A feature selection model for document classification using Tom and Jerry Optimization algorithm
Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text classification. The curse of dimensionality has an impact on the classification model’s performance. The feature selection strategy is extremely e...
        Saved in:
      
    
          | Published in | Multimedia tools and applications Vol. 83; no. 4; pp. 10273 - 10295 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.01.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1380-7501 1573-7721  | 
| DOI | 10.1007/s11042-023-15828-6 | 
Cover
| Abstract | Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text classification. The curse of dimensionality has an impact on the classification model’s performance. The feature selection strategy is extremely effective in dealing with the curse of dimensionality issue. In this work, we present the Tom and Jerry Optimization technique(TJO) for feature subset selection. The proposed work uses the classifier error rate and the feature chosen rate to measure the candidate’s fitness. The performance of the proposed scheme is examined using two popular benchmark text corpus and compared with five metaheuristic approaches. The best success rate obtained by the proposed scheme is 95.77%, whereas the best precision is 0.9509, recall is 0.9577 and F1-score is 0.9541. According to the comparison results, the proposed feature subset selection scheme outperforms the standard strategy. | 
    
|---|---|
| AbstractList | Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text classification. The curse of dimensionality has an impact on the classification model’s performance. The feature selection strategy is extremely effective in dealing with the curse of dimensionality issue. In this work, we present the Tom and Jerry Optimization technique(TJO) for feature subset selection. The proposed work uses the classifier error rate and the feature chosen rate to measure the candidate’s fitness. The performance of the proposed scheme is examined using two popular benchmark text corpus and compared with five metaheuristic approaches. The best success rate obtained by the proposed scheme is 95.77%, whereas the best precision is 0.9509, recall is 0.9577 and F1-score is 0.9541. According to the comparison results, the proposed feature subset selection scheme outperforms the standard strategy. | 
    
| Author | Britto, J Jerold John Thirumoorthy, K  | 
    
| Author_xml | – sequence: 1 givenname: K orcidid: 0000-0001-8107-5183 surname: Thirumoorthy fullname: Thirumoorthy, K email: kthirumoorthy@mepcoeng.ac.in organization: Mepco Schlenk Engineering College – sequence: 2 givenname: J Jerold John surname: Britto fullname: Britto, J Jerold John organization: Ramco Institute of Technology  | 
    
| BookMark | eNp9kL1OwzAURi0EEm3hBZj8AgZfJ06csar4VaUuZTbGsYurxK5sZyhPT2iYGDrdO3zn6rtnji598AahO6D3QGn9kABoyQhlBQEumCDVBZoBrwtS1wwux70QlNScwjWap7SnFCrOyhn6WGJrVB6iwcl0RmcXPO5DazpsQ8Rt0ENvfMa6Uyk567Q6JYbk_A5vQ4-Vb_GbifGIN4fsevc9BVS3C9Hlr_4GXVnVJXP7Nxfo_elxu3oh683z62q5Jpo1kAkIwaGtG6W5KstKG16MvUQDAsxny1oNorRFqRmrGttyLYBqOv6nG1qVVqtigcR0V8eQUjRWapdPXXJUrpNA5a8pOZmSoyl5MiWrEWX_0EN0vYrH81AxQWkM-52Jch-G6McXz1E_RT9_SQ | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3520327 crossref_primary_10_1007_s11042_024_19769_6  | 
    
| Cites_doi | 10.1007/s12046-020-01443-w 10.1007/978-3-642-40567-9_16 10.22266/ijies2020.0630.23 10.1016/j.datak.2018.10.003 10.1016/j.jksuci.2018.05.010 10.1155/2014/717092 10.1007/s12652-019-01588-5 10.1016/j.asoc.2017.11.043 10.1007/978-981-13-7403-6_36 10.1016/j.jcde.2015.06.003 10.1016/j.advengsoft.2017.01.004 10.1016/j.eswa.2019.05.035 10.1177/0165551521991037 10.1109/ACCESS.2018.2868844 10.1145/3056662.3056671 10.1007/s00521-015-1920-1 10.1016/j.eswa.2018.07.028 10.1007/s40009-021-01043-0 10.1109/CEC.2018.8477773 10.1016/j.advengsoft.2016.01.008 10.1007/s42452-020-2266-6 10.2991/icibet-14.2014.22 10.1016/j.knosys.2015.12.022 10.5267/j.ijiec.2015.8.004 10.1016/j.patrec.2021.03.034 10.1016/j.knosys.2013.09.019 10.1016/j.eswa.2015.12.004 10.11591/ijai.v10.i1.pp253-256 10.1016/j.jksuci.2022.03.012 10.1016/j.engappai.2019.01.001 10.1007/s00521-019-04368-6 10.1016/j.engappai.2019.08.025 10.1109/IDAP.2019.8875927 10.1155/2021/7796696 10.1016/j.jksuci.2018.06.004 10.1109/4235.585893 10.1016/j.patrec.2015.07.028 10.1016/j.ipm.2016.12.004 10.1109/CCIS.2014.7175792 10.31557/APJCP.2019.20.8.2333 10.4236/jsea.2012.512B012 10.21817/ijet/2017/v9i3/170903151 10.1016/j.heliyon.2019.e01802 10.1007/978-981-13-9187-3_57 10.1016/j.advengsoft.2013.12.007 10.5267/j.ijiec.2019.6.002 10.1007/978-3-030-12767-1_5 10.4018/IJIRR.2019010101 10.1007/978-981-10-3874-7_66 10.1016/j.knosys.2012.06.005  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s11042-023-15828-6 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1573-7721 | 
    
