Novel Log Type Class Of Estimators Under Ranked Set Sampling

This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing information on population mean of auxiliary variable. The mean square error of the proposed class of estimators is obtained to the first order of...

Full description

Saved in:
Bibliographic Details
Published inSankhyā. Series B (2008) Vol. 84; no. 1; pp. 421 - 447
Main Authors Bhushan, Shashi, Kumar, Anoop
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.05.2022
Subjects
Online AccessGet full text
ISSN0976-8386
0976-8394
DOI10.1007/s13571-021-00265-y

Cover

Abstract This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing information on population mean of auxiliary variable. The mean square error of the proposed class of estimators is obtained to the first order of approximation. We have compared the proposed class of estimators with some existing competitors under some specific conditions. The theoretical results are validated by a computational study using real and simulated data sets. On the lines of McIntyre ( Aust. J. Agr. Res. 3 , 385–390 1952 ), Dell ( 1969 ) and Dell and Clutter ( Biometrics 28 , 545–555 1972 ), the effect of skewness and kurtosis over the efficiency of the proposed class of estimators have also studied and reported.
AbstractList This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing information on population mean of auxiliary variable. The mean square error of the proposed class of estimators is obtained to the first order of approximation. We have compared the proposed class of estimators with some existing competitors under some specific conditions. The theoretical results are validated by a computational study using real and simulated data sets. On the lines of McIntyre ( Aust. J. Agr. Res. 3 , 385–390 1952 ), Dell ( 1969 ) and Dell and Clutter ( Biometrics 28 , 545–555 1972 ), the effect of skewness and kurtosis over the efficiency of the proposed class of estimators have also studied and reported.
Author Kumar, Anoop
Bhushan, Shashi
Author_xml – sequence: 1
  givenname: Shashi
  surname: Bhushan
  fullname: Bhushan, Shashi
  organization: Department of Mathematics & Statistics, Dr. Shakuntala Misra National Rehabilitation University
– sequence: 2
  givenname: Anoop
  orcidid: 0000-0003-2775-6548
  surname: Kumar
  fullname: Kumar, Anoop
  email: anoop.asy@gmail.com
  organization: Department of Mathematics & Statistics, Dr. Shakuntala Misra National Rehabilitation University
BookMark eNp9kMFKAzEQhoNUsNa-gKe8wGqSye5mwYuUaoViwbbnkGSzZes2Kckq7NsbrXjw0IFh5jDfwP9do5HzziJ0S8kdJaS8jxTykmaEpSasyLPhAo1JVRaZgIqP_nZRXKFpjHuSKhcAUI3Rw6v_tB1e-h3eDEeLZ52KEa8aPI99e1C9DxFvXW0DflPu3dZ4bXu8Vodj17rdDbpsVBft9HdO0PZpvpktsuXq-WX2uMwMq2ifUaErAtqQggpqSMMFN9pSzXhtLNcCNOEl5VAyocFAUefaNgzqxlTc1MBggsTprwk-xmAbadpe9a13fVBtJymR3yLkSYRMIuSPCDkklP1DjyHlCsN5CE5QTMduZ4Pc-4_gUsRz1BfaRXIV
CitedBy_id crossref_primary_10_1016_j_aej_2024_02_051
crossref_primary_10_1007_s13370_024_01232_2
crossref_primary_10_1007_s41872_023_00236_4
crossref_primary_10_1371_journal_pone_0276514
crossref_primary_10_53570_jnt_1346020
crossref_primary_10_35378_gujs_1132770
crossref_primary_10_3390_math10183283
crossref_primary_10_1016_j_aej_2023_03_035
crossref_primary_10_1016_j_heliyon_2023_e20773
crossref_primary_10_1371_journal_pone_0278264
crossref_primary_10_3390_math10213921
crossref_primary_10_1007_s42519_023_00333_8
crossref_primary_10_1177_00080683241299476
crossref_primary_10_3390_axioms12060515
crossref_primary_10_1007_s13370_024_01180_x
crossref_primary_10_1007_s42519_023_00324_9
crossref_primary_10_1038_s41598_024_68940_4
crossref_primary_10_3390_axioms12060558
crossref_primary_10_1080_03610926_2023_2219793
crossref_primary_10_1371_journal_pone_0278868
crossref_primary_10_1080_02331888_2023_2260915
crossref_primary_10_3934_math_2022668
crossref_primary_10_1016_j_fraope_2025_100230
crossref_primary_10_1007_s41872_021_00183_y
crossref_primary_10_1080_03610918_2021_2006713
crossref_primary_10_1007_s13571_024_00347_7
crossref_primary_10_1007_s41872_022_00212_4
Cites_doi 10.1080/00949655.2012.733395
10.1080/08898480.2020.1816703
10.1002/bimj.200390007
10.1007/BF02911622
10.1080/02331888.2018.1477157
10.1080/03610929008830198
