Novel Log Type Class Of Estimators Under Ranked Set Sampling
This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing information on population mean of auxiliary variable. The mean square error of the proposed class of estimators is obtained to the first order of...
Saved in:
Published in | Sankhyā. Series B (2008) Vol. 84; no. 1; pp. 421 - 447 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0976-8386 0976-8394 |
DOI | 10.1007/s13571-021-00265-y |
Cover
Abstract | This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing information on population mean of auxiliary variable. The mean square error of the proposed class of estimators is obtained to the first order of approximation. We have compared the proposed class of estimators with some existing competitors under some specific conditions. The theoretical results are validated by a computational study using real and simulated data sets. On the lines of McIntyre (
Aust. J. Agr. Res.
3
, 385–390
1952
), Dell (
1969
) and Dell and Clutter (
Biometrics
28
, 545–555
1972
), the effect of skewness and kurtosis over the efficiency of the proposed class of estimators have also studied and reported. |
---|---|
AbstractList | This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing information on population mean of auxiliary variable. The mean square error of the proposed class of estimators is obtained to the first order of approximation. We have compared the proposed class of estimators with some existing competitors under some specific conditions. The theoretical results are validated by a computational study using real and simulated data sets. On the lines of McIntyre (
Aust. J. Agr. Res.
3
, 385–390
1952
), Dell (
1969
) and Dell and Clutter (
Biometrics
28
, 545–555
1972
), the effect of skewness and kurtosis over the efficiency of the proposed class of estimators have also studied and reported. |
Author | Kumar, Anoop Bhushan, Shashi |
Author_xml | – sequence: 1 givenname: Shashi surname: Bhushan fullname: Bhushan, Shashi organization: Department of Mathematics & Statistics, Dr. Shakuntala Misra National Rehabilitation University – sequence: 2 givenname: Anoop orcidid: 0000-0003-2775-6548 surname: Kumar fullname: Kumar, Anoop email: anoop.asy@gmail.com organization: Department of Mathematics & Statistics, Dr. Shakuntala Misra National Rehabilitation University |
BookMark | eNp9kMFKAzEQhoNUsNa-gKe8wGqSye5mwYuUaoViwbbnkGSzZes2Kckq7NsbrXjw0IFh5jDfwP9do5HzziJ0S8kdJaS8jxTykmaEpSasyLPhAo1JVRaZgIqP_nZRXKFpjHuSKhcAUI3Rw6v_tB1e-h3eDEeLZ52KEa8aPI99e1C9DxFvXW0DflPu3dZ4bXu8Vodj17rdDbpsVBft9HdO0PZpvpktsuXq-WX2uMwMq2ifUaErAtqQggpqSMMFN9pSzXhtLNcCNOEl5VAyocFAUefaNgzqxlTc1MBggsTprwk-xmAbadpe9a13fVBtJymR3yLkSYRMIuSPCDkklP1DjyHlCsN5CE5QTMduZ4Pc-4_gUsRz1BfaRXIV |
CitedBy_id | crossref_primary_10_1016_j_aej_2024_02_051 crossref_primary_10_1007_s13370_024_01232_2 crossref_primary_10_1007_s41872_023_00236_4 crossref_primary_10_1371_journal_pone_0276514 crossref_primary_10_53570_jnt_1346020 crossref_primary_10_35378_gujs_1132770 crossref_primary_10_3390_math10183283 crossref_primary_10_1016_j_aej_2023_03_035 crossref_primary_10_1016_j_heliyon_2023_e20773 crossref_primary_10_1371_journal_pone_0278264 crossref_primary_10_3390_math10213921 crossref_primary_10_1007_s42519_023_00333_8 crossref_primary_10_1177_00080683241299476 crossref_primary_10_3390_axioms12060515 crossref_primary_10_1007_s13370_024_01180_x crossref_primary_10_1007_s42519_023_00324_9 crossref_primary_10_1038_s41598_024_68940_4 crossref_primary_10_3390_axioms12060558 crossref_primary_10_1080_03610926_2023_2219793 crossref_primary_10_1371_journal_pone_0278868 crossref_primary_10_1080_02331888_2023_2260915 crossref_primary_10_3934_math_2022668 crossref_primary_10_1016_j_fraope_2025_100230 crossref_primary_10_1007_s41872_021_00183_y crossref_primary_10_1080_03610918_2021_2006713 crossref_primary_10_1007_s13571_024_00347_7 crossref_primary_10_1007_s41872_022_00212_4 |
