Computer vision based classroom attendance management system-with speech output using LBPH algorithm

Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is difficult to process, especially for a large group of students. Some automated systems developed to overcome these difficulties, have drawbac...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of speech technology Vol. 23; no. 4; pp. 779 - 787
Main Authors Bhavana, D., Kumar, K. Kishore, Kaushik, N., Lokesh, G., Harish, P., Mounisha, E., Tej, D. Ravi
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Subjects
Online AccessGet full text
ISSN1381-2416
1572-8110
DOI10.1007/s10772-020-09739-2

Cover

Abstract Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is difficult to process, especially for a large group of students. Some automated systems developed to overcome these difficulties, have drawbacks like cost, fake attendance, accuracy, intrusiveness. To overcome these drawbacks, there is a need for a smart and automated attendance system. Traditional face recognition systems employ methods to identify a face from the given input but the results are not usually accurate and precise as desired. The system described in this we aim to deviate from such traditional systems and introduce a new approach to identify a student using a face recognition system, the generation of a facial Model. This describes the working of the face recognition system that will be deployed as an Automated Attendance System in a classroom environment. The proposed smart classroom system was tested for a classroom with 20 students at K L University Andhra Pradesh, Vijayawada, India and we got the experimental results to demonstrate the train and test accuracy of 97.67% and 96.66%, respectively. In this paper we selecting of the face recognition and detection giving result using Python language in PYCHARM tool. This requires high end specifications of a system in order to get better results. It won’t run on all the small specification systems. So, this can run only a small database and compare them with the face required.
AbstractList Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is difficult to process, especially for a large group of students. Some automated systems developed to overcome these difficulties, have drawbacks like cost, fake attendance, accuracy, intrusiveness. To overcome these drawbacks, there is a need for a smart and automated attendance system. Traditional face recognition systems employ methods to identify a face from the given input but the results are not usually accurate and precise as desired. The system described in this we aim to deviate from such traditional systems and introduce a new approach to identify a student using a face recognition system, the generation of a facial Model. This describes the working of the face recognition system that will be deployed as an Automated Attendance System in a classroom environment. The proposed smart classroom system was tested for a classroom with 20 students at K L University Andhra Pradesh, Vijayawada, India and we got the experimental results to demonstrate the train and test accuracy of 97.67% and 96.66%, respectively. In this paper we selecting of the face recognition and detection giving result using Python language in PYCHARM tool. This requires high end specifications of a system in order to get better results. It won’t run on all the small specification systems. So, this can run only a small database and compare them with the face required.
Author Harish, P.
Kaushik, N.
Lokesh, G.
Bhavana, D.
Mounisha, E.
Kumar, K. Kishore
Tej, D. Ravi
Author_xml – sequence: 1
  givenname: D.
  surname: Bhavana
  fullname: Bhavana, D.
  email: bhavanaece@kluniversity.in
  organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur
– sequence: 2
  givenname: K. Kishore
  surname: Kumar
  fullname: Kumar, K. Kishore
  organization: Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation
– sequence: 3
  givenname: N.
  surname: Kaushik
  fullname: Kaushik, N.
  organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur
– sequence: 4
  givenname: G.
  surname: Lokesh
  fullname: Lokesh, G.
  organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur
– sequence: 5
  givenname: P.
  surname: Harish
  fullname: Harish, P.
  organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur
– sequence: 6
  givenname: E.
  surname: Mounisha
  fullname: Mounisha, E.
