Computer vision based classroom attendance management system-with speech output using LBPH algorithm
Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is difficult to process, especially for a large group of students. Some automated systems developed to overcome these difficulties, have drawbac...
        Saved in:
      
    
          | Published in | International journal of speech technology Vol. 23; no. 4; pp. 779 - 787 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.12.2020
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1381-2416 1572-8110  | 
| DOI | 10.1007/s10772-020-09739-2 | 
Cover
| Abstract | Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is difficult to process, especially for a large group of students. Some automated systems developed to overcome these difficulties, have drawbacks like cost, fake attendance, accuracy, intrusiveness. To overcome these drawbacks, there is a need for a smart and automated attendance system. Traditional face recognition systems employ methods to identify a face from the given input but the results are not usually accurate and precise as desired. The system described in this we aim to deviate from such traditional systems and introduce a new approach to identify a student using a face recognition system, the generation of a facial Model. This describes the working of the face recognition system that will be deployed as an Automated Attendance System in a classroom environment. The proposed smart classroom system was tested for a classroom with 20 students at K L University Andhra Pradesh, Vijayawada, India and we got the experimental results to demonstrate the train and test accuracy of 97.67% and 96.66%, respectively. In this paper we selecting of the face recognition and detection giving result using Python language in PYCHARM tool. This requires high end specifications of a system in order to get better results. It won’t run on all the small specification systems. So, this can run only a small database and compare them with the face required. | 
    
|---|---|
| AbstractList | Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is difficult to process, especially for a large group of students. Some automated systems developed to overcome these difficulties, have drawbacks like cost, fake attendance, accuracy, intrusiveness. To overcome these drawbacks, there is a need for a smart and automated attendance system. Traditional face recognition systems employ methods to identify a face from the given input but the results are not usually accurate and precise as desired. The system described in this we aim to deviate from such traditional systems and introduce a new approach to identify a student using a face recognition system, the generation of a facial Model. This describes the working of the face recognition system that will be deployed as an Automated Attendance System in a classroom environment. The proposed smart classroom system was tested for a classroom with 20 students at K L University Andhra Pradesh, Vijayawada, India and we got the experimental results to demonstrate the train and test accuracy of 97.67% and 96.66%, respectively. In this paper we selecting of the face recognition and detection giving result using Python language in PYCHARM tool. This requires high end specifications of a system in order to get better results. It won’t run on all the small specification systems. So, this can run only a small database and compare them with the face required. | 
    
| Author | Harish, P. Kaushik, N. Lokesh, G. Bhavana, D. Mounisha, E. Kumar, K. Kishore Tej, D. Ravi  | 
    
| Author_xml | – sequence: 1 givenname: D. surname: Bhavana fullname: Bhavana, D. email: bhavanaece@kluniversity.in organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur – sequence: 2 givenname: K. Kishore surname: Kumar fullname: Kumar, K. Kishore organization: Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation – sequence: 3 givenname: N. surname: Kaushik fullname: Kaushik, N. organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur – sequence: 4 givenname: G. surname: Lokesh fullname: Lokesh, G. organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur – sequence: 5 givenname: P. surname: Harish fullname: Harish, P. organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur – sequence: 6 givenname: E. surname: Mounisha fullname: Mounisha, E. organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur – sequence: 7 givenname: D. Ravi surname: Tej fullname: Tej, D. Ravi organization: Department of Electronics and Communication Engineering, SRK Institute of Technology  | 
    
| BookMark | eNp9kM1OwzAQhC1UJNrCC3DyCwS8Th3HR6j4kyrBAc6WG2_SVI1d2Q6ob4-hnDj0tKvVfKOdmZGJ8w4JuQZ2A4zJ2whMSl4wzgqmZKkKfkamIPKpBmCTvJc1FHwB1QWZxbhlLMsUnxK79MN-TBjoZx977-jaRLS02ZkYg_cDNSmhs8Y1SAfjTIcDukTjISYciq8-bWjcIzYb6seUjegYe9fR1f3bMzW7zoesGC7JeWt2Ea_-5px8PD68L5-L1evTy_JuVTRcQSo4NGCsVbVBlNa0NdgSBKi6ta1gXPJFLdAiWNViaSrRSlGBsm0l12shVFXOSX30bYLP72Ormz6ZlGOlYPqdBqZ_2tLHtnRuS_-2pXlG-T90H_rBhMNpqDxCMYtdh0Fv_RhcjniK-gafAoGd | 
    