| EndPage | 10295 | 
    
| ExternalDocumentID | 10_1007_s11042_023_15828_6 | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO  | 
    
| ID | FETCH-LOGICAL-c291t-18851d79ac5a446ce53fea89181ebd2dc184f34c2269fd5c810c0573c9064fca3 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1380-7501 | 
    
| IngestDate | Thu Apr 24 23:08:58 EDT 2025 Wed Oct 01 04:51:32 EDT 2025 Fri Feb 21 02:41:34 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Tom and Jerry optimization Feature selection Parameter-free optimization Text classification  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c291t-18851d79ac5a446ce53fea89181ebd2dc184f34c2269fd5c810c0573c9064fca3 | 
    
| ORCID | 0000-0001-8107-5183 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s11042_023_15828_6 crossref_primary_10_1007_s11042_023_15828_6 springer_journals_10_1007_s11042_023_15828_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240100 2024-01-00  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Multimedia tools and applications | 
    
| PublicationTitleAbbrev | Multimed Tools Appl | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer US | 
    
| Publisher_xml | – name: Springer US | 
    
| References | Yigit, F, Baykan, OK (2014) A new feature selection method for text categorization based on information gain and particle swarm optimization. In: 2014 IEEE 3rd International conference on cloud computing and intelligence systems, pp 523–529. https://doi.org/10.1109/CCIS.2014.7175792 Ghareb AS, Bakar AA, Hamdan AR (2016) Hybrid feature selection based on enhanced genetic algorithm for text categorization. Exp Syst Appl 49:31–47. https://doi.org/10.1016/j.eswa.2015.12.004https://www.sciencedirect.com/science/article/pii/S0957417415007952 ZhouHZhangYLiuHZhangYFeature selection based on term frequency reordering of document levelIEEE Access2018651,65551,66810.1109/ACCESS.2018.2868844 Parlak, B, Uysal, AK (2021) A novel filter feature selection method for text classification: extensive feature selector. J Inf Sci :1–20. https://doi.org/10.1177/0165551521991037 Bahassine S, Madani A, Al-Sarem M, Kissi M (2020) Feature selection using an improved chi-square for arabic text classification. J King Saud Univ Comput Inf Sci 32(2):225–231 . http://www.sciencedirect.com/science/article/pii/S131915781730544X Dhar, A, Dash, N, Roy, K (2019) Efficient feature selection based on modified cuckoo search optimization problem for classifying web text documents, pp 640–651. https://doi.org/10.1007/978-981-13-9187-3_57 Uysal AK, Gunal S (2012) A novel probabilistic feature selection method for text classification. Knowl-Based Syst 36:226–235. https://doi.org/10.1016/j.knosys.2012.06.005. www.sciencedirect.com/science/article/pii/S0950705112001761 Jalal, N, Mehmood, A, Choi, GS, Ashraf, I (2022) A novel improved random forest for text classification using feature ranking and optimal number of trees. J King Saud Univ Comput Inf Sci 34(6, Part A):2733–2742. https://doi.org/10.1016/j.jksuci.2022.03.012. https://www.sciencedirect.com/science/article/pii/S1319157822000969 WeiLWeiBWangBText classification using support vector machine with mixture of kernelJ Softw Eng Appl201205555810.4236/jsea.2012.512B012 Karpagalingam T, Karuppaiah M (2021) Feature selection using hybrid poor and rich optimization algorithm for text classification. Pattern Recogn Lett 147:63–70 https://doi.org/10.1016/j.patrec.2021.03.034https://www.sciencedirect.com/science/article/pii/S016786552100129X Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 . http://www.sciencedirect.com/science/article/pii/S0965997813001853 KumarAJaiswalAGargSVermaSKumarSSentiment analysis using cuckoo search for