Artificial Neural Network-Based Compact Modeling Methodology for Advanced Transistors
The artificial neural network (ANN)-based compact modeling methodology is evaluated in the context of advanced field-effect transistor (FET) modeling for Design-Technology-Cooptimization (DTCO) and pathfinding activities. An ANN model architecture for FETs is introduced, and the results clearly show...
Saved in:
Published in | IEEE transactions on electron devices Vol. 68; no. 3; pp. 1318 - 1325 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9383 1557-9646 |
DOI | 10.1109/TED.2020.3048918 |
Cover
Abstract | The artificial neural network (ANN)-based compact modeling methodology is evaluated in the context of advanced field-effect transistor (FET) modeling for Design-Technology-Cooptimization (DTCO) and pathfinding activities. An ANN model architecture for FETs is introduced, and the results clearly show that by carefully choosing the conversion functions (i.e., from ANN outputs to device terminal currents or charges) and the loss functions for ANN training, ANN models can reproduce the current-voltage and charge-voltage characteristics of advanced FETs with excellent accuracy. A few key techniques are introduced in this work to enhance the capabilities of ANN models (e.g., model retargeting, variability modeling) and to improve ANN training efficiency and SPICE simulation turn-around-time (TAT). A systematical study on the impact of the ANN size on ANN model accuracy and SPICE simulation TAT is conducted, and an automated flow for generating optimum ANN models is proposed. The findings in this work suggest that the ANN-based methodology can be a promising compact modeling solution for advanced DTCO and pathfinding activities. |
---|---|
AbstractList | The artificial neural network (ANN)-based compact modeling methodology is evaluated in the context of advanced field-effect transistor (FET) modeling for Design-Technology-Cooptimization (DTCO) and pathfinding activities. An ANN model architecture for FETs is introduced, and the results clearly show that by carefully choosing the conversion functions (i.e., from ANN outputs to device terminal currents or charges) and the loss functions for ANN training, ANN models can reproduce the current-voltage and charge-voltage characteristics of advanced FETs with excellent accuracy. A few key techniques are introduced in this work to enhance the capabilities of ANN models (e.g., model retargeting, variability modeling) and to improve ANN training efficiency and SPICE simulation turn-around-time (TAT). A systematical study on the impact of the ANN size on ANN model accuracy and SPICE simulation TAT is conducted, and an automated flow for generating optimum ANN models is proposed. The findings in this work suggest that the ANN-based methodology can be a promising compact modeling solution for advanced DTCO and pathfinding activities. |