| CitedBy_id | crossref_primary_10_1007_s40593_024_00410_4 crossref_primary_10_1007_s10639_024_12491_8 crossref_primary_10_1007_s13198_021_01383_6 crossref_primary_10_1155_2022_4953721  | 
    
| Cites_doi | 10.1109/ICMDCS.2017.8211705 10.1109/ICCCE.2018.8539274 10.1201/9780429340710-5 10.1007/s10772-019-09660-3 10.1166/jctn.2018.7397 10.1109/SIU.2016.7496182 10.1109/WiSPNET.2017.8300250 10.1109/CASP.2016.7746206 10.1007/978-981-13-1906-8_40 10.1109/CVPR.2016.308 10.1109/CVPR.2005.177 10.1109/CW.2017.34 10.1007/s11042-018-7038-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 | 
    
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s10772-020-09739-2 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Languages & Literatures Engineering Anatomy & Physiology  | 
    
| EISSN | 1572-8110 | 
    
| EndPage | 787 | 
    
| ExternalDocumentID | 10_1007_s10772_020_09739_2 | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AERSA AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS ECE EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IN- ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7U Z7X Z83 Z88 Z8M Z8W Z92 ZMTXR _50 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION  | 
    
| ID | FETCH-LOGICAL-c291t-21c1add98aee7daf81d315198fdf50272485ede1d9fe3a65f75619df67bb55963 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1381-2416 | 
    
| IngestDate | Wed Oct 01 03:19:08 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 21 02:37:26 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Face detection method Bit- byte conversion methods Image processing HAAR features Features matching Query image Expressions Face recognition method Features extraction HOG features  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-21c1add98aee7daf81d315198fdf50272485ede1d9fe3a65f75619df67bb55963 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s10772_020_09739_2 crossref_primary_10_1007_s10772_020_09739_2 springer_journals_10_1007_s10772_020_09739_2  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20201200 2020-12-00  | 
    
| PublicationDateYYYYMMDD | 2020-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2020 text: 20201200  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | International journal of speech technology | 
    