10.1080/03610918.2020.1740266
10.1080/03610918.2018.1458133
10.1111/j.1467-9574.1985.tb01149.x
10.1007/978-94-007-0789-4
10.1177/0962280218823793
10.1080/03610926.2020.1725828
10.1080/02664763.2017.1279596
10.1002/bimj.4710340307
10.1080/03610928908829905
10.24200/SCI.2020.54423.3744
10.1080/09720510.1661604
10.1007/s00362-007-0079-y
10.1016/j.spl.2017.05.001
10.1002/bimj.4710380616
10.2174/9789811490491120010007
10.1071/AR9520385
10.2307/2533564
10.1111/1467-9884.00341
10.1016/j.jspi.2008.11.009
10.1007/PL00020899
10.1080/03610926.2020.1777431
10.2307/2556166
10.1080/03610926.2019.1645857
10.1007/s41872-019-00079-y
10.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W
10.1080/03610926.2013.830748
10.1002/bimj.4710370704
ContentType Journal Article
Copyright Indian Statistical Institute 2021. corrected publication 2021
Copyright_xml – notice: Indian Statistical Institute 2021. corrected publication 2021
DBID AAYXX
CITATION
DOI 10.1007/s13571-021-00265-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 0976-8394
EndPage 447
ExternalDocumentID 10_1007_s13571_021_00265_y
GroupedDBID -EM
0R~
2JN
2KG
406
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKYL
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABBHK
ABDZT
ABECU
ABFAN
ABHLI
ABJNI
ABJOX
ABMQK
ABQDR
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ABYWD
ACBXY
ACDIW
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACMTB
ACOKC
ACPIV
ACTMH
ACYDH
ACZOJ
ADHIR
ADINQ
ADKPE
ADODI
ADRFC
ADTPH
ADULT
ADYFF
ADZKW
AEFQL
AEJHL
AEJRE
AEKMD
AELLO
AELPN
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUPB
AEVLU
AEXYK
AFLOW
AFQWF
AFVYC
AFWTZ
AFZKB
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHFUP
AHSBF
AHYZX
AIGIU
AIHAF
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
AKBRZ
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMKLP
AMXSW
ANMIH
AOCGG
AOOXX
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
CSCUP
DDRTE
DNIVK
DPUIP
DQDLB
DSRWC
EBLON
ECEWR
EIOEI
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
GGCAI
GGRSB
GIFXF
GJIRD
GNWQR
GQ7
HMJXF
HQ6
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IPSME
ITM
IWAJR
J-C
J0Z
JAA
JAAYA
JBMMH
JBSCW
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
KOV
LLZTM
NPVJJ
NQJWS
O9-
O93
O9J
PQQKQ
PT4
RIG
RLLFE
RNS
ROL
RSV
SA0
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAPKM
AAWIL
AAYXX
ABAKF
ABAWQ
ABBRH
ABDBE
ACAOD
ACHJO
AFDZB
AGLNM
ATHPR
AYFIA
CITATION
JZLTJ
ID FETCH-LOGICAL-c291t-18b903bc06181c0f484cbe1b24dce4b83b047143728b3c36d5bef23dfc94cd323
IEDL.DBID AGYKE
ISSN 0976-8386
IngestDate Tue Jul 01 00:31:23 EDT 2025
Thu Apr 24 23:07:04 EDT 2025
Fri Feb 21 02:45:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords efficiency
Skewness
62D99
mean square error
Kurtosis
Ranked set sampling
62D05
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-18b903bc06181c0f484cbe1b24dce4b83b047143728b3c36d5bef23dfc94cd323
ORCID 0000-0003-2775-6548
PageCount 27
ParticipantIDs crossref_citationtrail_10_1007_s13571_021_00265_y
crossref_primary_10_1007_s13571_021_00265_y
springer_journals_10_1007_s13571_021_00265_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220500
2022-05-00
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 5
  year: 2022
  text: 20220500
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
PublicationSubtitle The Indian Journal of Statistics - Official Journal of Indian Statistical Institute
PublicationTitle Sankhyā. Series B (2008)
PublicationTitleAbbrev Sankhya B
PublicationYear 2022
Publisher Springer India
Publisher_xml – name: Springer India
References MuttlakHAParameter estimation in simple linear regression using ranked set samplingBiom. J.19953779981010.1002/bimj.4710370704
MehtaNMandowaraVLA modified ratio-cum-product estimator of finite population mean using ranked set samplingCommun. Stat. Theory Methods201645267276344791310.1080/03610926.2013.830748
KadilarCUnyaziciYCingiHRatio estimator for the population mean using ranked set samplingStat. Pap.200950301309247618910.1007/s00362-007-0079-y
Evans, M.J. (1967). Application of ranked set sampling to regeneration surveys in areas direct seeded to long-leaf pine. Master of Forestry Dissertation Louisiana State University, Baton Rouge, LA.