Cites_doi | 10.1080/00949655.2012.733395 10.1080/08898480.2020.1816703 10.1002/bimj.200390007 10.1007/BF02911622 10.1080/02331888.2018.1477157 10.1080/03610929008830198 10.1080/03610918.2020.1740266 10.1080/03610918.2018.1458133 10.1111/j.1467-9574.1985.tb01149.x 10.1007/978-94-007-0789-4 10.1177/0962280218823793 10.1080/03610926.2020.1725828 10.1080/02664763.2017.1279596 10.1002/bimj.4710340307 10.1080/03610928908829905 10.24200/SCI.2020.54423.3744 10.1080/09720510.1661604 10.1007/s00362-007-0079-y 10.1016/j.spl.2017.05.001 10.1002/bimj.4710380616 10.2174/9789811490491120010007 10.1071/AR9520385 10.2307/2533564 10.1111/1467-9884.00341 10.1016/j.jspi.2008.11.009 10.1007/PL00020899 10.1080/03610926.2020.1777431 10.2307/2556166 10.1080/03610926.2019.1645857 10.1007/s41872-019-00079-y 10.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W 10.1080/03610926.2013.830748 10.1002/bimj.4710370704 |
ContentType | Journal Article |
Copyright | Indian Statistical Institute 2021. corrected publication 2021 |
Copyright_xml | – notice: Indian Statistical Institute 2021. corrected publication 2021 |
DBID | AAYXX CITATION |
DOI | 10.1007/s13571-021-00265-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 0976-8394 |
EndPage | 447 |
ExternalDocumentID | 10_1007_s13571_021_00265_y |
GroupedDBID | -EM 0R~ 2JN 2KG 406 AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKYL AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH AAZMS ABBHK ABDZT ABECU ABFAN ABHLI ABJNI ABJOX ABMQK ABQDR ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ABYWD ACBXY ACDIW ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACMTB ACOKC ACPIV ACTMH ACYDH ACZOJ ADHIR ADINQ ADKPE ADODI ADRFC ADTPH ADULT ADYFF ADZKW AEFQL AEJHL AEJRE AEKMD AELLO AELPN AEMSY AEOHA AEPYU AESKC AETCA AEUPB AEVLU AEXYK AFLOW AFQWF AFVYC AFWTZ AFZKB AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHFUP AHSBF AHYZX AIGIU AIHAF AIIXL AILAN AITGF AJBLW AJZVZ AKBRZ ALMA_UNASSIGNED_HOLDINGS ALRMG AMKLP AMXSW ANMIH AOCGG AOOXX ASPBG AVWKF AXYYD AYJHY AZFZN BAPOH CSCUP DDRTE DNIVK DPUIP DQDLB DSRWC EBLON ECEWR EIOEI ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE GGCAI GGRSB GIFXF GJIRD GNWQR GQ7 HMJXF HQ6 HRMNR HVGLF HZ~ I0C IKXTQ IPSME ITM IWAJR J-C J0Z JAA JAAYA JBMMH JBSCW JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST KOV LLZTM NPVJJ NQJWS O9- O93 O9J PQQKQ PT4 RIG RLLFE RNS ROL RSV SA0 SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAPKM AAWIL AAYXX ABAKF ABAWQ ABBRH ABDBE ACAOD ACHJO AFDZB AGLNM ATHPR AYFIA CITATION JZLTJ |
ID | FETCH-LOGICAL-c291t-18b903bc06181c0f484cbe1b24dce4b83b047143728b3c36d5bef23dfc94cd323 |
IEDL.DBID | AGYKE |
ISSN | 0976-8386 |
IngestDate | Tue Jul 01 00:31:23 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Fri Feb 21 02:45:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | efficiency Skewness 62D99 mean square error Kurtosis Ranked set sampling 62D05 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c291t-18b903bc06181c0f484cbe1b24dce4b83b047143728b3c36d5bef23dfc94cd323 |
ORCID | 0000-0003-2775-6548 |
PageCount | 27 |
ParticipantIDs | crossref_citationtrail_10_1007_s13571_021_00265_y crossref_primary_10_1007_s13571_021_00265_y springer_journals_10_1007_s13571_021_00265_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220500 2022-05-00 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 5 year: 2022 text: 20220500 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi |
PublicationSubtitle | The Indian Journal of Statistics - Official Journal of Indian Statistical Institute |
PublicationTitle | Sankhyā. Series B (2008) |
PublicationTitleAbbrev | Sankhya B |
PublicationYear | 2022 |
Publisher | Springer India |
Publisher_xml | – name: Springer India |