optimized feature selection on kaggle tweetsInt J Inf Retr Res2019911510.4018/IJIRR.2019010101 Zhu, L, Wang, G, Zou, X (2017) Improved information gain feature selection method for chinese text classification based on word embedding. In: Proceedings of the 6th international conference on software and computer applications, ICSCA ’17, Association for Computing Machinery, New York, pp 72–76. https://doi.org/10.1145/3056662.3056671 Kumar, A, Khorwal, R (2017) Firefly algorithm for feature selection in sentiment analysis, pp 693–703. https://doi.org/10.1007/978-981-10-3874-7_66 Shang C, Li M, Feng S, Jiang Q, Fan J (2013) Feature selection via maximizing global information gain for text classification. Knowl-Based Syst 54:298–309. https://doi.org/10.1016/j.knosys.2013.09.019 . https://www.sciencedirect.com/science/article/pii/S0950705113003067 Thirumoorthy K, Muneeswaran K (2021) Feature selection for text classification using machine learning approaches. Nat’l Acad Sci Lett. https://doi.org/10.1007/s40009-021-01043-0 ThirumoorthyKMuneeswaranKOptimal feature subset selection using hybrid binary jaya optimization algorithm for text classificationSādhanā202045120110.1007/s12046-020-01443-w AdamSPAlexandropoulosSANPardalosPMVrahatisMNNo free lunch theorem: a review2019ChamSpringer578210.1007/978-3-030-12767-1_5 RehmanAJavedKBabriHAFeature selection based on a normalized difference measure for text classificationInf Process Manag201753247348910.1016/j.ipm.2016.12.004 Larabi Marie-Sainte S, Alalyani N (2020) Firefly algorithm based feature selection for arabic text classification. J King Saud Univ Comput Inf Sci 32(3):320–328. https://doi.org/10.1016/j.jksuci.2018.06.004 . https://www.sciencedirect.com/science/article/pii/S131915781830106X DehghaniMZMontazeriOPMHGGuerreroJMShell game optimization: a novel game-based algorithmInt J Intell Eng Syst20201324625510.22266/ijies2020.0630.23 ChantarHMafarjaMAlsawalqahHHeidariAAAljarahIFarisHFeature selection using binary grey wolf optimizer with elite-based crossover for arabic text classificationNeural Comput Appl2020321612,20112,22010.1007/s00521-019-04368-6 Kim K, Zzang SY (2019) Trigonometric comparison measure: a feature selection method for text categorization. Data Knowl Eng 119:1–21. https://doi.org/10.1016/j.datak.2018.10.003https://www.sciencedirect.com/science/article/pii/S0169023X18300922 Yazdani M, Jolai F (2016) Lion optimization algorithm (loa): A nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36. https://doi.org/10.1016/j.jcde.2015.06.003. www.sciencedirect.com/science/article/pii/S2288430015000524 SaigalPKhannaVMulti-category news classification using support vector machine based classifiersSN Appl Sci20202345810.1007/s42452-020-2266-6 Venkata RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput20167193410.5267/j.ijiec.2015.8.004 Moosavi SHS, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181. https://doi.org/10.1016/j.engappai.2019.08.025 . http://www.sciencedirect.com/science/article/pii/S0952197619302167 ChakravarthySRajaguruHComparison analysis of linear discriminant analysis and cuckoo-search algorithm in the classification of breast cancer from digital mammogramsAsian Pacific J Cancer Prev2019202333233710.31557/APJCP.2019.20.8.2333 KawadeDSentiment analysis: Machine learning approachInt J Eng Technol2017192183218610.21817/ijet/2017/v9i3/170903151 NeogiPPGDasAKGoswamiSMustafiJMandalJKBhattacharyaDTopic modeling for text classificationEmerging technology in modelling and graphics2020SingaporeSpringer39540710.1007/978-981-13-7403-6_36 WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893 Wang L, Gao Y, Li J, Wang X (2021) A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification. Discr Dyn Nat Soc 2021:1–19. https://doi.org/10.1155/2021/7796696 BehjatAMustaphaANezamabadi-pourHSulaiman, MNA PSO-based feature subset selection for application of spam/non-spam detection201337818319310.1007/978-3-642-40567-9_16 Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004 . http://www.sciencedirect.com/science/article/pii/S0965997816305646 FengGGuoJJingBYSunTFeature subset selection using naive bayes for text classificationPattern Recogn Lett20156510911510.1016/j.patrec.2015.07.028 RustamZAmaliaYHartiniSSaragihGLinear discriminant analysis and support vector machines for classifying breast cancerIAES Int J Artif Intell (IJ-AI)20211025310.11591/ijai.v10.i1.pp253-256 Shadravan S, Naji H, Bardsiri V (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001 . http://www.sciencedirect.com/science/article/pii/S0952197619300016 Venkata Rao, R (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput :107–130. https://doi.org/10.5267/j.ijiec.2019.6.002 Mirjalili S (2015) Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1920-1 Dada EG, Bassi JS, Chiroma H, Abdulhamid SM, Adetunmbi AO, Ajibuwa OE (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6):e01,802. https://doi.org/10.1016/j.heliyon.2019.e01802, https://www.sciencedirect.com/science/article/pii/S2405844018353404 ElakiyaERajkumarNIn text mining: detection of topic and sub-topic using multiple spider hunting modelJ Amb Intell Human Comput20211233571358010.1007/s12652-019-01588-5 BalochianSBaloochianHSocial mimic optimization algorithm and engineering applicationsExp Syst Appl201913417819110.1016/j.eswa.2019.05.035 Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 . http://www.sciencedirect.com/science/article/pii/S0965997816300163 Rehman A, Javed K, Babri HA, Asim MN (2018) Selection of the most relevant terms based on a max-min ratio metric for text classification. Exp Syst Appl 114:78–96. https://doi.org/10.1016/j.eswa.2018.07.028 . https://www.sciencedirect.com/science/article/pii/S0957417418304457 Bai, X, Gao, X, Xue, B (2018) Particle swarm optimization based two-stage feature selection in text mining. In: 2018 IEEE Congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477773 Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022 . http://www.sciencedirect.com/science/article/pii/S0950705115005043 Zhu, W, Feng, J, Lin, Y (2014) Using gini-index for feature selection in text categorization. In: Proceedings of the 2014 International conference on information, business and education technology, Atlantis Press, pp 76–80. https://doi.org/10.2991/icibet-14.2014.22 Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Applied Soft Comput 64:161–185. https://doi.org/10.101 E Elakiya (15828_CR11) 2021; 12 15828_CR37 15828_CR39 15828_CR34 15828_CR35 15828_CR36 15828_CR31 15828_CR2 15828_CR3 MZ Dehghani (15828_CR26) 2020; 13 PPG Neogi (15828_CR28) 2020 DH Wolpert (15828_CR45) 1997; 1 G Feng (15828_CR12) 2015; 65 15828_CR49 15828_CR46 15828_CR47 15828_CR40 R Venkata Rao (15828_CR41) 2016; 7 A Kumar (15828_CR18) 2019; 9 15828_CR42 15828_CR43 S Balochian (15828_CR4) 2019; 134 S Chakravarthy (15828_CR6) 2019; 20 15828_CR19 L Wei (15828_CR44) 2012; 05 15828_CR15 15828_CR17 15828_CR13 15828_CR14 15828_CR10 SP Adam (15828_CR1) 2019 S Dey Sarkar (15828_CR9) 2014; 717 15828_CR50 Z Rustam (15828_CR32) 2021; 10 P Saigal (15828_CR33) 2020; 2 H Zhou (15828_CR48) 2018; 6 K Thirumoorthy (15828_CR38) 2020; 45 15828_CR27 15828_CR29 H Chantar (15828_CR7) 2020; 32 15828_CR22 15828_CR23 15828_CR24 15828_CR25 15828_CR8 15828_CR20 15828_CR21 A Rehman (15828_CR30) 2017; 53 D Kawade (15828_CR16) 2017; 19 A Behjat (15828_CR5) 2013; 378  | 
    