Author | Jeong, Changwook Wang, Jing Ryu, Jisu Kim, Daesin Kim, Yo-Han Choi, Woosung |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-4364-264X surname: Wang fullname: Wang, Jing email: jing.wang1@samsung.com organization: Device Lab, DSA R&D, Samsung Semiconductor Inc., San Jose, CA, USA – sequence: 2 givenname: Yo-Han surname: Kim fullname: Kim, Yo-Han organization: Data and Information Technology Center, Samsung Electronics, Suwon, South Korea – sequence: 3 givenname: Jisu surname: Ryu fullname: Ryu, Jisu organization: Data and Information Technology Center, Samsung Electronics, Suwon, South Korea – sequence: 4 givenname: Changwook surname: Jeong fullname: Jeong, Changwook organization: Data and Information Technology Center, Samsung Electronics, Suwon, South Korea – sequence: 5 givenname: Woosung surname: Choi fullname: Choi, Woosung organization: Device Lab, DSA R&D, Samsung Semiconductor Inc., San Jose, CA, USA – sequence: 6 givenname: Daesin surname: Kim fullname: Kim, Daesin organization: Data and Information Technology Center, Samsung Electronics, Suwon, South Korea |
BookMark | eNp9kE1PAjEYhBujiYDeTbxs4nmxn0t7RMSPBPQC56Z0WywuW2yLhn9vEeLBg6fJm8wz72S64LT1rQHgCsE-QlDczsb3fQwx7BNIuUD8BHQQY4NSVLQ6BR0IES8F4eQcdGNc5bOiFHfAfBiSs0471RQvZht-JH358F7eqWjqYuTXG6VTMfW1aVy7LKYmvfnaN365K6wPxbD-VK3OzllQbXQx-RAvwJlVTTSXR-2B-cN4NnoqJ6-Pz6PhpNRYoFRiohCpFcUKUpK7cc4oY4LpxQAaJIhGRNiFqnNbxmgtLNfYLCy3RhlLMCM9cHPI3QT_sTUxyZXfhja_lJgKkqPQQGQXPLh08DEGY-UmuLUKO4mg3I8n83hyP548jpeR6g-iXVLJ-TYF5Zr_wOsD6Iwxv39ELssqQb4Bf0p9yQ |
CODEN | IETDAI |
CitedBy_id | crossref_primary_10_1109_JFLEX_2024_3384934 crossref_primary_10_1109_JEDS_2024_3386113 crossref_primary_10_1016_j_fmre_2024_01_010 crossref_primary_10_1109_TED_2024_3517578 crossref_primary_10_1109_TED_2023_3294891 crossref_primary_10_3390_mi14061150 crossref_primary_10_3390_nano14100837 crossref_primary_10_1109_TED_2023_3327701 crossref_primary_10_1016_j_sse_2023_108766 crossref_primary_10_1109_JEDS_2024_3447032 crossref_primary_10_1109_TVLSI_2021_3107404 crossref_primary_10_1109_LED_2022_3168243 crossref_primary_10_1109_LED_2023_3290681 crossref_primary_10_1109_IEEEDATA_2024_3481356 crossref_primary_10_1109_TED_2024_3389929 crossref_primary_10_1016_j_mejo_2024_106485 crossref_primary_10_1109_TED_2022_3175708 crossref_primary_10_3390_mi13050737 crossref_primary_10_1007_s10825_023_02089_7 crossref_primary_10_3390_electronics10182219 crossref_primary_10_1109_ACCESS_2023_3309649 crossref_primary_10_1109_TED_2023_3327973 crossref_primary_10_3390_electronics13234840 crossref_primary_10_1016_j_sse_2024_109044 crossref_primary_10_3390_electronics12132906 crossref_primary_10_1109_TED_2023_3312634 crossref_primary_10_3390_mi15030411 crossref_primary_10_1109_TCAD_2022_3188961 crossref_primary_10_1109_TED_2024_3385382 crossref_primary_10_1142_S2811086224400016 crossref_primary_10_1016_j_chip_2023_100052 crossref_primary_10_1088_1361_6641_ac836d crossref_primary_10_1109_TED_2023_3278615 crossref_primary_10_1109_TMTT_2023_3343514 crossref_primary_10_1109_TED_2021_3093376 crossref_primary_10_3390_nano14020220 crossref_primary_10_1109_TNS_2023_3298707 crossref_primary_10_3390_electronics14061161 crossref_primary_10_1109_JEDS_2024_3417521 crossref_primary_10_1016_j_mejo_2025_106630 crossref_primary_10_1109_TNANO_2025_3542165 crossref_primary_10_1088_2631_8695_ad980c crossref_primary_10_1016_j_sse_2022_108580 crossref_primary_10_1007_s44196_023_00335_1 crossref_primary_10_1007_s10825_024_02139_8 crossref_primary_10_3390_mi14020426 crossref_primary_10_1016_j_sse_2022_108500 crossref_primary_10_1109_TCAD_2024_3468011 crossref_primary_10_1109_TCSII_2022_3224172 crossref_primary_10_3390_mi14020386 crossref_primary_10_3390_electronics11172761 crossref_primary_10_1002_aisy_202400571 crossref_primary_10_1109_TED_2024_3389628 crossref_primary_10_1109_TED_2021_3093844 crossref_primary_10_1038_s41598_024_56779_8 crossref_primary_10_1016_j_sse_2022_108450 