| PublicationTitleAbbrev | Int J Speech Technol | 
    
| PublicationYear | 2020 | 
    
| Publisher | Springer US | 
    
| Publisher_xml | – name: Springer US | 
    
| References | NagaJyothi, G., & SriDevi, S. (2017). Distributed arithmetic architectures for fir filters-a comparative review. In: 2017 International conference on wireless communications, signal processing and networking (WiSPNET), pp. 2684–2690. IEEE Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 886–893). IEEE Jayant, N.K., Borra, S. (2016). Attendance management system using hybrid face recognition techniques. In 2016 Conference on advances in signal processing (CASP), pp. 412–417. IEEE Samet, R., & Tanriverdi, M. (2017) Face recognition-based mobile automatic classroom attendance management system. In: 2017 International conference on cyberworlds (CW), pp. 253–256. IEEE NagaJyothiGSrideviSHigh speed and low area decision feed-back equalizer with novel memory less distributed arithmetic filterMultimedia Tools and Applications20197823326793269310.1007/s11042-018-7038-6 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 Grande, N. J., & Sridevi, S. (2017). Asic implementation of shared lut based distributed arithmetic in fir filter. In 2017 International conference on microelectronic devices, Circuits and Systems (ICMDCS), pp. 1–4. IEEE JyothiGNSrideviSLow power, low area adaptive finite impulse response filter based on memory less distributed arithmeticJournal of Computational and Theoretical Nanoscience2018156–72003200810.1166/jctn.2018.7397 King, D. E. (2015). Max-margin object detection. arXiv:1502.00046 Salim, O. A. R., Olanrewaju, R. F., & Balogun, W. A. (2018) Class attendance management system using face recognition. In: 2018 7th International conference on computer and communication engineering (ICCCE), pp. 93–98. IEEE Edelman, S., Reisfeld, D., & Yeshurun, Y. (1994). A system for face recognition that learns from examples. In Proc. European Conf. Computer Vision, pp. 787–791 Khorsheed, J. A., & Yurtkan, K. (2016). Analysis of local binary patterns for face recognition under varying facial expressions. In: 2016 24th signal processing and communication application conference (SIU), pp. 2085–2088. IEEE HallinanPWA low-dimensional representation of human faces for arbitrary lighting conditionsCVPR199494995999 Jyothi, G. N., & Sriadibhatla, S. (2019). Asic implementation of low power, area efficient adaptive fir filter using pipelined da. In Microelectronics, electromagnetics and telecommunications, pp. 385–394. Berlin: Springer Jyothi, G. N., Anusha, G., Kumar, N. D., & Kundu, D. (2019). Design of finfet based dram cell for low power applications. In Computer-aided developments: electronics and communication: proceeding of the first annual conference on computer-aided developments in electronics and communication (CADEC-2019), Vellore Institute of Technology, Amaravati, India, 2–3 March 2019, p. 35. Boca Raton: CRC Press JainVLearned-MillerEFddb: a benchmark for face detection in unconstrained settings2010UMass Amherst technical reportTech. Rep. Shehu, V., & Dika, A. (2010). Using real time computer vision algorithms in automatic attendance management systems. In: Proceedings of the ITI 2010, 32nd international conference on information technology interfaces, pp. 397–402. IEEE NagaJyothiGSrideviSHigh speed low area obc da based decimation filter for hearing aids applicationInternational Journal of Speech Technology20192311112110.1007/s10772-019-09660-3 9739_CR18 9739_CR17 GN Jyothi (9739_CR9) 2018; 15 9739_CR10 9739_CR12 9739_CR11 9739_CR16 9739_CR1 9739_CR15 9739_CR2 9739_CR3 V Jain (9739_CR5) 2010 G NagaJyothi (9739_CR14) 2019; 23 9739_CR6 9739_CR7 G NagaJyothi (9739_CR13) 2019; 78 PW Hallinan (9739_CR4) 1994; 94 9739_CR8  | 
    