| References_xml | – reference: Bahassine S, Madani A, Al-Sarem M, Kissi M (2020) Feature selection using an improved chi-square for arabic text classification. J King Saud Univ Comput Inf Sci 32(2):225–231 . http://www.sciencedirect.com/science/article/pii/S131915781730544X – reference: Zhu, W, Feng, J, Lin, Y (2014) Using gini-index for feature selection in text categorization. In: Proceedings of the 2014 International conference on information, business and education technology, Atlantis Press, pp 76–80. https://doi.org/10.2991/icibet-14.2014.22 – reference: BehjatAMustaphaANezamabadi-pourHSulaiman, MNA PSO-based feature subset selection for application of spam/non-spam detection201337818319310.1007/978-3-642-40567-9_16 – reference: ThirumoorthyKMuneeswaranKOptimal feature subset selection using hybrid binary jaya optimization algorithm for text classificationSādhanā202045120110.1007/s12046-020-01443-w – reference: AdamSPAlexandropoulosSANPardalosPMVrahatisMNNo free lunch theorem: a review2019ChamSpringer578210.1007/978-3-030-12767-1_5 – reference: Yazdani M, Jolai F (2016) Lion optimization algorithm (loa): A nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36. https://doi.org/10.1016/j.jcde.2015.06.003. www.sciencedirect.com/science/article/pii/S2288430015000524 – reference: Shang C, Li M, Feng S, Jiang Q, Fan J (2013) Feature selection via maximizing global information gain for text classification. Knowl-Based Syst 54:298–309. https://doi.org/10.1016/j.knosys.2013.09.019 . https://www.sciencedirect.com/science/article/pii/S0950705113003067 – reference: Yigit, F, Baykan, OK (2014) A new feature selection method for text categorization based on information gain and particle swarm optimization. In: 2014 IEEE 3rd International conference on cloud computing and intelligence systems, pp 523–529. https://doi.org/10.1109/CCIS.2014.7175792 – reference: FengGGuoJJingBYSunTFeature subset selection using naive bayes for text classificationPattern Recogn Lett20156510911510.1016/j.patrec.2015.07.028 – reference: KumarAJaiswalAGargSVermaSKumarSSentiment analysis using cuckoo search for optimized feature selection on kaggle tweetsInt J Inf Retr Res2019911510.4018/IJIRR.2019010101 – reference: Parlak, B, Uysal, AK (2021) A novel filter feature selection method for text classification: extensive feature selector. J Inf Sci :1–20. https://doi.org/10.1177/0165551521991037 – reference: Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004 . http://www.sciencedirect.com/science/article/pii/S0965997816305646 – reference: Wang L, Gao Y, Li J, Wang X (2021) A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification. Discr Dyn Nat Soc 2021:1–19. https://doi.org/10.1155/2021/7796696 – reference: Dey SarkarSGoswamiSAgarwalAAktar, J (2014) A novel feature selection technique for text classification using naïve bayesInt Scholarly Res Notices201471709210.1155/2014/717092 – reference: ChakravarthySRajaguruHComparison analysis of linear discriminant analysis and cuckoo-search algorithm in the classification of breast cancer from digital mammogramsAsian Pacific J Cancer Prev2019202333233710.31557/APJCP.2019.20.8.2333 – reference: Sel, I, Karci, A, Hanbay, D.: Feature selection for text classification using mutual information. In: 2019 International artificial intelligence and data processing symposium (IDAP), pp 1–4. https://doi.org/10.1109/IDAP.2019.8875927 – reference: Ghareb AS, Bakar AA, Hamdan AR (2016) Hybrid feature selection based on enhanced genetic algorithm for text categorization. Exp Syst Appl 49:31–47. https://doi.org/10.1016/j.eswa.2015.12.004https://www.sciencedirect.com/science/article/pii/S0957417415007952 – reference: Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 . http://www.sciencedirect.com/science/article/pii/S0965997813001853 – reference: Mirjalili S (2015) Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1920-1 – reference: Dhar, A, Dash, N, Roy, K (2019) Efficient feature selection based on modified cuckoo search optimization problem for classifying web text documents, pp 640–651. https://doi.org/10.1007/978-981-13-9187-3_57 – reference: Uysal AK, Gunal S (2012) A novel probabilistic feature selection method for text classification. Knowl-Based Syst 36:226–235. https://doi.org/10.1016/j.knosys.2012.06.005. www.sciencedirect.com/science/article/pii/S0950705112001761 – reference: Kumar, A, Khorwal, R (2017) Firefly algorithm for feature selection in sentiment analysis, pp 693–703. https://doi.org/10.1007/978-981-10-3874-7_66 – reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893 – reference: Karpagalingam T, Karuppaiah M (2021) Feature selection using hybrid poor and rich optimization algorithm for text classification. Pattern Recogn Lett 147:63–70 