  organization: Department of Electronics and Communication Engineering, KLEF (Deemed to be University) Guntur
– sequence: 7
  givenname: D. Ravi
  surname: Tej
  fullname: Tej, D. Ravi
  organization: Department of Electronics and Communication Engineering, SRK Institute of Technology
BookMark eNp9kM1OwzAQhC1UJNrCC3DyCwS8Th3HR6j4kyrBAc6WG2_SVI1d2Q6ob4-hnDj0tKvVfKOdmZGJ8w4JuQZ2A4zJ2whMSl4wzgqmZKkKfkamIPKpBmCTvJc1FHwB1QWZxbhlLMsUnxK79MN-TBjoZx977-jaRLS02ZkYg_cDNSmhs8Y1SAfjTIcDukTjISYciq8-bWjcIzYb6seUjegYe9fR1f3bMzW7zoesGC7JeWt2Ea_-5px8PD68L5-L1evTy_JuVTRcQSo4NGCsVbVBlNa0NdgSBKi6ta1gXPJFLdAiWNViaSrRSlGBsm0l12shVFXOSX30bYLP72Ormz6ZlGOlYPqdBqZ_2tLHtnRuS_-2pXlG-T90H_rBhMNpqDxCMYtdh0Fv_RhcjniK-gafAoGd
CitedBy_id crossref_primary_10_1007_s40593_024_00410_4
crossref_primary_10_1007_s10639_024_12491_8
crossref_primary_10_1007_s13198_021_01383_6
crossref_primary_10_1155_2022_4953721
Cites_doi 10.1109/ICMDCS.2017.8211705
10.1109/ICCCE.2018.8539274
10.1201/9780429340710-5
10.1007/s10772-019-09660-3
10.1166/jctn.2018.7397
10.1109/SIU.2016.7496182
10.1109/WiSPNET.2017.8300250
10.1109/CASP.2016.7746206
10.1007/978-981-13-1906-8_40
10.1109/CVPR.2016.308
10.1109/CVPR.2005.177
10.1109/CW.2017.34
10.1007/s11042-018-7038-6
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
DBID AAYXX
CITATION
DOI 10.1007/s10772-020-09739-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Languages & Literatures
Engineering
Anatomy & Physiology
EISSN 1572-8110
EndPage 787
ExternalDocumentID 10_1007_s10772_020_09739_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AERSA
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
ECE
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IN-
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7X
Z83
Z88
Z8M
Z8W
Z92
ZMTXR
_50
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c291t-21c1add98aee7daf81d315198fdf50272485ede1d9fe3a65f75619df67bb55963
IEDL.DBID U2A
ISSN 1381-2416
IngestDate Wed Oct 01 03:19:08 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Fri Feb 21 02:37:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Face detection method
Bit- byte conversion methods
Image processing
HAAR features
Features matching
Query image
Expressions
Face recognition method
Features extraction
HOG features
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-21c1add98aee7daf81d315198fdf50272485ede1d9fe3a65f75619df67bb55963
PageCount 9
ParticipantIDs crossref_citationtrail_10_1007_s10772_020_09739_2
crossref_primary_10_1007_s10772_020_09739_2
springer_journals_10_1007_s10772_020_09739_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of speech technology
PublicationTitleAbbrev Int J Speech Technol
PublicationYear 2020
Publisher Springer US
Publisher_xml – name: Springer US
References NagaJyothi, G., & SriDevi, S. (2017). Distributed arithmetic architectures for fir filters-a comparative review. In: 2017 International conference on wireless communications, signal processing and networking (WiSPNET), pp. 2684–2690. IEEE
Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 886–893). IEEE
Jayant, N.K., Borra, S. (2016). Attendance management system using hybrid face recognition techniques. In 2016 Conference on advances in signal processing (CASP), pp. 412–417. IEEE
Samet, R., & Tanriverdi, M. (2017) Face recognition-based mobile automatic classroom attendance management system. In: 2017 International conference on cyberworlds (CW), pp. 253–256. IEEE
NagaJyothiGSrideviSHigh speed and low area decision feed-back equalizer with novel memory less distributed arithmetic filterMultimedia Tools and Applications20197823326793269310.1007/s11042-018-7038-6
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826
Grande, N. J., & Sridevi, S. (2017). Asic implementation of shared lut based distributed arithmetic in fir filter. In 2017 International conference on microelectronic devices, Circuits and Systems (ICMDCS), pp. 1–4. IEEE
JyothiGNSrideviSLow power, low area adaptive finite impulse response filter based on memory less distributed arithmeticJournal of Computational and Theoretical Nanoscience2018156–72003200810.1166/jctn.2018.7397
King, D. E. (2015). Max-margin object detection. arXiv:1502.00046
Salim, O. A. R., Olanrewaju, R. F., & Balogun, W. A. (2018) Class attendance management system using face recognition. In: 2018 7th International conference on computer and communication engineering (ICCCE), pp. 93–98. IEEE
Edelman, S., Reisfeld, D., & Yeshurun, Y. (1994). A system for face recognition that learns from examples. In Proc. European Conf. Computer Vision, pp. 787–791
Khorsheed, J. A., & Yurtkan, K. (2016). Analysis of local binary patterns for face recognition under varying facial expressions. In: 2016 24th signal processing and communication application conference (SIU), pp. 2085–2088. IEEE
HallinanPWA low-dimensional representation of human faces for arbitrary lighting conditionsCVPR199494995999
Jyothi, G. N., & Sriadibhatla, S. (2019). Asic implementation of low power, area efficient adaptive fir filter using pipelined da. In Microelectronics, electromagnetics and telecommunications, pp. 385–394. Berlin: Springer
Jyothi, G. N., Anusha, G., Kumar, N. D., & Kundu, D. (2019). Design of finfet based dram cell for low power applications. In Computer-aided developments: electronics and communication: proceeding of the first annual conference on computer-aided developments in electronics and communication (CADEC-2019), Vellore Institute of Technology, Amaravati, India, 2–3 March 2019, p. 35. Boca Raton: CRC Press
JainVLearned-MillerEFddb: a benchmark for face detection in unconstrained settings2010UMass Amherst technical reportTech. Rep.