References | MuttlakHAParameter estimation in simple linear regression using ranked set samplingBiom. J.19953779981010.1002/bimj.4710370704 MehtaNMandowaraVLA modified ratio-cum-product estimator of finite population mean using ranked set samplingCommun. Stat. Theory Methods201645267276344791310.1080/03610926.2013.830748 KadilarCUnyaziciYCingiHRatio estimator for the population mean using ranked set samplingStat. Pap.200950301309247618910.1007/s00362-007-0079-y Evans, M.J. (1967). Application of ranked set sampling to regeneration surveys in areas direct seeded to long-leaf pine. Master of Forestry Dissertation Louisiana State University, Baton Rouge, LA. Bhushan, S. and Kumar, A (2020a). On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1777431. Shahzad, U., Al-Noor, N.H., Hanif, M., Sajjad, I. and Anas, M.M. (2020b), Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Commun. Stat. Simul. Comput.https://doi.org/10.1080/03610918.2020.1740266. Singh, H.P. and Kakran, M.S. (1993). A modified ratio estimator using known coefficient of kurtosis of an auxiliary character. In: Advanced sampling theory with applications (S. Singh, H.P. Singh, and M.S. Kakran, eds), vol. 2. Kluwer Academic Publishers, Kluwer. SarndalCESwenssonBWretmanJModel assisted survey sampling2003New YorkSpringer1027.62004 BhushanSGuptaRPandeySKSome log-type classes of estimators using auxiliary informationInt. J. Agric. Stat. Sci.201511487491 KoyuncuNKadilarCRatio and product estimator in stratified random samplingJ. Stat. Plan. Infer.200913925522558252364710.1016/j.jspi.2008.11.009 McIntyreGAA method of unbiased selective sampling using ranked setAust. J. Agr. Res.1952338539010.1071/AR9520385 DellTRClutterJLRanked set sampling theory with order statistics backgroundBiometrics19722854555510.2307/2556166 Dell, T.R. (1969). The theory and some applications of ranked set sampling (Doctoral dissertation) University of Georgia, Athens, GA. Shahzad, U., Al-Noor, N.H., Hanif, M. and Sajjad, I. (2020a). An exponential family of median based estimators for mean estimation with simple random sampling scheme. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1725828. BhushanSKumarALog type estimators of population mean under ranked set samplingPredictive Analytics Stat. Big Data Concepts Model.202028477410.2174/9789811490491120010007http://dx.doi.org/10.2174/9789811490491120010007 MuttlakHAMcDonaldLLRanked set sampling and line intercept method: A more efficient procedureBiom. J.19923432934610.1002/bimj.4710340307 UpadhyayaLNSinghHPUse of transformed auxiliary variable in estimating the finite population meanBiom. J.199941627636172023210.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W SinghHPEspejoMROn linear regression and ratio estimator using coefficient of variation of auxiliary variateStatistician20035259671973882 ZamanzadeEMahdizadehMUsing ranked set sampling with extreme ranks in estimating the population proportionStat. Methods Med. Res.202029165177405512910.1177/0962280218823793 Ali, N., Ahmad, I., Hanif, M and Shahzad, U (2019). Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2019.1645857. KhoshnevisanMSinghRChauhanPSawanNSmarandacheFA general family of estimators for estimating population mean using known value of some population parameter(s)Far East J. Theor. Stat.20072218119123567731133.62005 Shahzad, U., Ahmad, I., Oral, E., Hanif, M. and Almanjahie, I. (2020c). Estimation of the population mean by successive use of an auxiliary variable in median ranked set sampling. Math. Popul. Stud.https://doi.org/10.1080/08898480.2020.1816703. Bhushan, S. and Gupta, R. (2019b). An improved log-type family of estimators using attribute. J. Stat. Manag. Syst.https://doi.org/10.1080/09720510.1661604. KadilarCCingiHRatio estimators in stratified random samplingBiom. J200345218225196594610.1002/bimj.200390007 Shahzad, U., Hanif, M., Sajjad, I. and Anas, M.M. (2020d). Quantile regression-ratio-type estimators