
ref26
ref20
ref22
ref21
abdulkarim (ref36) 2015; 4
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
boyd (ref35) 2017
References_xml – ident: ref23
  doi: 10.1109/WCSP.2017.8170970
– ident: ref34
  doi: 10.1109/ROBOT.2009.5152549
– ident: ref11
  doi: 10.1109/LWC.2017.2776922
– ident: ref9
  doi: 10.1109/TCOMM.2016.2611512
– ident: ref22
  doi: 10.1109/LCOMM.2016.2528260
– ident: ref39
  doi: 10.1017/CBO9780511804441
– year: 2017
  ident: ref35
  publication-title: Convex Optimization Course Notes
– ident: ref17
  doi: 10.1109/TCOMM.2019.2911294
– volume: 4
  start-page: 76
  year: 2015
  ident: ref36
  article-title: Comparison of algorithms for solving traveling salesman problem
  publication-title: International Journal of Advanced Engineering Technology
– ident: ref10
  doi: 10.1109/LCOMM.2016.2553103
– ident: ref4
  doi: 10.1109/LCOMM.2016.2633248
– ident: ref16
  doi: 10.1109/TWC.2018.2838134
– ident: ref12
  doi: 10.1109/TVT.2018.2811942
– ident: ref7
  doi: 10.1109/TWC.2017.2688328
– ident: ref8
  doi: 10.1109/TWC.2019.2902559
– ident: ref13
  doi: 10.1109/JSAC.2018.2872361
– ident: ref30
  doi: 10.1109/TSP.2016.2601284
– ident: ref14
  doi: 10.1109/MCOM.2015.7081084
– ident: ref2
  doi: 10.1109/COMST.2015.2495297
– ident: ref19
  doi: 10.1109/JIOT.2018.2875446
– ident: ref6
  doi: 10.1109/TWC.2019.2946153
– ident: ref27
  doi: 10.1109/LCOMM.2015.2478460
– volume: 15
  start-page: 108
  year: 2014
  ident: ref25
  article-title: Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems
  publication-title: IEEE Microw Mag
  doi: 10.1109/MMM.2014.2309499
– ident: ref1
  doi: 10.1109/MCOM.2016.7470933
– ident: ref33
  doi: 10.1109/TAES.2012.6178054
– ident: ref24
  doi: 10.1109/JIOT.2019.2958975
– ident: ref31
  doi: 10.1109/TVT.2020.2980683
– ident: ref20
  doi: 10.1109/TCOMM.2020.2971488
– ident: ref21
  doi: 10.1007/978-3-030-17513-9_1
– volume: 8
  start-page: 231
  year: 2014
  ident: ref37
  article-title: Convex optimization: Algorithms and complexity
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000050
– ident: ref18
  doi: 10.1109/LWC.2019.2947430
– ident: ref29
  doi: 10.1109/ICCCBDA49378.2020.9095679
– ident: ref5
  doi: 10.1109/LCOMM.2018.2800737
– ident: ref15
  doi: 10.1109/COMST.2014.2368999
– ident: ref32
  doi: 10.1007/s10846-015-0175-5
– ident: ref26
  doi: 10.1109/JSAC.2018.2872615
– ident: ref38
  doi: 10.1109/TCOMM.2006.877962
– ident: ref3
  doi: 10.1109/LWC.2014.2342736
– ident: ref28
  doi: 10.1109/ACCESS.2019.2941278
SSID ssj0017655
Score 2.5941951
Snippet In this paper, we study an unmanned aerial vehicle (UAV)-enabled multiuser wireless power transfer (WPT) network, where a UAV is responsible for providing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1105
SubjectTerms Airspeed
Convexity
energy fairness
Energy harvesting
Hovering
Hovering flight
multiple users
nonlinear energy harvesting (EH)
Radio frequency
Speed limits
Straight lines
successive-hover-and-fly (SHF)
Superhigh frequencies
Trajectory optimization
Turning
Unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
Wireless communication
Wireless power transmission
Title Trajectory Design for UAV-Enabled Multiuser Wireless Power Transfer With Nonlinear Energy Harvesting
URI https://ieeexplore.ieee.org/document/9234110
https://www.proquest.com/docview/2488744606
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcXplBy8CHZrkzZtjmNuiLDhYdPdSr6q6Nhkdgf9681Lu-IX4q2UBALvJe_r994PoXMqWGgUCb0kEMwLA-l7MuGJJ2XENYNCjoaE_nDErifhzTSa1tBl1QtjjHHgM9OGT1fL1wu1glRZxzojYQD9VBtWzYperapiEDPHcGovMPDKxFVJ0ued8X3PBoLExqeg0TH9YoIcp8qPh9hZl8EOGq7PVYBKnturXLbV-7eRjf89-C7aLt1M3C30Yg_VzHwfbX0aPthA2pqpJ5ezf8NXDseBrQOLJ907r-8aqjR23bmQxsAAkp3ZRxHfAqsadhYuc__zRzwqxm2IJe67TkIMhEMwvWP-cIAmg_64d-2VnAueIjzIPWIDCKIiEVPuK8rDREWcS5ZJDnNTlQ1AIriyJqYm8DPDiAh0pqnIAsMYoBQPUX2-mJsjhGmYqVhQxhURoWBSEqkjJTSnLONZHDRRZy2GVJUDyYEXY5a6wMTnqRVcCoJLS8E10UW146UYxvHH2gbIoVpXiqCJWmtJp-VtfU2JfcViGxf77Pj3XSdokwCWxaG1W6ieL1fm1DojuTxzWvgB1x3aPw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOMAeeK8oTx_2gkTaxE6c-IigqDxacWgXbpFfAQEqCNID_Ho8ThotsELcosiWLH1jz3zzBPjDJI-tpnGQRZIHcaTCQGUiC5RKhOEYyDHo0O8PeG8Un10n1zNw0NTCWGt98plt46eP5ZtHPUFXWccZI3GE9VRziWMVWVWt1cQMUu5nnLorjJNl0iYoGYrO8OrIUUHqGCrKdMo-KCE_VeXLU-z1y8kS9Kcnq9JK7tuTUrX126emjT89-jIs1oYmOawkYwVm7HgVfv3TfnANjFNUd95r_0qOfSYHcSYsGR3-Dbq-pMoQX5-LjgyCabIP7lkklzhXjXgdV_j_5S0ZVA035DPp-lpCgiOHsH_H-GYdRifd4VEvqKcuBJqKqAyooxBUJzJlItRMxJlOhFC8UAI7p2pHQRK8tDZlNgoLy6mMTGGYLCLLOeYp_obZ8ePYbgBhcaFTybjQVMaSK0WVSbQ0gvFCFGnUgs4UhlzXLclxMsZD7qlJKHIHXI7A5TVwLdhvdjxV7Ti-WbuGODTraghasD1FOq_v60tOnTiljhmHfPP_u_ZgvjfsX-QXp4PzLVigmNnic7e3YbZ8ntgdZ5qUatdL5Dt9Nt2S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trajectory+Design+for+UAV-Enabled+Multiuser+Wireless+Power+Transfer+With+Nonlinear+Energy+Harvesting&rft.jtitle=IEEE+transactions+on+wireless+communications&rft.au=Yuan%2C+Xiaopeng&rft.au=Yang%2C+Tianyu&rft.au=Hu%2C+Yulin&rft.au=Xu%2C+Jie&rft.date=2021-02-01&rft.pub=IEEE&rft.issn=1536-1276&rft.volume=20&rft.issue=2&rft.spage=1105&rft.epage=1121&rft_id=info:doi/10.1109%2FTWC.2020.3030773&rft.externalDocID=9234110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1276&client=summon