Brain Source Localization in Head Harmonics Domain
Brain source localization (BSL) using Electro- EncephaloGram (EEG) has been an active area of research because of its cost-effective and noninvasive nature of the operation. As the EEG data are spatially sampled over the head, the subsequent localization performance is limited by the head-shape assu...
Saved in:
| Published in | IEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 10 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9456 1557-9662 |
| DOI | 10.1109/TIM.2020.3026511 |
Cover
| Abstract | Brain source localization (BSL) using Electro- EncephaloGram (EEG) has been an active area of research because of its cost-effective and noninvasive nature of the operation. As the EEG data are spatially sampled over the head, the subsequent localization performance is limited by the head-shape assumption for efficient data representation. In the literature, the human head is approximated by spherical shape. Hence, spherical harmonics, the corresponding basis functions, have been the natural choice for EEG source reconstruction and localization. In this article, a new set of basis functions called Head Harmonics (H 2 ) is developed to accurately represent the data sampled over head. The basis functions are formulated based on a more realistic head dimension. In addition, the forward model for source localization is presented in the H 2 domain. Subsequently, H 2 MUltiple SIgnal Classification (H 2 -MUSIC), H 2 Recursive MUSIC (H 2 R-MUSIC), and H 2 Recursively Applied and Projected MUSIC (H 2 RAP-MUSIC) methods are presented for BSL. For simulation, Root Mean Square Error (RMSE), computation time, and STandard Deviation (STD) ratio measures are utilized to evaluate the performance of the proposed algorithms. Real EEG data corresponding to visual stimulation, arithmetic task, and seizure are also utilized to validate the correctness of the proposed H 2 -based algorithms. The proposed model can be used with EEG instrumentation to localize neural sources for various real-time applications. |
|---|---|
| AbstractList | Brain source localization (BSL) using Electro- EncephaloGram (EEG) has been an active area of research because of its cost-effective and noninvasive nature of the operation. As the EEG data are spatially sampled over the head, the subsequent localization performance is limited by the head-shape assumption for efficient data representation. In the literature, the human head is approximated by spherical shape. Hence, spherical harmonics, the corresponding basis functions, have been the natural choice for EEG source reconstruction and localization. In this article, a new set of basis functions called Head Harmonics (H 2 ) is developed to accurately represent the data sampled over head. The basis functions are formulated based on a more realistic head dimension. In addition, the forward model for source localization is presented in the H 2 domain. Subsequently, H 2 MUltiple SIgnal Classification (H 2 -MUSIC), H 2 Recursive MUSIC (H 2 R-MUSIC), and H 2 Recursively Applied and Projected MUSIC (H 2 RAP-MUSIC) methods are presented for BSL. For simulation, Root Mean Square Error (RMSE), computation time, and STandard Deviation (STD) ratio measures are utilized to evaluate the performance of the proposed algorithms. Real EEG data corresponding to visual stimulation, arithmetic task, and seizure are also