for mean estimation under complete and partial auxiliary information. Sci. Iran.https://doi.org/10.24200/SCI.2020.54423.3744. HallsLSDellTRTrial of ranked set sampling for forage yieldsFor. Sci.1966122226 SinghSAdvanced sampling theory with applications: How Michael selected Amy, 1&22003The NetherlandsKluwer10.1007/978-94-007-0789-4 PrasadBSome improved ratio type estimators of population mean and ratio in finite population sample surveysCommun. Stat. Theory Methods19891837939298591310.1080/03610928908829905 BhushanSGuptaRSome log-type classes of estimators using auxiliary attributeAdv. Comput. Sci. Technol20191299108 MahdizadehMZamanzadeEKernel-based estimation of P(X > Y ) in ranked set samplingSORT-Stat. Oper. Res. Trans.2016124326635924891356.62063 YuPLHLamKRegression estimator in ranked set samplingBiometrics1997531070108010.2307/2533564 SisodiaBVSDwivediVKA modified ratio estimator using coefficient of variation of auxiliary variableJ. Indian Soc. Agric. Stat.1981331318 UpadhyayaLNSinghHPVosJWEOn the estimations of population means and ratios using supplementary informationStat. Neerlandica19853930931882597410.1111/j.1467-9574.1985.tb01149.x TakahasiKWakimotoKOn unbiased estimates of the population mean based on the sample stratified by means of orderingAnn. Inst. Stat. Math.19682013110.1007/BF02911622 SamawiHMMuttlakHAEstimation of ratio using ranked set samplingBiom. J19963875376410.1002/bimj.4710380616 SinghHPHornSAn alternative estimator for multi-character surveysMetrika1998489910716665981093.62509 SinghHPTailorRSinghSGeneral procedure for estimating the population mean using ranked set samplingJ. Stat. Comput. Simul.201484931945316937110.1080/00949655.2012.733395 MuttlakHAMcDonaldLLRanked set sampling with respect to a concomitant variables and with size biased probability of selectionCommun. Stat. Theory Methods199019205219106040910.1080/03610929008830198 BhushanSGuptaRSearls’ ratio product type estimatorsInt. J. Stat. Syst.2019142937 Mahdizadeh, M. and Zamanzade, E. (2018). Smooth estimation of a reliability function in ranked set sampling. Stat. J. Theor. Appl. Stat. Khan, L., Shabbir, J. and Khalil, A. (2019). A new class of regression cum ratio estimators of population mean in ranked set sampling. Life Cycle Reliab. Saf. Eng. , 1–4. ZamanzadeEMahdizadehMEstimating the population proportion in pair ranked set sampling with application to air quality monitoringJ. Appl. Stat.201845426437376473510.1080/02664763.2017.1279596 BhushanSGuptaRSome new log-type class of double sampling estimatorsInt. J. Appl. Agric. Res.2019143140 ShahzadUPerriPFHanifMA new class of ratio-type estimators for improving mean estimation of nonsensitive and sensitive variables by using supplementary informationCommun. Stat. Simul. Comput.20184825662585400122110.1080/03610918.2018.1458133 ZamanzadeEMahdizadehMA more efficient proportion estimator in ranked set samplingStat. Probab. Lett.20171292833368851110.1016/j.spl.2017.05.001 BhushanSGuptaRA class of log-type estimators for population mean using auxiliary information on an attribute and a variable using double sampling techniqueInt. J. Comput. Appl. Math.201914110 PLH Yu (265_CR43) 1997; 53 N Koyuncu (265_CR17) 2009; 139 C Kadilar (265_CR14) 2003; 45 265_CR12 265_CR34 265_CR35 265_CR10 265_CR32 265_CR33 N Mehta (265_CR20) 2016; 45 265_CR31 LN Upadhyaya (265_CR41) 1985; 39 U Shahzad (265_CR30) 2018; 48 HA Muttlak (265_CR25) 1995; 37 S Bhushan (265_CR6) 2019; 14 E Zamanzade (265_CR45) 2018; 45 GA McIntyre (265_CR19) 1952; 3 S Bhushan (265_CR3) 2019; 12 HM Samawi (265_CR27) 1996; 38 HP Singh (265_CR37) 2003; 52 LN Upadhyaya (265_CR42) 1999; 41 265_CR1 BVS Sisodia (265_CR39) 1981; 33 E Zamanzade (265_CR46) 2020; 29 HA Muttlak (265_CR23) 1990; 19 265_CR4 CE Sarndal (265_CR28) 2003 S Bhushan (265_CR9) 2020; 28 TR Dell (265_CR11) 1972; 28 E Zamanzade (265_CR44) 2017; 129 K Takahasi (265_CR40) 1968; 20 265_CR22 C Kadilar (265_CR15) 2009; 50 LS Halls (265_CR13) 1966; 12 265_CR8 S Bhushan (265_CR5) 2019; 14 S Singh (265_CR29) 2003 265_CR18 B Prasad (265_CR26) 1989; 18 M Khoshnevisan (265_CR16) 2007; 22 S Bhushan (265_CR7) 2019; 14 M Mahdizadeh (265_CR21) 2016; 1 HP Singh (265_CR38) 2014; 84 HP Singh (265_CR36) 1998; 48 S Bhushan (265_CR2) 2015; 11 HA Muttlak (265_CR24) 1992; 34 |