| References_xml | – reference: HallinanPWA low-dimensional representation of human faces for arbitrary lighting conditionsCVPR199494995999 – reference: JainVLearned-MillerEFddb: a benchmark for face detection in unconstrained settings2010UMass Amherst technical reportTech. Rep. – reference: Jyothi, G. N., Anusha, G., Kumar, N. D., & Kundu, D. (2019). Design of finfet based dram cell for low power applications. In Computer-aided developments: electronics and communication: proceeding of the first annual conference on computer-aided developments in electronics and communication (CADEC-2019), Vellore Institute of Technology, Amaravati, India, 2–3 March 2019, p. 35. Boca Raton: CRC Press – reference: Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 886–893). IEEE – reference: Grande, N. J., & Sridevi, S. (2017). Asic implementation of shared lut based distributed arithmetic in fir filter. In 2017 International conference on microelectronic devices, Circuits and Systems (ICMDCS), pp. 1–4. IEEE – reference: Salim, O. A. R., Olanrewaju, R. F., & Balogun, W. A. (2018) Class attendance management system using face recognition. In: 2018 7th International conference on computer and communication engineering (ICCCE), pp. 93–98. IEEE – reference: Shehu, V., & Dika, A. (2010). Using real time computer vision algorithms in automatic attendance management systems. In: Proceedings of the ITI 2010, 32nd international conference on information technology interfaces, pp. 397–402. IEEE – reference: Edelman, S., Reisfeld, D., & Yeshurun, Y. (1994). A system for face recognition that learns from examples. In Proc. European Conf. Computer Vision, pp. 787–791 – reference: Jayant, N.K., Borra, S. (2016). Attendance management system using hybrid face recognition techniques. In 2016 Conference on advances in signal processing (CASP), pp. 412–417. IEEE – reference: JyothiGNSrideviSLow power, low area adaptive finite impulse response filter based on memory less distributed arithmeticJournal of Computational and Theoretical Nanoscience2018156–72003200810.1166/jctn.2018.7397 – reference: NagaJyothiGSrideviSHigh speed low area obc da based decimation filter for hearing aids applicationInternational Journal of Speech Technology20192311112110.1007/s10772-019-09660-3 – reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826 – reference: Jyothi, G. N., & Sriadibhatla, S. (2019). Asic implementation of low power, area efficient adaptive fir filter using pipelined da. In Microelectronics, electromagnetics and telecommunications, pp. 385–394. Berlin: Springer – reference: King, D. E. (2015). Max-margin object detection. arXiv:1502.00046 – reference: Samet, R., & Tanriverdi, M. (2017) Face recognition-based mobile automatic classroom attendance management system. In: 2017 International conference on cyberworlds (CW), pp. 253–256. IEEE – reference: Khorsheed, J. A., & Yurtkan, K. (2016). Analysis of local binary patterns for face recognition under varying facial expressions. In: 2016 24th signal processing and communication application conference (SIU), pp. 2085–2088. IEEE – reference: NagaJyothi, G., & SriDevi, S. (2017). Distributed arithmetic architectures for fir filters-a comparative review. In: 2017 International conference on wireless communications, signal processing and networking (WiSPNET), pp. 2684–2690. IEEE – reference: NagaJyothiGSrideviSHigh speed and low area decision feed-back equalizer with novel memory less distributed arithmetic filterMultimedia Tools and Applications20197823326793269310.1007/s11042-018-7038-6 – ident: 9739_CR3 doi: 10.1109/ICMDCS.2017.8211705 – ident: 9739_CR15 doi: 10.1109/ICCCE.2018.8539274 – volume: 94 start-page: 995 year: 1994 ident: 9739_CR4 publication-title: CVPR – ident: 9739_CR7 doi: 10.1201/9780429340710-5 – volume: 23 start-page: 111 year: 2019 ident: 9739_CR14 publication-title: International Journal of Speech Technology doi: 10.1007/s10772-019-09660-3 – ident: 9739_CR2 – volume: 15 start-page: 2003 issue: 6–7 year: 2018 ident: 9739_CR9 publication-title: Journal of Computational and Theoretical Nanoscience doi: 10.1166/jctn.2018.7397 – ident: 9739_CR10 doi: 10.1109/SIU.2016.7496182 – ident: 9739_CR12 doi: 10.1109/WiSPNET.2017.8300250 – volume-title: Fddb: a benchmark for face detection in unconstrained settings year: 2010 ident: 9739_CR5 – ident: 9739_CR11 – ident: 9739_CR6 doi: 10.1109/CASP.2016.7746206 – ident: 9739_CR8 doi: 10.1007/978-981-13-1906-8_40 – ident: 9739_CR18 doi: 10.1109/CVPR.2016.308 – ident: 9739_CR1 doi: 10.1109/CVPR.2005.177 – ident: 9739_CR16 doi: 10.1109/CW.2017.34 – ident: 9739_CR17 – volume: 78 start-page: 32679 issue: 23 year: 2019 ident: 9739_CR13 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-018-7038-6  | 
    
| SSID | ssj0009792 | 
    
| Score | 2.2659543 | 
    
| Snippet | Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 779 | 
    
| SubjectTerms | Artificial Intelligence Engineering Signal,Image and Speech Processing Social Sciences  | 
    
| Title | Computer vision based classroom attendance management system-with speech output using LBPH algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s10772-020-09739-2 | 
    