Bhushan, S. and Kumar, A (2020a). On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1777431.
Shahzad, U., Al-Noor, N.H., Hanif, M., Sajjad, I. and Anas, M.M. (2020b), Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Commun. Stat. Simul. Comput.https://doi.org/10.1080/03610918.2020.1740266.
Singh, H.P. and Kakran, M.S. (1993). A modified ratio estimator using known coefficient of kurtosis of an auxiliary character. In: Advanced sampling theory with applications (S. Singh, H.P. Singh, and M.S. Kakran, eds), vol. 2. Kluwer Academic Publishers, Kluwer.
SarndalCESwenssonBWretmanJModel assisted survey sampling2003New YorkSpringer1027.62004
BhushanSGuptaRPandeySKSome log-type classes of estimators using auxiliary informationInt. J. Agric. Stat. Sci.201511487491
KoyuncuNKadilarCRatio and product estimator in stratified random samplingJ. Stat. Plan. Infer.200913925522558252364710.1016/j.jspi.2008.11.009
McIntyreGAA method of unbiased selective sampling using ranked setAust. J. Agr. Res.1952338539010.1071/AR9520385
DellTRClutterJLRanked set sampling theory with order statistics backgroundBiometrics19722854555510.2307/2556166
Dell, T.R. (1969). The theory and some applications of ranked set sampling (Doctoral dissertation) University of Georgia, Athens, GA.
Shahzad, U., Al-Noor, N.H., Hanif, M. and Sajjad, I. (2020a). An exponential family of median based estimators for mean estimation with simple random sampling scheme. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1725828.
BhushanSKumarALog type estimators of population mean under ranked set samplingPredictive Analytics Stat. Big Data Concepts Model.202028477410.2174/9789811490491120010007http://dx.doi.org/10.2174/9789811490491120010007
MuttlakHAMcDonaldLLRanked set sampling and line intercept method: A more efficient procedureBiom. J.19923432934610.1002/bimj.4710340307
UpadhyayaLNSinghHPUse of transformed auxiliary variable in estimating the finite population meanBiom. J.199941627636172023210.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W
SinghHPEspejoMROn linear regression and ratio estimator using coefficient of variation of auxiliary variateStatistician20035259671973882
ZamanzadeEMahdizadehMUsing ranked set sampling with extreme ranks in estimating the population proportionStat. Methods Med. Res.202029165177405512910.1177/0962280218823793
Ali, N., Ahmad, I., Hanif, M and Shahzad, U (2019). Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2019.1645857.
KhoshnevisanMSinghRChauhanPSawanNSmarandacheFA general family of estimators for estimating population mean using known value of some population parameter(s)Far East J. Theor. Stat.20072218119123567731133.62005
Shahzad, U., Ahmad, I., Oral, E., Hanif, M. and Almanjahie, I. (2020c). Estimation of the population mean by successive use of an auxiliary variable in median ranked set sampling. Math. Popul. Stud.https://doi.org/10.1080/08898480.2020.1816703.
Bhushan, S. and Gupta, R. (2019b). An improved log-type family of estimators using attribute. J. Stat. Manag. Syst.https://doi.org/10.1080/09720510.1661604.
KadilarCCingiHRatio estimators in stratified random samplingBiom. J200345218225196594610.1002/bimj.200390007
Shahzad, U., Hanif, M., Sajjad, I. and Anas, M.M. (2020d). Quantile regression-ratio-type estimators for mean estimation under complete and partial auxiliary information. Sci. Iran.https://doi.org/10.24200/SCI.2020.54423.3744.
HallsLSDellTRTrial of ranked set sampling for forage yieldsFor. Sci.1966122226
SinghSAdvanced sampling theory with applications: How Michael selected Amy, 1&22003The NetherlandsKluwer10.1007/978-94-007-0789-4
PrasadBSome improved ratio type estimators of population mean and ratio in finite population sample surveysCommun. Stat. Theory Methods19891837939298591310.1080/03610928908829905
BhushanSGuptaRSome log-type classes of estimators using auxiliary attributeAdv. Comput. Sci. Technol20191299108
MahdizadehMZamanzadeEKernel-based estimation of P(X > Y ) in ranked set samplingSORT-Stat. Oper. Res. Trans.2016124326635924891356.62063
YuPLHLamKRegression estimator in ranked set samplingBiometrics1997531070108010.2307/2533564
SisodiaBVSDwivediVKA modified ratio estimator using coefficient of variation of auxiliary variableJ. Indian Soc. Agric. Stat.1981331318
UpadhyayaLNSinghHPVosJWEOn the estimations of population means and ratios using supplementary informationStat. Neerlandica19853930931882597410.1111/j.1467-9574.1985.tb01149.x
TakahasiKWakimotoKOn unbiased estimates of the population mean based on the sample stratified by means of orderingAnn. Inst. Stat. Math.19682013110.1007/BF02911622
SamawiHMMuttlakHAEstimation of ratio using ranked set samplingBiom. J19963875376410.1002/bimj.4710380616
SinghHPHornSAn alternative estimator for multi-character surveysMetrika1998489910716665981093.62509
SinghHPTailorRSinghSGeneral procedure for estimating the population mean using ranked set samplingJ. Stat. Comput. Simul.201484931945316937110.1080/00949655.2012.733395
MuttlakHAMcDonaldLLRanked set sampling with respect to a concomitant variables and with size biased probability of selectionCommun. Stat. Theory Methods199019205219106040910.1080/03610929008830198
BhushanSGuptaRSearls’ ratio product type estimatorsInt. J. Stat. Syst.2019142937
Mahdizadeh, M. and Zamanzade, E. (2018). Smooth estimation of a reliability function in ranked set sampling. Stat. J. Theor. Appl. Stat.
Khan, L., Shabbir, J. and Khalil, A. (2019). A new class of regression cum ratio estimators of population mean in ranked set sampling. Life Cycle Reliab. Saf. Eng. , 1–4.
ZamanzadeEMahdizadehMEstimating the population proportion in pair ranked set sampling with application to air quality monitoringJ. Appl. Stat.201845426437376473510.1080/02664763.2017.1279596
BhushanSGuptaRSome new log-type class of double sampling estimatorsInt. J. Appl. Agric. Res.2019143140
ShahzadUPerriPFHanifMA new class of ratio-type estimators for improving mean estimation of nonsensitive and sensitive variables by using supplementary informationCommun. Stat. Simul. Comput.20184825662585400122110.1080/03610918.2018.1458133
ZamanzadeEMahdizadehMA more efficient proportion estimator in ranked set samplingStat. Probab. Lett.20171292833368851110.1016/j.spl.2017.05.001
BhushanSGuptaRA class of log-type estimators for population mean using auxiliary information on an attribute and a variable using double sampling techniqueInt. J. Comput. Appl. Math.201914110
PLH Yu (265_CR43) 1997; 53
N Koyuncu (265_CR17) 2009; 139
C Kadilar (265_CR14) 2003; 45
265_CR12
265_CR34
265_CR35
265_CR10
265_CR32
265_CR33
N Mehta (265_CR20) 2016; 45
265_CR31
LN Upadhyaya (265_CR41) 1985; 39
U Shahzad (265_CR30) 2018; 48
HA Muttlak (265_CR25) 1995; 37
S Bhushan (265_CR6) 2019; 14
E Zamanzade (265_CR45) 2018; 45
GA McIntyre (265_CR19) 1952; 3
S Bhushan (265_CR3) 2019; 12
HM Samawi (265_CR27) 1996; 38
HP Singh (265_CR37) 2003; 52
LN Upadhyaya (265_CR42) 1999; 41
265_CR1
BVS Sisodia (265_CR39) 1981; 33
E Zamanzade (265_CR46) 2020; 29
HA Muttlak (265_CR23) 1990; 19
265_CR4
CE Sarndal (265_CR28) 2003
S Bhushan (265_CR9) 2020; 28
TR Dell (265_CR11) 1972; 28
E Zamanzade (265_CR44) 2017; 129
K Takahasi (265_CR40) 1968; 20
265_CR22
C Kadilar (265_CR15) 2009; 50
LS Halls (265_CR13) 1966; 12
265_CR8
S Bhushan (265_CR5) 2019; 14
S Singh (265_CR29) 2003
265_CR18
B Prasad (265_CR26) 1989; 18
M Khoshnevisan (265_CR16) 2007; 22
S Bhushan (265_CR7) 2019; 14
M Mahdizadeh (265_CR21) 2016; 1
HP Singh (265_CR38) 2014; 84
HP Singh (265_CR36) 1998; 48
S Bhushan (265_CR2) 2015; 11
HA Muttlak (265_CR24) 1992; 34
References_xml – reference: Shahzad, U., Al-Noor, N.H., Hanif, M. and Sajjad, I. (2020a). An exponential family of median based estimators for mean estimation with simple random sampling scheme. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1725828.
– reference: Bhushan, S. and Gupta, R. (2019b). An improved log-type family of estimators using attribute. J. Stat. Manag. Syst.https://doi.org/10.1080/09720510.1661604.
– reference: PrasadBSome improved ratio type estimators of population mean and ratio in finite population sample surveysCommun. Stat. Theory Methods19891837939298591310.1080/03610928908829905
– reference: KhoshnevisanMSinghRChauhanPSawanNSmarandacheFA general family of estimators for estimating population mean using known value of some population parameter(s)Far East J. Theor. Stat.20072218119123567731133.62005
– reference: KoyuncuNKadilarCRatio and product estimator in stratified random samplingJ. Stat. Plan. Infer.200913925522558252364710.1016/j.jspi.2008.11.009
– reference: KadilarCUnyaziciYCingiHRatio estimator for the population mean using ranked set samplingStat. Pap.200950301309247618910.1007/s00362-007-0079-y
– reference: MuttlakHAParameter estimation in simple linear regression using ranked set samplingBiom. J.19953779981010.1002/bimj.4710370704
– reference: ZamanzadeEMahdizadehMEstimating the population proportion in pair ranked set sampling with application to air quality monitoringJ. Appl. Stat.201845426437376473510.1080/02664763.2017.1279596
– reference: MahdizadehMZamanzadeEKernel-based estimation of P(X > Y ) in ranked set samplingSORT-Stat. Oper. Res. Trans.2016124326635924891356.62063
– reference: SinghSAdvanced sampling theory with applications: How Michael selected Amy, 1&22003The NetherlandsKluwer10.1007/978-94-007-0789-4
– reference: BhushanSKumarALog type estimators of population mean under ranked set samplingPredictive Analytics Stat. Big Data Concepts Model.202028477410.2174/9789811490491120010007http://dx.doi.org/10.2174/9789811490491120010007
– reference: SinghHPEspejoMROn linear regression and ratio estimator using coefficient of variation of auxiliary variateStatistician20035259671973882
– reference: BhushanSGuptaRA class of log-type estimators for population mean using auxiliary information on an attribute and a variable using double sampling techniqueInt. J. Comput. Appl. Math.201914110
– reference: Mahdizadeh, M. and Zamanzade, E. (2018). Smooth estimation of a reliability function in ranked set sampling. Stat. J. Theor. Appl. Stat.
– reference: MuttlakHAMcDonaldLLRanked set sampling and line intercept method: A more efficient procedureBiom. J.19923432934610.1002/bimj.4710340307
– reference: McIntyreGAA method of unbiased selective sampling using ranked setAust. J. Agr. Res.1952338539010.1071/AR9520385
– reference: TakahasiKWakimotoKOn unbiased estimates of the population mean based on the sample stratified by means of orderingAnn. Inst. Stat. Math.19682013110.1007/BF02911622
– reference: BhushanSGuptaRSome new log-type class of double sampling estimatorsInt. J. Appl. Agric. Res.2019143140
– reference: Bhushan, S. and Kumar, A (2020a). On optimal classes of estimators under ranked set sampling. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2020.1777431.
– reference: Dell, T.R. (1969). The theory and some applications of ranked set sampling (Doctoral dissertation) University of Georgia, Athens, GA.
– reference: UpadhyayaLNSinghHPUse of transformed auxiliary variable in estimating the finite population meanBiom. J.199941627636172023210.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W
– reference: Shahzad, U., Al-Noor, N.H., Hanif, M., Sajjad, I. and Anas, M.M. (2020b), Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Commun. Stat. Simul. Comput.https://doi.org/10.1080/03610918.2020.1740266.
– reference: MuttlakHAMcDonaldLLRanked set sampling with respect to a concomitant variables and with size biased probability of selectionCommun. Stat. Theory Methods199019205219106040910.1080/03610929008830198
– reference: Singh, H.P. and Kakran, M.S. (1993). A modified ratio estimator using known coefficient of kurtosis of an auxiliary character. In: Advanced sampling theory with applications (S. Singh, H.P. Singh, and M.S. Kakran, eds), vol. 2. Kluwer Academic Publishers, Kluwer.
– reference: ZamanzadeEMahdizadehMUsing ranked set sampling with extreme ranks in estimating the population proportionStat. Methods Med. Res.202029165177405512910.1177/0962280218823793
– reference: YuPLHLamKRegression estimator in ranked set samplingBiometrics1997531070108010.2307/2533564
– reference: Khan, L., Shabbir, J. and Khalil, A. (2019). A new class of regression cum ratio estimators of population mean in ranked set sampling. Life Cycle Reliab. Saf. Eng. , 1–4.
– reference: SarndalCESwenssonBWretmanJModel assisted survey sampling2003New YorkSpringer1027.62004
– reference: DellTRClutterJLRanked set sampling theory with order statistics backgroundBiometrics19722854555510.2307/2556166
– reference: MehtaNMandowaraVLA modified ratio-cum-product estimator of finite population mean using ranked set samplingCommun. Stat. Theory Methods201645267276344791310.1080/03610926.2013.830748
– reference: KadilarCCingiHRatio estimators in stratified random samplingBiom. J200345218225196594610.1002/bimj.200390007
– reference: SinghHPTailorRSinghSGeneral procedure for estimating the population mean using ranked set samplingJ. Stat. Comput. Simul.201484931945316937110.1080/00949655.2012.733395
– reference: BhushanSGuptaRSome log-type classes of estimators using auxiliary attributeAdv. Comput. Sci. Technol20191299108
– reference: ZamanzadeEMahdizadehMA more efficient proportion estimator in ranked set samplingStat. Probab. Lett.20171292833368851110.1016/j.spl.2017.05.001
– reference: BhushanSGuptaRPandeySKSome log-type classes of estimators using auxiliary informationInt. J. Agric. Stat. Sci.201511487491
– reference: UpadhyayaLNSinghHPVosJWEOn the estimations of population means and ratios using supplementary informationStat. Neerlandica19853930931882597410.1111/j.1467-9574.1985.tb01149.x
– reference: ShahzadUPerriPFHanifMA new class of ratio-type estimators for improving mean estimation of nonsensitive and sensitive variables by using supplementary informationCommun. Stat. Simul. Comput.20184825662585400122110.1080/03610918.2018.1458133
– reference: SamawiHMMuttlakHAEstimation of ratio using ranked set samplingBiom. J19963875376410.1002/bimj.4710380616
– reference: Shahzad, U., Ahmad, I., Oral, E., Hanif, M. and Almanjahie, I. (2020c). Estimation of the population mean by successive use of an auxiliary variable in median ranked set sampling. Math. Popul. Stud.https://doi.org/10.1080/08898480.2020.1816703.
– reference: SisodiaBVSDwivediVKA modified ratio estimator using coefficient of variation of auxiliary variableJ. Indian Soc. Agric. Stat.1981331318
– reference: BhushanSGuptaRSearls’ ratio product type estimatorsInt. J. Stat. Syst.2019142937
– reference: SinghHPHornSAn alternative estimator for multi-character surveysMetrika1998489910716665981093.62509
– reference: Evans, M.J. (1967). Application of ranked set sampling to regeneration surveys in areas direct seeded to long-leaf pine. Master of Forestry Dissertation Louisiana State University, Baton Rouge, LA.
– reference: Shahzad, U., Hanif, M., Sajjad, I. and Anas, M.M. (2020d). Quantile regression-ratio-type estimators for mean estimation under complete and partial auxiliary information. Sci. Iran.https://doi.org/10.24200/SCI.2020.54423.3744.
– reference: HallsLSDellTRTrial of ranked set sampling for forage yieldsFor. Sci.1966122226
– reference: Ali, N., Ahmad, I., Hanif, M and Shahzad, U (2019). Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Commun. Stat. Theory Methods. https://doi.org/10.1080/03610926.2019.1645857.
– volume: 84
  start-page: 931
  year: 2014
  ident: 265_CR38
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2012.733395
– ident: 265_CR33
  doi: 10.1080/08898480.2020.1816703
– volume: 33
  start-page: 13
  year: 1981
  ident: 265_CR39
  publication-title: J. Indian Soc. Agric. Stat.
– volume: 45
  start-page: 218
  year: 2003
  ident: 265_CR14
  publication-title: Biom. J
  doi: 10.1002/bimj.200390007
– volume: 22
  start-page: 181
  year: 2007
  ident: 265_CR16
  publication-title: Far East J. Theor. Stat.
– volume: 20
  start-page: 1
  year: 1968
  ident: 265_CR40
  publication-title: Ann. Inst. Stat. Math.
  doi: 10.1007/BF02911622
– ident: 265_CR22
  doi: 10.1080/02331888.2018.1477157
– volume: 19
  start-page: 205
  year: 1990
  ident: 265_CR23
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610929008830198
– ident: 265_CR32
  doi: 10.1080/03610918.2020.1740266
– volume-title: Model assisted survey sampling
  year: 2003
  ident: 265_CR28
– volume: 48
  start-page: 2566
  year: 2018
  ident: 265_CR30
  publication-title: Commun. Stat. Simul. Comput.
  doi: 10.1080/03610918.2018.1458133
– volume: 39
  start-page: 309
  year: 1985
  ident: 265_CR41
  publication-title: Stat. Neerlandica
  doi: 10.1111/j.1467-9574.1985.tb01149.x
– volume-title: Advanced sampling theory with applications: How Michael selected Amy, 1&2
  year: 2003
  ident: 265_CR29
  doi: 10.1007/978-94-007-0789-4
– volume: 29
  start-page: 165
  year: 2020
  ident: 265_CR46
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280218823793
– ident: 265_CR31
  doi: 10.1080/03610926.2020.1725828
– volume: 45
  start-page: 426
  year: 2018
  ident: 265_CR45
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664763.2017.1279596
– volume: 34
  start-page: 329
  year: 1992
  ident: 265_CR24
  publication-title: Biom. J.
  doi: 10.1002/bimj.4710340307
– volume: 18
  start-page: 379
  year: 1989
  ident: 265_CR26
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610928908829905
– ident: 265_CR34
  doi: 10.24200/SCI.2020.54423.3744
– volume: 11
  start-page: 487
  year: 2015
  ident: 265_CR2
  publication-title: Int. J. Agric. Stat. Sci.
– ident: 265_CR4
  doi: 10.1080/09720510.1661604
– volume: 50
  start-page: 301
  year: 2009
  ident: 265_CR15
  publication-title: Stat. Pap.
  doi: 10.1007/s00362-007-0079-y
– volume: 129
  start-page: 28
  year: 2017
  ident: 265_CR44
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2017.05.001
– volume: 38
  start-page: 753
  year: 1996
  ident: 265_CR27
  publication-title: Biom. J
  doi: 10.1002/bimj.4710380616
– volume: 28
  start-page: 47
  year: 2020
  ident: 265_CR9
  publication-title: Predictive Analytics Stat. Big Data Concepts Model.
  doi: 10.2174/9789811490491120010007
– volume: 3
  start-page: 385
  year: 1952
  ident: 265_CR19
  publication-title: Aust. J. Agr. Res.
  doi: 10.1071/AR9520385
– volume: 53
  start-page: 1070
  year: 1997
  ident: 265_CR43
  publication-title: Biometrics
  doi: 10.2307/2533564
– volume: 14
  start-page: 31
  year: 2019
  ident: 265_CR5
  publication-title: Int. J. Appl. Agric. Res.
– volume: 52
  start-page: 59
  year: 2003
  ident: 265_CR37
  publication-title: Statistician
  doi: 10.1111/1467-9884.00341
– volume: 139
  start-page: 2552
  year: 2009
  ident: 265_CR17
  publication-title: J. Stat. Plan. Infer.
  doi: 10.1016/j.jspi.2008.11.009
– volume: 48
  start-page: 99
  year: 1998
  ident: 265_CR36
  publication-title: Metrika
  doi: 10.1007/PL00020899
– ident: 265_CR8
  doi: 10.1080/03610926.2020.1777431
– ident: 265_CR12
– volume: 12
  start-page: 22
  year: 1966
  ident: 265_CR13
  publication-title: For. Sci.
– ident: 265_CR35
– volume: 12
  start-page: 99
  year: 2019
  ident: 265_CR3
  publication-title: Adv. Comput. Sci. Technol
– volume: 1
  start-page: 243
  year: 2016
  ident: 265_CR21
  publication-title: SORT-Stat. Oper. Res. Trans.
– volume: 28
  start-page: 545
  year: 1972
  ident: 265_CR11
  publication-title: Biometrics
  doi: 10.2307/2556166
– ident: 265_CR1
  doi: 10.1080/03610926.2019.1645857
– ident: 265_CR10
– ident: 265_CR18
  doi: 10.1007/s41872-019-00079-y
– volume: 14
  start-page: 29
  year: 2019
  ident: 265_CR7
  publication-title: Int. J. Stat. Syst.
– volume: 14
  start-page: 1
  year: 2019
  ident: 265_CR6
  publication-title: Int. J. Comput. Appl. Math.
– volume: 41
  start-page: 627
  year: 1999
  ident: 265_CR42
  publication-title: Biom. J.
  doi: 10.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W
– volume: 45
  start-page: 267
  year: 2016
  ident: 265_CR20
  publication-title: Commun. Stat. Theory Methods
  doi: 10.1080/03610926.2013.830748
– volume: 37
  start-page: 799
  year: 1995
  ident: 265_CR25
  publication-title: Biom. J.
  doi: 10.1002/bimj.4710370704
SSID ssj0000583339
Score 2.371314
Snippet This paper suggests some novel class of log type estimators for the estimation of population mean of study variable under ranked set sampling by utilizing...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 421
SubjectTerms Mathematics and Statistics
Statistics
Title Novel Log Type Class Of Estimators Under Ranked Set Sampling
URI https://link.springer.com/article/10.1007/s13571-021-00265-y
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0976-8394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000583339
  issn: 0976-8386
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8NAFH5ovdSDS1WsG3PwpimZJckEvBRxwaWCWqinkFnSg5qKSYX6653J0qJIoYfc3oSZx2Te-zLvfR_AsZQsJr4VNElc7jDiKidkKnRwwBXVLNBaF1W-Pf-6z24G3qBqCsvqavf6SrI4qWfNbtQLDPQl5jHAwXMmy7DiWYDSgJXu1cvt7N-Ka1uJaEmzF_gOp9yv-mX-f9HvmPT7QrSIM5fr0K9nWJaXvHbGuejI7z_kjYsuYQPWqsQTdcudsglLOm3B6v2UtTVrQdNmniVx8xac9UZf-g3djYbIYlVUqGeihwRdGIN3C9UzVIgmocc4fdUKPekcPcW2QD0dbkP_8uL5_NqppBYcSUKcO5iL0KVCmujOsXQTxpkUGgvClNRMcCpcZpXSA8IFldRXntAJoSqRIZOKEroDjXSU6l1A5oCIMVUMm9TQoC_JzYjE015AMfZ9QdqAa2dHsuIht3IYb9GMQdm6KTJuigo3RZM2nEzHfJQsHHOtT2v3R9UXmc0x31vMfB-axLZAFEWPB9DIP8f60CQmuTiq9uEPgWrVog
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BewAOLAVEWX3gBkbxksSRuCDUUqAUCagEp6he0gOQIpoiwddjZ6ECISQOuY0je-R4ZuI37wHsK8UHNHCCJoknMKeexhHXESah0Mzw0BiTo3x7QafPL-79-7IpbFyh3asryfyknja7MT-0pS-1jy0cfPw-C3VOhOA1qJ-cPVxO_614rpWIFTR7YYAFE0HZL_P7i77HpO8XonmcaS9Bv5phAS95PJpk8kh9_CBv_O8SlmGxTDzRSbFTVmDGpA1YuPpibR03YN5lngVx8yoc90Zv5gl1R0PkalWUq2ei6wS1rMGzK9XHKBdNQjeD9NFodGsydDtwAPV0uAb9duvutINLqQWsaEQyTISMPCaVje6CKC_hgitpiKRcK8OlYNLjTik9pEIyxQLtS5NQphMVcaUZZetQS0ep2QBkD4gBYZoTmxra6ksJOyLxjR8yQoJA0iaQytmxKnnInRzGUzxlUHZuiq2b4txN8XsTDr7GvBQsHH9aH1buj8svcvyH-eb_zPdgrnN31Y27573LLZinrh0iB0BuQy17nZgdm6Rkcrfck5-3pdiT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BKyE4sCN2fOAGKfGSxJG4IGgpW0GUSnCK4iUcgBTRgARfj52FAkJIiENu4yiZ2J6ZeN57AJtSspj4VtAkcbnDiKuckKnQwQFXVLNAa513-Xb8do8dX3vXn1D8ebd7dSRZYBosS1Oa7TyqZGcIfKNeYMpgYi5TRHjO6yjUmYluXg3qe4c3J8P_LK6FFdGCci_wHU65X2Jnfr7R1_j09XA0jzmtKYirpy1aTe4az5loyLdvRI7_eZ1pmCwTUrRXzKAZGNHpLEycfbC5DmZh3GakBaHzHOx2-i_6Hp32b5GtYVGuqonOE9Q0Bg-2hB-gXEwJXcbpnVaoqzPUjW3jeno7D71W82q_7ZQSDI4kIc4czEXoUiFN1OdYugnjTAqNBWFKaiY4FS6zCuoB4YJK6itP6IRQlciQSUUJXYBa2k_1IiCzccSYKoZNymiqMsnNiMTTXkAx9n1BlgBXjo9kyU9uZTLuoyGzsnVTZNwU5W6KXpdg62PMY8HO8av1dvUponKlDn4xX_6b-QaMXRy0otOjzskKjBOLksj7Ilehlj096zWTu2RivZye73AB4W4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Log+Type+Class+Of+Estimators+Under+Ranked+Set+Sampling&rft.jtitle=Sankhy%C4%81.+Series+B+%282008%29&rft.au=Bhushan%2C+Shashi&rft.au=Kumar%2C+Anoop&rft.date=2022-05-01&rft.issn=0976-8386&rft.eissn=0976-8394&rft.volume=84&rft.issue=1&rft.spage=421&rft.epage=447&rft_id=info:doi/10.1007%2Fs13571-021-00265-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13571_021_00265_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0976-8386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0976-8386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0976-8386&client=summon