crossref_primary_10_1109_TED_2023_3345288 crossref_primary_10_1109_MMM_2024_3474348 crossref_primary_10_1007_s11432_021_3483_6 crossref_primary_10_1109_ACCESS_2022_3218333 crossref_primary_10_1109_TED_2024_3408769 crossref_primary_10_1016_j_sse_2024_108898 crossref_primary_10_1049_tje2_70014 crossref_primary_10_1109_JEDS_2024_3409572 crossref_primary_10_1149_2162_8777_ad3e2e crossref_primary_10_1002_aisy_202300435 crossref_primary_10_3390_electronics13112003 crossref_primary_10_1109_JEDS_2023_3277548 crossref_primary_10_1109_TED_2022_3181536 crossref_primary_10_1109_ACCESS_2022_3188690 crossref_primary_10_1109_TED_2024_3381917 crossref_primary_10_3390_electronics13204040 crossref_primary_10_1038_s41598_023_28639_4 |
Cites_doi | 10.1109/TMTT.2002.806910 10.1109/TED.2006.881005 10.1109/TED.2015.2463073 10.1109/TCAD.2009.2017431 10.1007/s10825-017-0984-9 10.1109/JXCDC.2016.2636161 10.23919/SNW.2019.8782897 10.1109/JEDS.2015.2455342 10.1109/TED.2005.881006 10.1109/ESSCIRC.2015.7313862 10.1109/MMM.2012.2216095 10.1109/IEEE-IWS.2018.8400840 10.1109/CAD-TFT.2016.7785057 10.1109/EDTM.2018.8421454 10.1109/CICC.2004.1358719 10.1109/MWSYM.2007.380244 10.1109/TED.2016.2619372 10.1109/SISPAD.2015.7292321 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TED.2020.3048918 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-9646 |
EndPage | 1325 |
ExternalDocumentID | 10_1109_TED_2020_3048918 9325569 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK VOH AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c291t-23a13da42a04338388545595cb70e193c139fbad001554d9f8c2ebf8feaef3253 |
IEDL.DBID | RIE |
ISSN | 0018-9383 |
IngestDate | Mon Jun 30 10:14:11 EDT 2025 Tue Jul 01 01:46:40 EDT 2025 Thu Apr 24 23:02:55 EDT 2025 Wed Aug 27 02:43:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-23a13da42a04338388545595cb70e193c139fbad001554d9f8c2ebf8feaef3253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4364-264X |
PQID | 2493595179 |
PQPubID | 85466 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2493595179 ieee_primary_9325569 crossref_citationtrail_10_1109_TED_2020_3048918 crossref_primary_10_1109_TED_2020_3048918 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on electron devices |
PublicationTitleAbbrev | TED |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref23 ref15 ref14 ref22 ref10 ref21 ref2 ref1 ref19 ref18 (ref20) 2014 ref8 ref7 ref9 ref4 ref3 kim (ref11) 2020 paszke (ref16) 2019 ref6 zhang (ref5) 2000 abadi (ref17) 2016 |
References_xml | – ident: ref6 doi: 10.1109/TMTT.2002.806910 – start-page: 265 year: 2016 ident: ref17 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI) – ident: ref19 doi: 10.1109/TED.2006.881005 – ident: ref21 doi: 10.1109/TED.2015.2463073 – ident: ref3 doi: 10.1109/TCAD.2009.2017431 – ident: ref10 doi: 10.1007/s10825-017-0984-9 – ident: ref8 doi: 10.1109/JXCDC.2016.2636161 – ident: ref15 doi: 10.23919/SNW.2019.8782897 – ident: ref22 doi: 10.1109/JEDS.2015.2455342 – ident: ref2 doi: 10.1109/TED.2005.881006 – ident: ref1 doi: 10.1109/ESSCIRC.2015.7313862 – ident: ref13 doi: 10.1109/MMM.2012.2216095 – ident: ref14 doi: 10.1109/IEEE-IWS.2018.8400840 – year: 2014 ident: ref20 publication-title: Verilog-AMS Language Reference Manual – start-page: 257 year: 2020 ident: ref11 article-title: Physics-augmented neural compact model for emerging device technologies publication-title: Proc Simulation