Shehu, V., & Dika, A. (2010). Using real time computer vision algorithms in automatic attendance management systems. In: Proceedings of the ITI 2010, 32nd international conference on information technology interfaces, pp. 397–402. IEEE
NagaJyothiGSrideviSHigh speed low area obc da based decimation filter for hearing aids applicationInternational Journal of Speech Technology20192311112110.1007/s10772-019-09660-3
9739_CR18
9739_CR17
GN Jyothi (9739_CR9) 2018; 15
9739_CR10
9739_CR12
9739_CR11
9739_CR16
9739_CR1
9739_CR15
9739_CR2
9739_CR3
V Jain (9739_CR5) 2010
G NagaJyothi (9739_CR14) 2019; 23
9739_CR6
9739_CR7
G NagaJyothi (9739_CR13) 2019; 78
PW Hallinan (9739_CR4) 1994; 94
9739_CR8
References_xml – reference: HallinanPWA low-dimensional representation of human faces for arbitrary lighting conditionsCVPR199494995999
– reference: JainVLearned-MillerEFddb: a benchmark for face detection in unconstrained settings2010UMass Amherst technical reportTech. Rep.
– reference: Jyothi, G. N., Anusha, G., Kumar, N. D., & Kundu, D. (2019). Design of finfet based dram cell for low power applications. In Computer-aided developments: electronics and communication: proceeding of the first annual conference on computer-aided developments in electronics and communication (CADEC-2019), Vellore Institute of Technology, Amaravati, India, 2–3 March 2019, p. 35. Boca Raton: CRC Press
– reference: Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05) (Vol. 1, pp. 886–893). IEEE
– reference: Grande, N. J., & Sridevi, S. (2017). Asic implementation of shared lut based distributed arithmetic in fir filter. In 2017 International conference on microelectronic devices, Circuits and Systems (ICMDCS), pp. 1–4. IEEE
– reference: Salim, O. A. R., Olanrewaju, R. F., & Balogun, W. A. (2018) Class attendance management system using face recognition. In: 2018 7th International conference on computer and communication engineering (ICCCE), pp. 93–98. IEEE
– reference: Shehu, V., & Dika, A. (2010). Using real time computer vision algorithms in automatic attendance management systems. In: Proceedings of the ITI 2010, 32nd international conference on information technology interfaces, pp. 397–402. IEEE
– reference: Edelman, S., Reisfeld, D., & Yeshurun, Y. (1994). A system for face recognition that learns from examples. In Proc. European Conf. Computer Vision, pp. 787–791
– reference: Jayant, N.K., Borra, S. (2016). Attendance management system using hybrid face recognition techniques. In 2016 Conference on advances in signal processing (CASP), pp. 412–417. IEEE
– reference: JyothiGNSrideviSLow power, low area adaptive finite impulse response filter based on memory less distributed arithmeticJournal of Computational and Theoretical Nanoscience2018156–72003200810.1166/jctn.2018.7397
– reference: NagaJyothiGSrideviSHigh speed low area obc da based decimation filter for hearing aids applicationInternational Journal of Speech Technology20192311112110.1007/s10772-019-09660-3