utilized to validate the correctness of the proposed H 2 -based algorithms. The proposed model can be used with EEG instrumentation to localize neural sources for various real-time applications. Brain source localization (BSL) using Electro- EncephaloGram (EEG) has been an active area of research because of its cost-effective and noninvasive nature of the operation. As the EEG data are spatially sampled over the head, the subsequent localization performance is limited by the head-shape assumption for efficient data representation. In the literature, the human head is approximated by spherical shape. Hence, spherical harmonics, the corresponding basis functions, have been the natural choice for EEG source reconstruction and localization. In this article, a new set of basis functions called Head Harmonics (H2) is developed to accurately represent the data sampled over head. The basis functions are formulated based on a more realistic head dimension. In addition, the forward model for source localization is presented in the H2 domain. Subsequently, H2 MUltiple SIgnal Classification (H2-MUSIC), H2 Recursive MUSIC (H2R-MUSIC), and H2 Recursively Applied and Projected MUSIC (H2RAP-MUSIC) methods are presented for BSL. For simulation, Root Mean Square Error (RMSE), computation time, and STandard Deviation (STD) ratio measures are utilized to evaluate the performance of the proposed algorithms. Real EEG data corresponding to visual stimulation, arithmetic task, and seizure are also utilized to validate the correctness of the proposed H2-based algorithms. The proposed model can be used with EEG instrumentation to localize neural sources for various real-time applications. |
| Author | Kumar, Lalan Gandhi, Tapan Kumar Giri, Amita |
| Author_xml | – sequence: 1 givenname: Amita orcidid: 0000-0002-4564-0269 surname: Giri fullname: Giri, Amita email: eez178183@ee.iitd.ac.in organization: Department of Electrical Engineering, IIT Delhi, New Delhi, India – sequence: 2 givenname: Lalan orcidid: 0000-0001-7000-7492 surname: Kumar fullname: Kumar, Lalan email: lkumar@ee.iitd.ac.in organization: Department of Electrical Engineering, IIT Delhi, New Delhi, India – sequence: 3 givenname: Tapan Kumar orcidid: 0000-0002-3532-9389 surname: Gandhi fullname: Gandhi, Tapan Kumar email: tgandhi@ee.iitd.ac.in organization: Department of Electrical Engineering, IIT Delhi, New Delhi, India |
| BookMark | eNp9kL1PwzAQxS1UJNrCjsQSiTnl7hw78Qjlo5WKGCiz5TqO5KqNi5MO8NfjUsTAwHTS6f3u3XsjNmhD6xi7RJgggrpZzp8nBAQTDiQF4gkbohBlrqSkARsCYJWrQsgzNuq6NQCUsiiHjO6i8W32GvbRumwRrNn4T9P70GZpPXOmzmYmbkPrbZfdh20Sn7PTxmw6d_Ezx-zt8WE5neWLl6f59HaRW1LY50RQFyQORrxoGqckqWbVlMgrVa2c4raqjKpLqMAVBm0lsHFCqBpXZV0Kzsfs-nh3F8P73nW9Xqcv22SpqZBEVHApk0oeVTaGrouu0db33wH6lGyjEfShH5360Yd-9E8_CYQ_4C76rYkf_yFXR8Q7537lihAEKv4F_HRviw |
| CODEN | IEIMAO |
| CitedBy_id | crossref_primary_10_1109_TIM_2023_3346505 crossref_primary_10_1109_TCYB_2022_3166604 crossref_primary_10_1109_TIM_2023_3298406 crossref_primary_10_1016_j_powtec_2021_07_081 crossref_primary_10_1016_j_smhl_2022_100336 crossref_primary_10_3389_fnhum_2023_1235192 crossref_primary_10_1016_j_jneumeth_2023_109835 crossref_primary_10_1109_LSENS_2021_3122453 crossref_primary_10_1109_TIM_2024_3381720 crossref_primary_10_1007_s00034_022_02245_7 crossref_primary_10_1016_j_compbiomed_2022_105715 crossref_primary_10_1038_s41598_022_14500_7 |
| Cites_doi | 10.1007/978-3-662-45664-4 10.1109/10.141192 10.1109/TIM.2016.2608479 10.1371/journal.pone.0044439 10.1109/TIM.2018.2855518 10.2478/s13380-012-0008-y 10.1073/pnas.1705414114 10.1186/1743-0003-5-25 10.1109/TBME.2006.878118 10.1121/10.0001383 10.1007/978-3-319-42211-4 10.1088/0031-9155/32/1/004 10.23919/APSIPA.2018.8659466 10.1109/78.740118 10.3390/data4010014 10.1093/brain/awz015 10.1109/10.725331 10.1109/TIM.2017.2668618 10.1109/TSA.2004.839244 10.1109/IEEECONF44664.2019.9048789 10.1016/j.clinph.2019.01.009 10.1073/pnas.98.2.694 10.1109/TSP.2016.2543201 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/TIM.2020.3026511 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Music |
| EISSN | 1557-9662 |
| EndPage | 10 |
| ExternalDocumentID | 10_1109_TIM_2020_3026511 9210519 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: SERB grantid: SB/S3/EECE/090/2015, Government of India funderid: 10.13039/501100001843 – fundername: Prime Minister’s Research Fellowship (PMRF), Ministry of Human Resource Development (MHRD), Government of India |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 85S 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 TWZ VH1 VJK AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c291t-220d425007634ffe9629fbf713898be93c88a9d7080e4a1c851fe559d1b7d7533 |
| IEDL.DBID | RIE |
| ISSN | 0018-9456 |
| IngestDate | Mon Jun 30 10:14:45 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Wed Oct 01 03:46:24 EDT 2025 Wed Aug 27 02:28:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-220d425007634ffe9629fbf713898be93c88a9d7080e4a1c851fe559d1b7d7533 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3532-9389 0000-0002-4564-0269 0000-0001-7000-7492 |
| PQID | 2462224366 |
| PQPubID | 85462 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TIM_2020_3026511 crossref_primary_10_1109_TIM_2020_3026511 ieee_primary_9210519 proquest_journals_2462224366 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on instrumentation and measurement |
| PublicationTitleAbbrev | TIM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref16 szegã (ref24) 2018 ref19 gracia (ref18) 2007 ref23 ref25 ref20 ref21 ref28 ref27 van loan (ref26) 1983 ref8 ref7 ref9 ref4 ref3 ref6 ref5 gautron (ref17) 2004; 2004 byerly (ref22) 1959 |
| References_xml | – ident: ref13 doi: 10.1007/978-3-662-45664-4 – ident: ref8 doi: 10.1109/10.141192 – year: 2007 ident: ref18 article-title: Electroencephalogram source localization based on dipole modelling and particle swarm optimization – ident: ref5 doi: 10.1109/TIM.2016.2608479 – ident: ref16 doi: 10.1371/journal.pone.0044439 – year: 1983 ident: ref26 publication-title: Matrix Computations – ident: ref1 doi: 10.1109/TIM.2018.2855518 – ident: ref15 doi: 10.2478/s13380-012-0008-y – ident: ref6 doi: 10.1073/pnas.1705414114 – ident: ref7 doi: 10.1186/1743-0003-5-25 – ident: ref27 doi: 10.1109/TBME.2006.878118 – ident: ref12 doi: 10.1121/10.0001383 – year: 2018 ident: ref24 publication-title: Orthogonal Polynomials – ident: ref21 doi: 10.1007/978-3-319-42211-4 – ident: ref19 doi: 10.1088/0031-9155/32/1/004 – ident: ref20 doi: 10.23919/APSIPA.2018.8659466 – volume: 2004 start-page: 321 year: 2004 ident: ref17 article-title: A novel hemispherical basis for accurate and efficient rendering publication-title: Rendering Techniques – ident: ref10 doi: 10.1109/78.740118 – ident: ref28 doi: 10.3390/data4010014 – start-page: 195 year: 1959 ident: ref22 article-title: Spherical Harmonics publication-title: Proc Elementary Treatise Fourier's Series Spherical Cylindrical Ellipsoidal Harmonics Appl Problems Math Phys – ident: ref3 doi: 10.1093/brain/awz015 – ident: ref9 doi: 10.1109/10.725331 – ident: ref2 doi: 10.1109/TIM.2017.2668618 – ident: ref23 doi: 10.1109/TSA.2004.839244 – ident: ref25 doi: 10.1109/IEEECONF44664.2019.9048789 – ident: ref4 doi: 10.1016/j.clinph.2019.01.009 – ident: ref11 doi: 10.1073/pnas.98.2.694 – ident: ref14 doi: 10.1109/TSP.2016.2543201 |
| SSID | ssj0007647 |
| Score | 2.3299997 |
| Snippet | Brain source localization (BSL) using Electro- EncephaloGram (EEG) has been an active area of research because of its cost-effective and noninvasive nature of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Basis functions Brain Brain modeling Brain Source Localization (BSL) Domains Electroencephalography forward problem Harmonic analysis Head Head Harmonics (H²) inverse problem Localization Magnetic heads Multiple signal classification MUltiple SIgnal Classification (MUSIC) Music Performance evaluation Recursive MUSIC (R-MUSIC) Recursively Applied and Projected MUSIC (RAP-MUSIC) Root-mean-square errors Seizures Shape Signal classification Spherical harmonics Spherical Harmonics (SH) Visual tasks |
| Title | Brain Source Localization in Head Harmonics Domain |
| URI | https://ieeexplore.ieee.org/document/9210519 https://www.proquest.com/docview/2462224366 |
| Volume | 70 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1557-9662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007647 issn: 0018-9456 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VSkgw8GhBFArKwIJE2thxHh55VQFRFlqpWxQ79gJtUZsu_HrOThrxEmKLElux7vy4z3f3HcB5RlRMdSTdTAjmMprhktKKuJp42kcAQPLIJDgPn8JkzB4mwaQBl3UujFLKBp-pnnm0vvx8LlfmqqzPEZ8EhuNzI4rDMler3nWjkJX8mAT_hlbB2iXp8f7ofohAkCI-RcAREPLlCLI1VX5sxPZ0GezCcD2uMqjkpbcqRE--f6Ns_O_A92CnMjOdq3Je7ENDzVqw_Yl8sAWbNvhTLttAr02dCOfZ3uM7j-Z0q7IzHXyd4CxwkmwxNSS6S-d2PsXGBzAe3I1uEreqpeBKyknhUurluDyNnHymteIh5VroyPgpY6G4L-M443mEBqRiGZFoiGmFaCMnIsoR0viH0JzNZ-oInNjTGj-KjEWM8TjgilPhG54zIdD8zDvQX4s3lRXRuKl38ZpawOHxFBWSGoWklUI6cFH3eCtJNv5o2zbyrdtVou1Ad63BtFqFy5SyEM0f5ofh8e-9TmCLmhgVe6XShWaxWKlTNDIKcWZn1wcFtcpg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QjFEPPkAjitqDFxML3e32sUdfpChwERJuTbfdvShgoFz89c5uC_EV461pd9PNzD7m25n5BuAyITKkKkjtRAhmM5rgklKS2Io4ykUAQLJAJzj3B340Yo9jb1yB63UujJTSBJ_Jln40vvxsli71VVmbIz7xNMfnhscY84psrfW-G_isYMgk-D-0C1ZOSYe3h90-QkGKCBUhh0fIl0PIVFX5sRWb86WzB_3VyIqwkpfWMhet9P0baeN_h74Pu6Whad0UM-MAKnJag51P9IM12DThn-miDvRWV4qwns1NvtXT51uZn2nh6wjngRUl84mm0V1Y97MJNj6EUedheBfZZTUFO6Wc5DalToYLVMvJZUpJ7lOuhAq0pzIUkrtpGCY8C9CElCwhKZpiSiLeyIgIMgQ17hFUp7OpPAYrdJTCjyJhAWM89LjkVLia6UwINECzBrRX4o3TkmpcV7x4jQ3kcHiMCom1QuJSIQ24Wvd4K2g2_mhb1_JdtytF24DmSoNxuQ4XMWU-GkDM9f2T33tdwFY07PfiXnfwdArbVEesmAuWJlTz-VKeocmRi3Mz0z4Az77NrQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Source+Localization+in+Head+Harmonics+Domain&rft.jtitle=IEEE+transactions+on+instrumentation+and+measurement&rft.au=Giri%2C+Amita&rft.au=Kumar%2C+Lalan&rft.au=Gandhi%2C+Tapan+Kumar&rft.date=2021&rft.pub=IEEE&rft.issn=0018-9456&rft.volume=70&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1109%2FTIM.2020.3026511&rft.externalDocID=9210519 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9456&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9456&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9456&client=summon |