References_xml | – reference: Shahzad, U., Al-Noor, N.H., Hanif, M. and Sajjad, I. (2020a). An exponential family of median based estimators for mean estimation with simple random sampling scheme. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1725828. – reference: Bhushan, S. and Gupta, R. (2019b). An improved log-type family of estimators using attribute. J. Stat. Manag. Syst.https://doi.org/10.1080/09720510.1661604. – reference: PrasadBSome improved ratio type estimators of population mean and ratio in finite population sample surveysCommun. Stat. Theory Methods19891837939298591310.1080/03610928908829905 – reference: KhoshnevisanMSinghRChauhanPSawanNSmarandacheFA general family of estimators for estimating population mean using known value of some population parameter(s)Far East J. Theor. Stat.20072218119123567731133.62005 – reference: KoyuncuNKadilarCRatio and product estimator in stratified random samplingJ. Stat. Plan. Infer.200913925522558252364710.1016/j.jspi.2008.11.009 – reference: KadilarCUnyaziciYCingiHRatio estimator for the population mean using ranked set samplingStat. Pap.200950301309247618910.1007/s00362-007-0079-y – reference: MuttlakHAParameter estimation in simple linear regression using ranked set samplingBiom. J.19953779981010.1002/bimj.4710370704 – reference: ZamanzadeEMahdizadehMEstimating the population proportion in pair ranked set sampling with application to air quality monitoringJ. Appl. Stat.201845426437376473510.1080/02664763.2017.1279596 – reference: MahdizadehMZamanzadeEKernel-based estimation of P(X > Y ) in ranked set samplingSORT-Stat. Oper. Res. Trans.2016124326635924891356.62063 – reference: SinghSAdvanced sampling theory with applications: How Michael selected Amy, 1&22003The NetherlandsKluwer10.1007/978-94-007-0789-4 – reference: BhushanSKumarALog type estimators of population mean under ranked set samplingPredictive Analytics Stat. Big Data Concepts Model.202028477410.2174/9789811490491120010007http://dx.doi.org/10.2174/9789811490491120010007 – reference: SinghHPEspejoMROn linear regression and ratio estimator using coefficient of variation of auxiliary variateStatistician20035259671973882 – reference: BhushanSGuptaRA class of log-type estimators for population mean using auxiliary information on an attribute and a variable using double sampling techniqueInt. J. Comput. Appl. Math.201914110 – reference: Mahdizadeh, M. and Zamanzade, E. (2018). Smooth estimation of a reliability function in ranked set sampling. Stat. J. Theor. Appl. Stat. – reference: MuttlakHAMcDonaldLLRanked set sampling and line intercept method: A more efficient procedureBiom. J.19923432934610.1002/bimj.4710340307 – reference: McIntyreGAA method of unbiased selective sampling using ranked setAust. J. Agr. Res.1952338539010.1071/AR9520385 – reference: TakahasiKWakimotoKOn unbiased estimates of the population mean based on the sample stratified by means of orderingAnn. Inst. Stat. Math.19682013110.1007/BF02911622 – reference: BhushanSGuptaRSome new log-type class of double sampling estimatorsInt. J. Appl. Agric. Res.2019143140 – reference: Bhushan, S. and Kumar, A (2020a). On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1777431. – reference: Dell, T.R. (1969). The theory and some applications of ranked set sampling (Doctoral dissertation) University of Georgia, Athens, GA. – reference: UpadhyayaLNSinghHPUse of transformed auxiliary variable in estimating the finite population meanBiom. J.199941627636172023210.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W – reference: Shahzad, U., Al-Noor, N.H., Hanif, M., Sajjad, I. and Anas, M.M. (2020b), Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Commun. Stat. Simul. Comput.https://doi.org/10.1080/03610918.2020.1740266. – reference: MuttlakHAMcDonaldLLRanked set sampling with respect to a concomitant variables and with size biased probability of selectionCommun. Stat. Theory Methods199019205219106040910.1080/03610929008830198 – reference: Singh, H.P. and Kakran, M.S. (1993). A modified ratio estimator using known coefficient of kurtosis of an auxiliary character. In: Advanced sampling theory with applications (S. Singh, H.P. Singh, and M.S. Kakran, eds), vol. 2. Kluwer Academic Publishers, Kluwer. – reference: ZamanzadeEMahdizadehMUsing ranked set sampling with extreme ranks in estimating the population proportionStat. Methods Med. Res.202029165177405512910.1177/0962280218823793 – reference: YuPLHLamKRegression estimator in ranked set samplingBiometrics1997531070108010.2307/2533564 – reference: Khan, L., Shabbir, J. and Khalil, A. (2019). A new class of regression cum ratio estimators of population mean in ranked set sampling. Life Cycle Reliab. Saf. Eng. , 1–4. – reference: SarndalCESwenssonBWretmanJModel assisted survey sampling2003New YorkSpringer1027.62004 – reference: DellTRClutterJLRanked set sampling theory with order statistics backgroundBiometrics19722854555510.2307/2556166 – reference: MehtaNMandowaraVLA modified ratio-cum-product estimator of finite population mean using ranked set samplingCommun. Stat. Theory Methods201645267276344791310.1080/03610926.2013.830748 – reference: KadilarCCingiHRatio estimators in stratified random samplingBiom. J200345218225196594610.1002/bimj.200390007 – reference: SinghHPTailorRSinghSGeneral procedure for estimating the population mean using ranked set samplingJ. Stat. Comput. Simul.201484931945316937110.1080/00949655.2012.733395 – reference: BhushanSGuptaRSome log-type classes of estimators using auxiliary attributeAdv. Comput. Sci. Technol20191299108 – reference: ZamanzadeEMahdizadehMA more efficient proportion estimator in ranked set samplingStat. Probab. Lett.20171292833368851110.1016/j.spl.2017.05.001 – reference: BhushanSGuptaRPandeySKSome log-type classes of estimators using auxiliary informationInt. J. Agric. Stat. Sci.201511487491 – reference: UpadhyayaLNSinghHPVosJWEOn the estimations of population means and ratios using supplementary informationStat. Neerlandica19853930931882597410.1111/j.1467-9574.1985.tb01149.x – reference: ShahzadUPerriPFHanifMA new class of ratio-type estimators for improving mean estimation of nonsensitive and sensitive variables by using supplementary informationCommun. Stat. Simul. Comput.20184825662585400122110.1080/03610918.2018.1458133 – reference: SamawiHMMuttlakHAEstimation of ratio using ranked set samplingBiom. J19963875376410.1002/bimj.4710380616 – reference: Shahzad, U., Ahmad, I., Oral, E., Hanif, M. and Almanjahie, I. (2020c). Estimation of the population mean by successive use of an auxiliary variable in median ranked set sampling. Math. Popul. Stud.https://doi.org/10.1080/08898480.2020.1816703. – reference: SisodiaBVSDwivediVKA modified ratio estimator using coefficient of variation of auxiliary variableJ. Indian Soc. Agric. Stat.1981331318 – reference: BhushanSGuptaRSearls’ ratio product type estimatorsInt. J. Stat. Syst.2019142937 – reference: SinghHPHornSAn alternative estimator for multi-character surveysMetrika1998489910716665981093.62509 – reference: Evans, M.J. (1967). Application of ranked set sampling to regeneration surveys in areas direct seeded to long-leaf pine. Master of Forestry Dissertation Louisiana State University, Baton Rouge, LA. – reference: Shahzad, U., Hanif, M., Sajjad, I. and Anas, M.M. (2020d). Quantile regression-ratio-type estimators for mean estimation under complete and partial auxiliary information. Sci. Iran.https://doi.org/10.24200/SCI.2020.54423.3744. – reference: HallsLSDellTRTrial of ranked set sampling for forage yieldsFor. Sci.1966122226 – reference: Ali, N., Ahmad, I., Hanif, M and Shahzad, U (2019). Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2019.1645857. – volume: 84 start-page: 931 year: 2014 ident: 265_CR38 publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2012.733395 – ident: 265_CR33 doi: 10.1080/08898480.2020.1816703 – volume: 33 start-page: 13 year: 1981 ident: 265_CR39 publication-title: J. Indian Soc. Agric. Stat. – volume: 45 start-page: 218 year: 2003 ident: 265_CR14 publication-title: Biom. J doi: 10.1002/bimj.200390007 – volume: 22 start-page: 181 year: 2007 ident: 265_CR16 publication-title: Far East J. Theor. Stat. – volume: 20 start-page: 1 year: 1968 ident: 265_CR40 publication-title: Ann. Inst. Stat. Math. doi: 10.1007/BF02911622 – ident: 265_CR22 doi: 10.1080/02331888.2018.1477157 – volume: 19 start-page: 205 year: 1990 ident: 265_CR23 publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610929008830198 – ident: 265_CR32 doi: 10.1080/03610918.2020.1740266 – volume-title: Model assisted survey sampling year: 2003 ident: 265_CR28 – volume: 48 start-page: 2566 year: 2018 ident: 265_CR30 publication-title: Commun. Stat. Simul. Comput. doi: 10.1080/03610918.2018.1458133 – volume: 39 start-page: 309 year: 1985 ident: 265_CR41 publication-title: Stat. Neerlandica doi: 10.1111/j.1467-9574.1985.tb01149.x – volume-title: Advanced sampling theory with applications: How Michael selected Amy, 1&2 year: 2003 ident: 265_CR29 doi: 10.1007/978-94-007-0789-4 – volume: 29 start-page: 165 year: 2020 ident: 265_CR46 publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280218823793 – ident: 265_CR31 doi: 10.1080/03610926.2020.1725828 – volume: 45 start-page: 426 year: 2018 ident: 265_CR45 publication-title: J. Appl. Stat. doi: 10.1080/02664763.2017.1279596 – volume: 34 start-page: 329 year: 1992 ident: 265_CR24 publication-title: Biom. J. doi: 10.1002/bimj.4710340307 – volume: 18 start-page: 379 year: 1989 ident: 265_CR26 publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610928908829905 – ident: 265_CR34 doi: 10.24200/SCI.2020.54423.3744 – volume: 11 start-page: 487 year: 2015 ident: 265_CR2 publication-title: Int. J. Agric. Stat. Sci. – ident: 265_CR4 doi: 10.1080/09720510.1661604 – volume: 50 start-page: 301 year: 2009 ident: 265_CR15 publication-title: Stat. Pap. doi: 10.1007/s00362-007-0079-y – volume: 129 start-page: 28 year: 2017 ident: 265_CR44 publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2017.05.001 – volume: 38 start-page: 753 year: 1996 ident: 265_CR27 publication-title: Biom. J doi: 10.1002/bimj.4710380616 – volume: 28 start-page: 47 year: 2020 ident: 265_CR9 publication-title: Predictive Analytics Stat. Big Data Concepts Model. doi: 10.2174/9789811490491120010007 – volume: 3 start-page: 385 year: 1952 ident: 265_CR19 publication-title: Aust. J. Agr. Res. doi: 10.1071/AR9520385 – volume: 53 start-page: 1070 year: 1997 ident: 265_CR43 publication-title: Biometrics doi: 10.2307/2533564 – volume: 14 start-page: 31 year: 2019 ident: 265_CR5 publication-title: Int. J. Appl. Agric. Res. – volume: 52 start-page: 59 year: 2003 ident: 265_CR37 publication-title: Statistician doi: 10.1111/1467-9884.00341 – volume: 139 start-page: 2552 year: 2009 ident: 265_CR17 publication-title: J. Stat. Plan. Infer. doi: 10.1016/j.jspi.2008.11.009 – volume: 48 start-page: 99 year: 1998 ident: 265_CR36 publication-title: Metrika doi: 10.1007/PL00020899 – ident: 265_CR8 doi: 10.1080/03610926.2020.1777431 – ident: 265_CR12 – volume: 12 start-page: 22 year: 1966 ident: 265_CR13 publication-title: For. Sci. – ident: 265_CR35 – volume: 12 start-page: 99 year: 2019 ident: 265_CR3 