Semiconductor Processes and Devices (SISPAD) – ident: ref12 doi: 10.1109/CAD-TFT.2016.7785057 – year: 2000 ident: ref5 publication-title: Neural Networks for RF and Microwave Design – ident: ref9 doi: 10.1109/EDTM.2018.8421454 – start-page: 8024 year: 2019 ident: ref16 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Advances in neural information processing systems – ident: ref18 doi: 10.1109/CICC.2004.1358719 – ident: ref7 doi: 10.1109/MWSYM.2007.380244 – ident: ref23 doi: 10.1109/TED.2016.2619372 – ident: ref4 doi: 10.1109/SISPAD.2015.7292321 |
SSID | ssj0016442 |
Score | 2.6287453 |
Snippet | The artificial neural network (ANN)-based compact modeling methodology is evaluated in the context of advanced field-effect transistor (FET) modeling for... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1318 |
SubjectTerms | Artificial neural network (ANN) Artificial neural networks circuit simulation compact modeling Data models design-technology-cooptimization (DTCO) Electric potential emerging devices Field effect transistors field-effect transistor (FET) Integrated circuit modeling machine learning Mathematical model Methodology Model accuracy Modelling Neural networks pathfinding Semiconductor device modeling Semiconductor devices SPICE statistical modeling Training Voltage |
Title | Artificial Neural Network-Based Compact Modeling Methodology for Advanced Transistors |
URI | https://ieeexplore.ieee.org/document/9325569 https://www.proquest.com/docview/2493595179 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7anvTgq4rVKjl4Edy2m30lxyqWItSThd6WPC9KK3b34q93kn1QVMTTLmwC2cxk5ptk8g3ATRjKTAueBlGUqCCWoQyYphKBnDFKMKOschv6i-d0voyfVsmqA3ftXRhjjE8-MyP36s_y9UaVbqtsjFgjSVLehS6qWXVXqz0xQL9eMYOHuIAx7GqOJCd8jCYAA0GK8SmqK3flPXZckK-p8sMQe-8yO4RFM64qqeR1VBZypD6_UTb-d-BHcFDDTDKt9OIYOmZ9Avs75IN9WLqPFX8EcRQd_uFzwoN7dG2aeFOhCuLKpblL62Thq037fXiCWJdM6_wB4h2e5xvZnsJy9vjyMA_qIguBojwsAhqJMNIipsJRmbGIMcRUCU-UzCYG0Z1CiGil0B5cxZpbpqiRllkjjMXfis6gt96szTkQxBaaslRTV1bXZorbFKM5NGOpzbiI1ADGzbznqmYgd4Uw3nIfiUx4jpLKnaTyWlIDuG17vFfsG3-07buJb9vVcz6AYSPavF6e2xxjTnchGY3Rxe-9LmGPuuQVn2w2hF7xUZorRB-FvPZq9wXAUNXA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFPDAgkTaxnl6LIiqQNOplbpF8WsBtYimC7-es_NQBQgxJVJsyfHZd9_Zd98B3Lguj2TGQsfzAuH43OVOLClHIKeUyGIltDAH-skkHM3853kwb8BdnQujlLLBZ6prXu1dvlyKtTkq6yHWCIKQbcE22n0_KLK16jsDtOwFN7iLWxgdr-pSss96qATQFaTooeKCZabAx4YRslVVfqhia1-GB5BUIyvCSl6765x3xec30sb_Dv0Q9kugSQbFyjiChlocw94G_WALZuZjwSBBDEmHfdiocOcejZskVlmInJiCaSZtnSS23rQ9iSeIdsmgjCAg1uRZxpHVCcyGj9OHkVOWWXAEZW7uUC9zPZn5NDNkZrEXxzi3AQsEj_oK8Z1AkKh5Ji288iXTsaCK61irTGn8Le8UmovlQp0BQXQhaRxKagrr6kgwHaI_h4os1BHLPNGGXjXvqSg5yE0pjLfU-iJ9lqKkUiOptJRUG27rHu8F_8YfbVtm4ut25Zy3oVOJNi036CpFr9OkJKM6Ov-91zXsjKbJOB0_TV4uYJeaUBYbetaBZv6xVpeIRXJ-ZZfgFx1w2Q0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network-Based+Compact+Modeling+Methodology+for+Advanced+Transistors&rft.jtitle=IEEE+transactions+on+electron+devices&rft.au=Wang%2C+Jing&rft.au=Kim%2C+Yo-Han&rft.au=Ryu%2C+Jisu&rft.au=Jeong%2C+Changwook&rft.date=2021-03-01&rft.issn=0018-9383&rft.eissn=1557-9646&rft.volume=68&rft.issue=3&rft.spage=1318&rft.epage=1325&rft_id=info:doi/10.1109%2FTED.2020.3048918&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TED_2020_3048918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9383&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9383&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9383&client=summon |