A Heuristic Operation Strategy for Commercial Building Microgrids Containing EVs and PV System
Commercial building microgrids will play an important role in the smart energy city. Stochastic and uncoordinated electric vehicle (EV) charging activities, which may cause performance degradations and overloads, have put great stress on the distribution system. In order to improve the self-consumpt...
Saved in:
Published in | IEEE transactions on industrial electronics (1982) Vol. 62; no. 4; pp. 2560 - 2570 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.04.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0278-0046 1557-9948 |
DOI | 10.1109/TIE.2014.2364553 |
Cover
Summary: | Commercial building microgrids will play an important role in the smart energy city. Stochastic and uncoordinated electric vehicle (EV) charging activities, which may cause performance degradations and overloads, have put great stress on the distribution system. In order to improve the self-consumption of PV energy and reduce the impact on the power grid, a heuristic operation strategy for commercial building microgrids is proposed. The strategy is composed of three parts: the model of EV feasible charging region, the mechanism of dynamical event triggering, and the algorithm of real-time power allocation for EVs. Furthermore, in order to lower the cost of computation resource, the strategy is designed to operate without forecasting on photovoltaic output or EV charging demand. A comprehensive result obtained from simulation tests has shown that the proposed strategy has both satisfactory results and high efficiency, which can be utilized in embedded systems for real-time allocation of EV charging rate. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2014.2364553 |