| Volume | 23 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1572-8110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009792 issn: 1381-2416 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1572-8110 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009792 issn: 1381-2416 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1572-8110 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009792 issn: 1381-2416 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQXWBA0PIoj8oDYgFLdRI7zRhQSwUFMVCpTFH8SBnatGrSgX_P2Un6kFAl9ost5ey778533yF0G9NEiI5kBC61TzzlcSJ02yeOJzSVrhRMmEbht3feH3ovIzYqm8Kyqtq9epK0lnqj2Q2QIDHhjqGYCQgY3hozdF5wiodOuKba9e0oZAq-CLakvGyV-XuNbXe0_RZqXUzvGB2V2BCHhTJP0J5O66gRphAXT3_wHbbVmjYNXkeHG0SCdXQ-KNOOGYgNVkzJWQOpamwDLrrIsXFbCssKNGPDrwlhOegeT1elMLggeCYmS4uzudbyG8-WOSyETaH8GA8eP_o4noxnC5CYnqJhr_v51CflZAUinYDmxKGSgmELOrHWvooTAK0uuP6gk6iEQaBqeM600lQFiXZjzhIfYFagEu4LASEId8_QfjpL9QXCruDa423pGCY9qgBhMOYGWkgVu55syyai1Q-OZEk7bqZfTKI1YbJRSgRKiaxSIqeJ7lffzAvSjZ3SD5XeovICZjvEL_8nfoUOHHNebAXLNdrPF0t9AzgkFy1UC5-_Xrste_x-Aed11yM | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOKgHH-ADnz0YL1pC98ke0YgoC_EACZ4228dqooBxl4P-eqf7ADTGxPtst2mnM9-0M98AnIUs4rwpbIqH2qWWtBzKVcOlhsUVE6bgNteFwr2-0xla9yN7lBeFxUW2e_EkmVrqpWI3RIJUhzuaYsajaHjLFgYoRgnKrdvH7s2CbNdNmyEz9Eb4U-bkxTK_j_LdIX1_DU2dTHsThsX0stySl_os4XXx-YO58b_z34KNHHWSVqYm27CiJhWotiYYcY8_yDlJ80DTC_YKrC9RFFZgz88vNGMU8-cczHEVZNEQgmT16UQ7RElEAceJZu7EgB-1ioznSTYko46m-v6XxG9KiWcynSU4ENEp-E_Ev3rokPD1afqOEuMdGLZvBtcdmvdsoMLwWEINJhiaTK8ZKuXKMEI4bCKo8JqRjGwMgTWDmpKKSS9SZujYkYsAzpOR43KOwY1j7kJpMp2ofSAmd5TlNIShOfqYROxi26anuJChaYmGqAErNi4QOaG57qvxGiyomPWSB7jkQbrkgVGDi_k3bxmdx5_Sl8VWBvnRjv8QP_if-CmsdgY9P_Dv-t1DWDO0ZqR5MkdQSt5n6hjRTsJPcuX-Aj009XQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwejIIPfO7BeNENbJ_0iA-CWgkHSbg13RceoBBaDv57Z7ctj8SQeJ_uJp3ZnW9mZ75B6C6mirEWdwkcap84wvEIk02fWA6TlNucuUw3Cn_2vO7AeR-6w7UuflPtXj5J5j0NmqUpyRozoRprjW-ACokOfTTdTEDgEt51NFECWPTAaq9od30zFpmCX4LtqVe0zfy9xqZr2nwXNe6mc4QOC5yI27lij9GOTKqo1k4gRp784HtsKjdNSryKDtZIBavoLCxSkCmIhUvW5LSGRDnCAecd5Vi7MIF5CaCx5tqEEB3sAE-WZTE4J3smOmOL05mU_BtPFxkshHXR_AiHT_0ujsej6RwkJido0Hn9eu6SYsoC4VZAM2JRTuGSC1qxlL6IFQBYG2BA0FJCuRC0as4zKSQVgZJ27LnKB8gVCOX5jEE44tmnqJJME3mOsM086XhNbmlWPSoAbbiuHUjGRWw7vMnriJY_OOIFBbmehDGOVuTJWikRKCUySomsOnpYfjPLCTi2Sj-WeouKw5huEb_4n_gt2uu_dKLwrfdxifYtbTqmsOUKVbL5Ql4DPMnYjbHAX_hB3Lc | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+based+classroom+attendance+management+system-with+speech+output+using+LBPH+algorithm&rft.jtitle=International+journal+of+speech+technology&rft.au=Bhavana%2C+D.&rft.au=Kumar%2C+K.+Kishore&rft.au=Kaushik%2C+N.&rft.au=Lokesh%2C+G.&rft.date=2020-12-01&rft.issn=1381-2416&rft.eissn=1572-8110&rft.volume=23&rft.issue=4&rft.spage=779&rft.epage=787&rft_id=info:doi/10.1007%2Fs10772-020-09739-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10772_020_09739_2 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2416&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2416&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2416&client=summon |