https://doi.org/10.1016/j.patrec.2021.03.034https://www.sciencedirect.com/science/article/pii/S016786552100129X – reference: Moosavi SHS, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181. https://doi.org/10.1016/j.engappai.2019.08.025 . http://www.sciencedirect.com/science/article/pii/S0952197619302167 – reference: Larabi Marie-Sainte S, Alalyani N (2020) Firefly algorithm based feature selection for arabic text classification. J King Saud Univ Comput Inf Sci 32(3):320–328. https://doi.org/10.1016/j.jksuci.2018.06.004 . https://www.sciencedirect.com/science/article/pii/S131915781830106X – reference: WeiLWeiBWangBText classification using support vector machine with mixture of kernelJ Softw Eng Appl201205555810.4236/jsea.2012.512B012 – reference: Kim K, Zzang SY (2019) Trigonometric comparison measure: a feature selection method for text categorization. Data Knowl Eng 119:1–21. https://doi.org/10.1016/j.datak.2018.10.003https://www.sciencedirect.com/science/article/pii/S0169023X18300922 – reference: NeogiPPGDasAKGoswamiSMustafiJMandalJKBhattacharyaDTopic modeling for text classificationEmerging technology in modelling and graphics2020SingaporeSpringer39540710.1007/978-981-13-7403-6_36 – reference: Venkata RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput20167193410.5267/j.ijiec.2015.8.004 – reference: Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 . http://www.sciencedirect.com/science/article/pii/S0965997816300163 – reference: RustamZAmaliaYHartiniSSaragihGLinear discriminant analysis and support vector machines for classifying breast cancerIAES Int J Artif Intell (IJ-AI)20211025310.11591/ijai.v10.i1.pp253-256 – reference: SaigalPKhannaVMulti-category news classification using support vector machine based classifiersSN Appl Sci20202345810.1007/s42452-020-2266-6 – reference: Dada EG, Bassi JS, Chiroma H, Abdulhamid SM, Adetunmbi AO, Ajibuwa OE (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6):e01,802. https://doi.org/10.1016/j.heliyon.2019.e01802, https://www.sciencedirect.com/science/article/pii/S2405844018353404 – reference: KawadeDSentiment analysis: Machine learning approachInt J Eng Technol2017192183218610.21817/ijet/2017/v9i3/170903151 – reference: Thirumoorthy K, Muneeswaran K (2021) Feature selection for text classification using machine learning approaches. Nat’l Acad Sci Lett. https://doi.org/10.1007/s40009-021-01043-0 – reference: ChantarHMafarjaMAlsawalqahHHeidariAAAljarahIFarisHFeature selection using binary grey wolf optimizer with elite-based crossover for arabic text classificationNeural Comput Appl2020321612,20112,22010.1007/s00521-019-04368-6 – reference: RehmanAJavedKBabriHAFeature selection based on a normalized difference measure for text classificationInf Process Manag201753247348910.1016/j.ipm.2016.12.004 – reference: Zhu, L, Wang, G, Zou, X (2017) Improved information gain feature selection method for chinese text classification based on word embedding. In: Proceedings of the 6th international conference on software and computer applications, ICSCA ’17, Association for Computing Machinery, New York, pp 72–76. https://doi.org/10.1145/3056662.3056671 – reference: Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022 . http://www.sciencedirect.com/science/article/pii/S0950705115005043 – reference: Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Applied Soft Comput 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043 . http://www.sciencedirect.com/science/article/pii/S1568494617307068 – reference: ZhouHZhangYLiuHZhangYFeature selection based on term frequency reordering of document levelIEEE Access2018651,65551,66810.1109/ACCESS.2018.2868844 – reference: BalochianSBaloochianHSocial mimic optimization algorithm and engineering applicationsExp Syst Appl201913417819110.1016/j.eswa.2019.05.035 – reference: Venkata Rao, R (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput :107–130. https://doi.org/10.5267/j.ijiec.2019.6.002 – reference: Bai, X, Gao, X, Xue, B (2018) Particle swarm optimization based two-stage feature selection in text mining. In: 2018 IEEE Congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477773 – reference: DehghaniMZMontazeriOPMHGGuerreroJMShell game optimization: a novel game-based algorithmInt J Intell Eng Syst20201324625510.22266/ijies2020.0630.23 – reference: Shadravan S, Naji H, Bardsiri V (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001 . http://www.sciencedirect.com/science/article/pii/S0952197619300016 – reference: Rehman A, Javed K, Babri HA, Asim MN (2018) Selection of the most relevant terms based on a max-min ratio metric for text classification. Exp Syst Appl 114:78–96. https://doi.org/10.1016/j.eswa.2018.07.028 . https://www.sciencedirect.com/science/article/pii/S0957417418304457 – reference: ElakiyaERajkumarNIn text mining: detection of topic and sub-topic using multiple spider hunting modelJ Amb Intell Human Comput20211233571358010.1007/s12652-019-01588-5 – reference: Jalal, N, Mehmood, A, Choi, GS, Ashraf, I (2022) A novel improved random forest for text classification using feature ranking and optimal number of trees. J King Saud Univ Comput Inf Sci 34(6, Part A):2733–2742. https://doi.org/10.1016/j.jksuci.2022.03.012. https://www.sciencedirect.com/science/article/pii/S1319157822000969 – volume: 45 start-page: 201 issue: 1 year: 2020 ident: 15828_CR38 publication-title: Sādhanā doi: 10.1007/s12046-020-01443-w – volume: 378 start-page: 183 year: 2013 ident: 15828_CR5 publication-title: A PSO-based feature subset selection for application of spam/non-spam detection doi: 10.1007/978-3-642-40567-9_16 – volume: 13 start-page: 246 year: 2020 ident: 15828_CR26 publication-title: Int J Intell Eng Syst doi: 10.22266/ijies2020.0630.23 – ident: 15828_CR17 doi: 10.1016/j.datak.2018.10.003 – ident: 15828_CR2 doi: 10.1016/j.jksuci.2018.05.010 – volume: 717 start-page: 092 year: 2014 ident: 15828_CR9 publication-title: Int Scholarly Res Notices doi: 10.1155/2014/717092 – volume: 12 start-page: 3571 issue: 3 year: 2021 ident: 15828_CR11 publication-title: J Amb Intell Human Comput doi: 10.1007/s12652-019-01588-5 – ident: 15828_CR25 doi: 10.1016/j.asoc.2017.11.043 – start-page: 395 volume-title: Emerging technology in modelling and graphics year: 2020 ident: 15828_CR28 doi: 10.1007/978-981-13-7403-6_36 – ident: 15828_CR46 doi: 10.1016/j.jcde.2015.06.003 – ident: 15828_CR34 doi: 10.1016/j.advengsoft.2017.01.004 – volume: 134 start-page: 178 year: 2019 ident: 15828_CR4 publication-title: Exp Syst Appl doi: 10.1016/j.eswa.2019.05.035 – ident: 15828_CR29 doi: 10.1177/0165551521991037 – volume: 6 start-page: 51,655 year: 2018 ident: 15828_CR48 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868844 – ident: 15828_CR49 doi: 10.1145/3056662.3056671 – ident: 15828_CR21 doi: 10.1007/s00521-015-1920-1 – ident: 15828_CR31 doi: 10.1016/j.eswa.2018.07.028 – ident: 15828_CR39 doi: 10.1007/s40009-021-01043-0 – ident: 15828_CR3 doi: 10.1109/CEC.2018.8477773 – ident: 15828_CR23 doi: 10.1016/j.advengsoft.2016.01.008 – volume: 2 start-page: 458 issue: 3 year: 2020 ident: 15828_CR33 publication-title: SN Appl Sci doi: 10.1007/s42452-020-2266-6 – ident: 15828_CR50 doi: 10.2991/icibet-14.2014.22 – ident: 15828_CR22 doi: 10.1016/j.knosys.2015.12.022 – volume: 7 start-page: 19 year: 2016 ident: 15828_CR41 publication-title: Int J Ind Eng Comput doi: 10.5267/j.ijiec.2015.8.004 – ident: 15828_CR15 doi: 10.1016/j.patrec.2021.03.034 – ident: 15828_CR37 doi: 10.1016/j.knosys.2013.09.019 – ident: 15828_CR13 doi: 10.1016/j.eswa.2015.12.004 – volume: 10 start-page: 253 year: 2021 ident: 15828_CR32 publication-title: IAES Int J Artif Intell (IJ-AI) doi: 10.11591/ijai.v10.i1.pp253-256 – ident: 15828_CR14 doi: 10.1016/j.jksuci.2022.03.012 – ident: 15828_CR36 doi: 10.1016/j.engappai.2019.01.001 – volume: 32 start-page: 12,201 issue: 16 year: 2020 ident: 15828_CR7 publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04368-6 – ident: 15828_CR27 doi: 10.1016/j.engappai.2019.08.025 – ident: 15828_CR35 doi: 10.1109/IDAP.2019.8875927 – ident: 15828_CR43 doi: 10.1155/2021/7796696 – ident: 15828_CR20 doi: 10.1016/j.jksuci.2018.06.004 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 15828_CR45 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 65 start-page: 109 year: 2015 ident: 15828_CR12 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.07.028 – volume: 53 start-page: 473 issue: 2 year: 2017 ident: 15828_CR30 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2016.12.004 – ident: 15828_CR47 doi: 10.1109/CCIS.2014.7175792 – volume: 20 start-page: 2333 year: 2019 ident: 15828_CR6 publication-title: Asian Pacific J Cancer Prev doi: 10.31557/APJCP.2019.20.8.2333 – volume: 05 start-page: 55 year: 2012 ident: 15828_CR44 publication-title: J Softw Eng Appl doi: 10.4236/jsea.2012.512B012 – volume: 19 start-page: 2183 year: 2017 ident: 15828_CR16 publication-title: Int J Eng Technol doi: 10.21817/ijet/2017/v9i3/170903151 – ident: 15828_CR8 doi: 10.1016/j.heliyon.2019.e01802 – ident: 15828_CR10 doi: 10.1007/978-981-13-9187-3_57 – ident: 15828_CR24 doi: 10.1016/j.advengsoft.2013.12.007 – ident: 15828_CR42 doi: 10.5267/j.ijiec.2019.6.002 – start-page: 57 volume-title: No free lunch theorem: a review year: 2019 ident: 15828_CR1 doi: 10.1007/978-3-030-12767-1_5 – volume: 9 start-page: 1 year: 2019 ident: 15828_CR18 publication-title: Int J Inf Retr Res doi: 10.4018/IJIRR.2019010101 – ident: 15828_CR19 doi: 10.1007/978-981-10-3874-7_66 – ident: 15828_CR40 doi: 10.1016/j.knosys.2012.06.005  | 
    