– reference: Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826
– reference: Jyothi, G. N., & Sriadibhatla, S. (2019). Asic implementation of low power, area efficient adaptive fir filter using pipelined da. In Microelectronics, electromagnetics and telecommunications, pp. 385–394. Berlin: Springer
– reference: King, D. E. (2015). Max-margin object detection. arXiv:1502.00046
– reference: Samet, R., & Tanriverdi, M. (2017) Face recognition-based mobile automatic classroom attendance management system. In: 2017 International conference on cyberworlds (CW), pp. 253–256. IEEE
– reference: Khorsheed, J. A., & Yurtkan, K. (2016). Analysis of local binary patterns for face recognition under varying facial expressions. In: 2016 24th signal processing and communication application conference (SIU), pp. 2085–2088. IEEE
– reference: NagaJyothi, G., & SriDevi, S. (2017). Distributed arithmetic architectures for fir filters-a comparative review. In: 2017 International conference on wireless communications, signal processing and networking (WiSPNET), pp. 2684–2690. IEEE
– reference: NagaJyothiGSrideviSHigh speed and low area decision feed-back equalizer with novel memory less distributed arithmetic filterMultimedia Tools and Applications20197823326793269310.1007/s11042-018-7038-6
– ident: 9739_CR3
  doi: 10.1109/ICMDCS.2017.8211705
– ident: 9739_CR15
  doi: 10.1109/ICCCE.2018.8539274
– volume: 94
  start-page: 995
  year: 1994
  ident: 9739_CR4
  publication-title: CVPR
– ident: 9739_CR7
  doi: 10.1201/9780429340710-5
– volume: 23
  start-page: 111
  year: 2019
  ident: 9739_CR14
  publication-title: International Journal of Speech Technology
  doi: 10.1007/s10772-019-09660-3
– ident: 9739_CR2
– volume: 15
  start-page: 2003
  issue: 6–7
  year: 2018
  ident: 9739_CR9
  publication-title: Journal of Computational and Theoretical Nanoscience
  doi: 10.1166/jctn.2018.7397
– ident: 9739_CR10
  doi: 10.1109/SIU.2016.7496182
– ident: 9739_CR12
  doi: 10.1109/WiSPNET.2017.8300250
– volume-title: Fddb: a benchmark for face detection in unconstrained settings
  year: 2010
  ident: 9739_CR5
– ident: 9739_CR11
– ident: 9739_CR6
  doi: 10.1109/CASP.2016.7746206
– ident: 9739_CR8
  doi: 10.1007/978-981-13-1906-8_40
– ident: 9739_CR18
  doi: 10.1109/CVPR.2016.308
– ident: 9739_CR1
  doi: 10.1109/CVPR.2005.177
– ident: 9739_CR16
  doi: 10.1109/CW.2017.34
– ident: 9739_CR17
– volume: 78
  start-page: 32679
  issue: 23
  year: 2019
  ident: 9739_CR13
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-018-7038-6
SSID ssj0009792
Score 2.2659543
Snippet Daily attendance marking is a common and important activity in schools and colleges for checking the performance of students. Manual Attendance maintaining is...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 779
SubjectTerms Artificial Intelligence
Engineering
Signal,Image and Speech Processing
Social Sciences
Title Computer vision based classroom attendance management system-with speech output using LBPH algorithm
URI https://link.springer.com/article/10.1007/s10772-020-09739-2
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-8110
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009792
  issn: 1381-2416
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQXWBA0PIoj8oDYgFLdRI7zRhQSwUFMVCpTFH8SBnatGrSgX_P2Un6kFAl9ost5ey778533yF0G9NEiI5kBC61TzzlcSJ02yeOJzSVrhRMmEbht3feH3ovIzYqm8Kyqtq9epK0lnqj2Q2QIDHhjqGYCQgY3hozdF5wiodOuKba9e0oZAq-CLakvGyV-XuNbXe0_RZqXUzvGB2V2BCHhTJP0J5O66gRphAXT3_wHbbVmjYNXkeHG0SCdXQ-KNOOGYgNVkzJWQOpamwDLrrIsXFbCssKNGPDrwlhOegeT1elMLggeCYmS4uzudbyG8-WOSyETaH8GA8eP_o4noxnC5CYnqJhr_v51CflZAUinYDmxKGSgmELOrHWvooTAK0uuP6gk6iEQaBqeM600lQFiXZjzhIfYFagEu4LASEId8_QfjpL9QXCruDa423pGCY9qgBhMOYGWkgVu55syyai1Q-OZEk7bqZfTKI1YbJRSgRKiaxSIqeJ7lffzAvSjZ3SD5XeovICZjvEL_8nfoUOHHNebAXLNdrPF0t9AzgkFy1UC5-_Xrste_x-Aed11yM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4YOKgHH-ADnz0YL1pC98ke0YgoC_EACZ4228dqooBxl4P-eqf7ADTGxPtst2mnM9-0M98AnIUs4rwpbIqH2qWWtBzKVcOlhsUVE6bgNteFwr2-0xla9yN7lBeFxUW2e_EkmVrqpWI3RIJUhzuaYsajaHjLFgYoRgnKrdvH7s2CbNdNmyEz9Eb4U-bkxTK_j_LdIX1_DU2dTHsThsX0stySl_os4XXx-YO58b_z34KNHHWSVqYm27CiJhWotiYYcY8_yDlJ80DTC_YKrC9RFFZgz88vNGMU8-cczHEVZNEQgmT16UQ7RElEAceJZu7EgB-1ioznSTYko46m-v6XxG9KiWcynSU4ENEp-E_Ev3rokPD1afqOEuMdGLZvBtcdmvdsoMLwWEINJhiaTK8ZKuXKMEI4bCKo8JqRjGwMgTWDmpKKSS9SZujYkYsAzpOR43KOwY1j7kJpMp2ofSAmd5TlNIShOfqYROxi26anuJChaYmGqAErNi4QOaG57qvxGiyomPWSB7jkQbrkgVGDi_k3bxmdx5_Sl8VWBvnRjv8QP_if-CmsdgY9P_Dv-t1DWDO0ZqR5MkdQSt5n6hjRTsJPcuX-Aj009XQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YTIwejIIPfO7BeNENbJ_0iA-CWgkHSbg13RceoBBaDv57Z7ctj8SQeJ_uJp3ZnW9mZ75B6C6mirEWdwkcap84wvEIk02fWA6TlNucuUw3Cn_2vO7AeR-6w7UuflPtXj5J5j0NmqUpyRozoRprjW-ACokOfTTdTEDgEt51NFECWPTAaq9od30zFpmCX4LtqVe0zfy9xqZr2nwXNe6mc4QOC5yI27lij9GOTKqo1k4gRp784HtsKjdNSryKDtZIBavoLCxSkCmIhUvW5LSGRDnCAecd5Vi7MIF5CaCx5tqEEB3sAE-WZTE4J3smOmOL05mU_BtPFxkshHXR_AiHT_0ujsej6RwkJido0Hn9eu6SYsoC4VZAM2JRTuGSC1qxlL6IFQBYG2BA0FJCuRC0as4zKSQVgZJ27LnKB8gVCOX5jEE44tmnqJJME3mOsM086XhNbmlWPSoAbbiuHUjGRWw7vMnriJY_OOIFBbmehDGOVuTJWikRKCUySomsOnpYfjPLCTi2Sj-WeouKw5huEb_4n_gt2uu_dKLwrfdxifYtbTqmsOUKVbL5Ql4DPMnYjbHAX_hB3Lc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+based+classroom+attendance+management+system-with+speech+output+using+LBPH+algorithm&rft.jtitle=International+journal+of+speech+technology&rft.au=Bhavana%2C+D.&rft.au=Kumar%2C+K.+Kishore&rft.au=Kaushik%2C+N.&rft.au=Lokesh%2C+G.&rft.date=2020-12-01&rft.issn=1381-2416&rft.eissn=1572-8110&rft.volume=23&rft.issue=4&rft.spage=779&rft.epage=787&rft_id=info:doi/10.1007%2Fs10772-020-09739-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10772_020_09739_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1381-2416&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1381-2416&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1381-2416&client=summon