publication-title: Adv. Comput. Sci. Technol – volume: 1 start-page: 243 year: 2016 ident: 265_CR21 publication-title: SORT-Stat. Oper. Res. Trans. – volume: 28 start-page: 545 year: 1972 ident: 265_CR11 publication-title: Biometrics doi: 10.2307/2556166 – ident: 265_CR1 doi: 10.1080/03610926.2019.1645857 – ident: 265_CR10 – ident: 265_CR18 doi: 10.1007/s41872-019-00079-y – volume: 14 start-page: 29 year: 2019 ident: 265_CR7 publication-title: Int. J. Stat. Syst. – volume: 14 start-page: 1 year: 2019 ident: 265_CR6 publication-title: Int. J. Comput. Appl. Math. – volume: 41 start-page: 627 year: 1999 ident: 265_CR42 publication-title: Biom. J. doi: 10.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W – volume: 45 start-page: 267 year: 2016 ident: 265_CR20 publication-title: Commun. Stat. Theory Methods doi: 10.1080/03610926.2013.830748 – volume: 37 start-page: 799 year: 1995 ident: 265_CR25 publication-title: Biom. J. doi: 10.1002/bimj.4710370704 |
SSID | ssj0000583339 |
Score | 2.371314 |
Snippet | This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 421 |
SubjectTerms | Mathematics and Statistics Statistics |
Title | Novel Log Type Class Of Estimators Under Ranked Set Sampling |
URI | https://link.springer.com/article/10.1007/s13571-021-00265-y |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0976-8394 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000583339 issn: 0976-8386 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5ovdSDS1WsG3PwpimZJckEvBRxwaWCWqinkFnSg5qKSYX6653J0qJIoYfc3oSZx2Te-zLvfR_AsZQsJr4VNElc7jDiKidkKnRwwBXVLNBaF1W-Pf-6z24G3qBqCsvqavf6SrI4qWfNbtQLDPQl5jHAwXMmy7DiWYDSgJXu1cvt7N-Ka1uJaEmzF_gOp9yv-mX-f9HvmPT7QrSIM5fr0K9nWJaXvHbGuejI7z_kjYsuYQPWqsQTdcudsglLOm3B6v2UtTVrQdNmniVx8xac9UZf-g3djYbIYlVUqGeihwRdGIN3C9UzVIgmocc4fdUKPekcPcW2QD0dbkP_8uL5_NqppBYcSUKcO5iL0KVCmujOsXQTxpkUGgvClNRMcCpcZpXSA8IFldRXntAJoSqRIZOKEroDjXSU6l1A5oCIMVUMm9TQoC_JzYjE015AMfZ9QdqAa2dHsuIht3IYb9GMQdm6KTJuigo3RZM2nEzHfJQsHHOtT2v3R9UXmc0x31vMfB-axLZAFEWPB9DIP8f60CQmuTiq9uEPgWrVog |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BewAOLAVEWX3gBkbxksSRuCDUUqAUCagEp6he0gOQIpoiwddjZ6ECISQOuY0je-R4ZuI37wHsK8UHNHCCJoknMKeexhHXESah0Mzw0BiTo3x7QafPL-79-7IpbFyh3asryfyknja7MT-0pS-1jy0cfPw-C3VOhOA1qJ-cPVxO_614rpWIFTR7YYAFE0HZL_P7i77HpO8XonmcaS9Bv5phAS95PJpk8kh9_CBv_O8SlmGxTDzRSbFTVmDGpA1YuPpibR03YN5lngVx8yoc90Zv5gl1R0PkalWUq2ei6wS1rMGzK9XHKBdNQjeD9NFodGsydDtwAPV0uAb9duvutINLqQWsaEQyTISMPCaVje6CKC_hgitpiKRcK8OlYNLjTik9pEIyxQLtS5NQphMVcaUZZetQS0ep2QBkD4gBYZoTmxra6ksJOyLxjR8yQoJA0iaQytmxKnnInRzGUzxlUHZuiq2b4txN8XsTDr7GvBQsHH9aH1buj8svcvyH-eb_zPdgrnN31Y27573LLZinrh0iB0BuQy17nZgdm6Rkcrfck5-3pdiT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCN2fOAGKfGSxJG4IGgpW0GUSnCK4iUcgBTRgARfj52FAkJIiENu4yiZ2J6ZeN57AJtSspj4VtAkcbnDiKuckKnQwQFXVLNAa513-Xb8do8dX3vXn1D8ebd7dSRZYBosS1Oa7TyqZGcIfKNeYMpgYi5TRHjO6yjUmYluXg3qe4c3J8P_LK6FFdGCci_wHU65X2Jnfr7R1_j09XA0jzmtKYirpy1aTe4az5loyLdvRI7_eZ1pmCwTUrRXzKAZGNHpLEycfbC5DmZh3GakBaHzHOx2-i_6Hp32b5GtYVGuqonOE9Q0Bg-2hB-gXEwJXcbpnVaoqzPUjW3jeno7D71W82q_7ZQSDI4kIc4czEXoUiFN1OdYugnjTAqNBWFKaiY4FS6zCuoB4YJK6itP6IRQlciQSUUJXYBa2k_1IiCzccSYKoZNymiqMsnNiMTTXkAx9n1BlgBXjo9kyU9uZTLuoyGzsnVTZNwU5W6KXpdg62PMY8HO8av1dvUponKlDn4xX_6b-QaMXRy0otOjzskKjBOLksj7Ilehlj096zWTu2RivZye73AB4W4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Log+Type+Class+Of+Estimators+Under+Ranked+Set+Sampling&rft.jtitle=Sankhy%C4%81.+Series+B+%282008%29&rft.au=Bhushan%2C+Shashi&rft.au=Kumar%2C+Anoop&rft.date=2022-05-01&rft.issn=0976-8386&rft.eissn=0976-8394&rft.volume=84&rft.issue=1&rft.spage=421&rft.epage=447&rft_id=info:doi/10.1007%2Fs13571-021-00265-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13571_021_00265_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-8386&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-8386&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-8386&client=summon |