| SSID | ssj0016524 | 
    
| Score | 2.3462355 | 
    
| Snippet | Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 10273 | 
    
| SubjectTerms | Computer Communication Networks Computer Science Data Structures and Information Theory Multimedia Information Systems Special Purpose and Application-Based Systems  | 
    
| Title | A feature selection model for document classification using Tom and Jerry Optimization algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s11042-023-15828-6 | 
    
| Volume | 83 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7721 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7721 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016524 issn: 1380-7501 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4ULnrwAzXiB-nBmzZZ91G64zQgwYjGQIKnWboOTWAzMA7-e9-WDiQxJl62S7csbz-ep3v7Pg9CVwmAKFNpkwAUO3BRkgjRVGQUSqAfXiKpsQN67LHOwO8Og6EtCpuXp93LlKRZqdfFblSXkgDGEKpzPYRto2qg5bxgFA_caJU7YIG1suUOATyktlTm93dswtFmLtRATPsA7VluiKNlZx6iLZXV0H7pu4DtNKyh3R8igkfoLcKpMvKceG5MbSDS2BjcYCCkOMnlQv8BxFLzZH0wyPQF1gfex7ifT7HIEtxVs9kXfoL1Y2oLM7GYjPPZR_E-PUaDdqt_1yHWN4FIN6QFoRxoVNIMhQwE7PakCjz4Dh4CmKtR4kL8uZ96vgTmFaZJIDl1pNZFlCHwk1QK7wRVsjxTpwh7qS-1QAxjXJuRS-EznnARwq5MOCJw64iW4YulFRXX3haTeC2HrEMeQ8hjE_KY1dH16pnPpaTGn61vyl6J7fSa_9H87H_Nz9GOCyxl-U_lAlWK2UJdAssoRg1Uje5fH1pwv231nl8aZpB9A_-0yrA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRnh7YwKh5NhkrRCmPlqWVYAru2SmIPlCaDvDrOSdOoQghsWRyLMtn-z777r4P4ESSE_VVXOPkiqv0UciFqCneC5HghyPRyuSAWm2_2XVvHrwHUxQ2KbLdi5BkdlJ_FbtZupSEfAy3dKyH-4uw5NIFxS7BUv3q8fZyFj3wPSNmG1Q5eUTLFMv83su8Q5qPhmZOprEO3WJ4eW7J6_k07Z3jxw_mxv-OfwPWDOpk9XyZbMKCGpVhvVB0YGaDl2H1Gz3hFjzVWawy4k82yeRyyIYsk85hBHWZHONUvy0y1AhcpxxlVmY6lb7POuMhEyPJblSSvLN7OpmGpuSTiUF_nLykz8Nt6DYuOxdNbhQZONqhlXIrIIAma6FAT9A9EpXn0DiCkGCC6kmbLBu4seMiYbowlh4GVhU14yKGhHxiFM4OlEbjkdoF5sQuauoZ3w-0zDkK1w9kIEK674mq8OwKWIVZIjR05Vo1YxB9ES3rCY1oQqNsQiO_Aqezf95yso4_W58VhorMxp380Xzvf82PYbnZad1Fd9ft231YsQkL5S83B1BKk6k6JCyT9o7M0v0EdgPnYQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOLAVEWX3gBhbZ6xwroCoFCodW6i24tlOQ2qRK0wN_z9hxukioEpecnCiasfOeM573ELoRAKKBjOsEoNiCi-SEsbokg5AD_XAFt7Ud0FsnaPW8dt_vL3Xx69PuZUmy6GlQKk1Jfj8R8f2i8c1WbSWAN8RWdR8SbKItTwklwIzuOY15HSHwja0ttQhgo23aZv5-xio0rdZFNdw0D9Ce4Ym4UST2EG3IpIr2Sw8GbJZkFe0uCQoeoc8GjqWW6sRTbXADUcfa7AYDOcUi5TP1NxBzxZnVISGdF6wOvw9xNx1jlgjclln2g9_hWzI2TZqYjYZp9p1_jY9Rr_nUfWgR46FAuBPaObEpUCpRDxn3Gez8uPRdeA8aArDLgXAgF9SLXY8DCwtj4XNqW1xpJPIQuErMmXuCKkmayFOE3djjSiwmCKgyJufMC6igLIQdGrOY79SQXYYv4kZgXPlcjKKFNLIKeQQhj3TIo6CGbuf3TAp5jbWj78qsRGapTdcMP_vf8Gu0_fHYjF6fOy_naMcB8lL8arlAlTybyUsgH_ngSs-vX-vizqo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+selection+model+for+document+classification+using+Tom+and+Jerry+Optimization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Thirumoorthy%2C+K&rft.au=Britto%2C+J+Jerold+John&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=4&rft.spage=10273&rft.epage=10295&rft_id=info:doi/10.1007%2Fs11042-023-15828-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15828_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |