A feature selection model for document classification using Tom and Jerry Optimization algorithm

Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text classification. The curse of dimensionality has an impact on the classification model’s performance. The feature selection strategy is extremely e...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 83; no. 4; pp. 10273 - 10295
Main Authors Thirumoorthy, K, Britto, J Jerold John
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2024
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-15828-6

Cover

Abstract Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text classification. The curse of dimensionality has an impact on the classification model’s performance. The feature selection strategy is extremely effective in dealing with the curse of dimensionality issue. In this work, we present the Tom and Jerry Optimization technique(TJO) for feature subset selection. The proposed work uses the classifier error rate and the feature chosen rate to measure the candidate’s fitness. The performance of the proposed scheme is examined using two popular benchmark text corpus and compared with five metaheuristic approaches. The best success rate obtained by the proposed scheme is 95.77%, whereas the best precision is 0.9509, recall is 0.9577 and F1-score is 0.9541. According to the comparison results, the proposed feature subset selection scheme outperforms the standard strategy.
AbstractList Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text classification. The curse of dimensionality has an impact on the classification model’s performance. The feature selection strategy is extremely effective in dealing with the curse of dimensionality issue. In this work, we present the Tom and Jerry Optimization technique(TJO) for feature subset selection. The proposed work uses the classifier error rate and the feature chosen rate to measure the candidate’s fitness. The performance of the proposed scheme is examined using two popular benchmark text corpus and compared with five metaheuristic approaches. The best success rate obtained by the proposed scheme is 95.77%, whereas the best precision is 0.9509, recall is 0.9577 and F1-score is 0.9541. According to the comparison results, the proposed feature subset selection scheme outperforms the standard strategy.
Author Britto, J Jerold John
Thirumoorthy, K
Author_xml – sequence: 1
  givenname: K
  orcidid: 0000-0001-8107-5183
  surname: Thirumoorthy
  fullname: Thirumoorthy, K
  email: kthirumoorthy@mepcoeng.ac.in
  organization: Mepco Schlenk Engineering College
– sequence: 2
  givenname: J Jerold John
  surname: Britto
  fullname: Britto, J Jerold John
  organization: Ramco Institute of Technology
BookMark eNp9kL1OwzAURi0EEm3hBZj8AgZfJ06csar4VaUuZTbGsYurxK5sZyhPT2iYGDrdO3zn6rtnji598AahO6D3QGn9kABoyQhlBQEumCDVBZoBrwtS1wwux70QlNScwjWap7SnFCrOyhn6WGJrVB6iwcl0RmcXPO5DazpsQ8Rt0ENvfMa6Uyk567Q6JYbk_A5vQ4-Vb_GbifGIN4fsevc9BVS3C9Hlr_4GXVnVJXP7Nxfo_elxu3oh683z62q5Jpo1kAkIwaGtG6W5KstKG16MvUQDAsxny1oNorRFqRmrGttyLYBqOv6nG1qVVqtigcR0V8eQUjRWapdPXXJUrpNA5a8pOZmSoyl5MiWrEWX_0EN0vYrH81AxQWkM-52Jch-G6McXz1E_RT9_SQ
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3520327
crossref_primary_10_1007_s11042_024_19769_6
Cites_doi 10.1007/s12046-020-01443-w
10.1007/978-3-642-40567-9_16
10.22266/ijies2020.0630.23
10.1016/j.datak.2018.10.003
10.1016/j.jksuci.2018.05.010
10.1155/2014/717092
10.1007/s12652-019-01588-5
10.1016/j.asoc.2017.11.043
10.1007/978-981-13-7403-6_36
10.1016/j.jcde.2015.06.003
10.1016/j.advengsoft.2017.01.004
10.1016/j.eswa.2019.05.035
10.1177/0165551521991037
10.1109/ACCESS.2018.2868844
10.1145/3056662.3056671
10.1007/s00521-015-1920-1
10.1016/j.eswa.2018.07.028
10.1007/s40009-021-01043-0
10.1109/CEC.2018.8477773
10.1016/j.advengsoft.2016.01.008
10.1007/s42452-020-2266-6
10.2991/icibet-14.2014.22
10.1016/j.knosys.2015.12.022
10.5267/j.ijiec.2015.8.004
10.1016/j.patrec.2021.03.034
10.1016/j.knosys.2013.09.019
10.1016/j.eswa.2015.12.004
10.11591/ijai.v10.i1.pp253-256
10.1016/j.jksuci.2022.03.012
10.1016/j.engappai.2019.01.001
10.1007/s00521-019-04368-6
10.1016/j.engappai.2019.08.025
10.1109/IDAP.2019.8875927
10.1155/2021/7796696
10.1016/j.jksuci.2018.06.004
10.1109/4235.585893
10.1016/j.patrec.2015.07.028
10.1016/j.ipm.2016.12.004
10.1109/CCIS.2014.7175792
10.31557/APJCP.2019.20.8.2333
10.4236/jsea.2012.512B012
10.21817/ijet/2017/v9i3/170903151
10.1016/j.heliyon.2019.e01802
10.1007/978-981-13-9187-3_57
10.1016/j.advengsoft.2013.12.007
10.5267/j.ijiec.2019.6.002
10.1007/978-3-030-12767-1_5
10.4018/IJIRR.2019010101
10.1007/978-981-10-3874-7_66
10.1016/j.knosys.2012.06.005
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11042-023-15828-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 10295
ExternalDocumentID 10_1007_s11042_023_15828_6
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
ID FETCH-LOGICAL-c291t-18851d79ac5a446ce53fea89181ebd2dc184f34c2269fd5c810c0573c9064fca3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Thu Apr 24 23:08:58 EDT 2025
Wed Oct 01 04:51:32 EDT 2025
Fri Feb 21 02:41:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Tom and Jerry optimization
Feature selection
Parameter-free optimization
Text classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-18851d79ac5a446ce53fea89181ebd2dc184f34c2269fd5c810c0573c9064fca3
ORCID 0000-0001-8107-5183
PageCount 23
ParticipantIDs crossref_citationtrail_10_1007_s11042_023_15828_6
crossref_primary_10_1007_s11042_023_15828_6
springer_journals_10_1007_s11042_023_15828_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2024
Publisher Springer US
Publisher_xml – name: Springer US
References Yigit, F, Baykan, OK (2014) A new feature selection method for text categorization based on information gain and particle swarm optimization. In: 2014 IEEE 3rd International conference on cloud computing and intelligence systems, pp 523–529. https://doi.org/10.1109/CCIS.2014.7175792
Ghareb AS, Bakar AA, Hamdan AR (2016) Hybrid feature selection based on enhanced genetic algorithm for text categorization. Exp Syst Appl 49:31–47. https://doi.org/10.1016/j.eswa.2015.12.004https://www.sciencedirect.com/science/article/pii/S0957417415007952
ZhouHZhangYLiuHZhangYFeature selection based on term frequency reordering of document levelIEEE Access2018651,65551,66810.1109/ACCESS.2018.2868844
Parlak, B, Uysal, AK (2021) A novel filter feature selection method for text classification: extensive feature selector. J Inf Sci :1–20. https://doi.org/10.1177/0165551521991037
Bahassine S, Madani A, Al-Sarem M, Kissi M (2020) Feature selection using an improved chi-square for arabic text classification. J King Saud Univ Comput Inf Sci 32(2):225–231 . http://www.sciencedirect.com/science/article/pii/S131915781730544X
Dhar, A, Dash, N, Roy, K (2019) Efficient feature selection based on modified cuckoo search optimization problem for classifying web text documents, pp 640–651. https://doi.org/10.1007/978-981-13-9187-3_57
Uysal AK, Gunal S (2012) A novel probabilistic feature selection method for text classification. Knowl-Based Syst 36:226–235. https://doi.org/10.1016/j.knosys.2012.06.005. www.sciencedirect.com/science/article/pii/S0950705112001761
Jalal, N, Mehmood, A, Choi, GS, Ashraf, I (2022) A novel improved random forest for text classification using feature ranking and optimal number of trees. J King Saud Univ Comput Inf Sci 34(6, Part A):2733–2742. https://doi.org/10.1016/j.jksuci.2022.03.012. https://www.sciencedirect.com/science/article/pii/S1319157822000969
WeiLWeiBWangBText classification using support vector machine with mixture of kernelJ Softw Eng Appl201205555810.4236/jsea.2012.512B012
Karpagalingam T, Karuppaiah M (2021) Feature selection using hybrid poor and rich optimization algorithm for text classification. Pattern Recogn Lett 147:63–70 https://doi.org/10.1016/j.patrec.2021.03.034https://www.sciencedirect.com/science/article/pii/S016786552100129X
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 . http://www.sciencedirect.com/science/article/pii/S0965997813001853
KumarAJaiswalAGargSVermaSKumarSSentiment analysis using cuckoo search for optimized feature selection on kaggle tweetsInt J Inf Retr Res2019911510.4018/IJIRR.2019010101
Zhu, L, Wang, G, Zou, X (2017) Improved information gain feature selection method for chinese text classification based on word embedding. In: Proceedings of the 6th international conference on software and computer applications, ICSCA ’17, Association for Computing Machinery, New York, pp 72–76. https://doi.org/10.1145/3056662.3056671
Kumar, A, Khorwal, R (2017) Firefly algorithm for feature selection in sentiment analysis, pp 693–703. https://doi.org/10.1007/978-981-10-3874-7_66
Shang C, Li M, Feng S, Jiang Q, Fan J (2013) Feature selection via maximizing global information gain for text classification. Knowl-Based Syst 54:298–309. https://doi.org/10.1016/j.knosys.2013.09.019 . https://www.sciencedirect.com/science/article/pii/S0950705113003067
Thirumoorthy K, Muneeswaran K (2021) Feature selection for text classification using machine learning approaches. Nat’l Acad Sci Lett. https://doi.org/10.1007/s40009-021-01043-0
ThirumoorthyKMuneeswaranKOptimal feature subset selection using hybrid binary jaya optimization algorithm for text classificationSādhanā202045120110.1007/s12046-020-01443-w
AdamSPAlexandropoulosSANPardalosPMVrahatisMNNo free lunch theorem: a review2019ChamSpringer578210.1007/978-3-030-12767-1_5
RehmanAJavedKBabriHAFeature selection based on a normalized difference measure for text classificationInf Process Manag201753247348910.1016/j.ipm.2016.12.004
Larabi Marie-Sainte S, Alalyani N (2020) Firefly algorithm based feature selection for arabic text classification. J King Saud Univ Comput Inf Sci 32(3):320–328. https://doi.org/10.1016/j.jksuci.2018.06.004 . https://www.sciencedirect.com/science/article/pii/S131915781830106X
DehghaniMZMontazeriOPMHGGuerreroJMShell game optimization: a novel game-based algorithmInt J Intell Eng Syst20201324625510.22266/ijies2020.0630.23
ChantarHMafarjaMAlsawalqahHHeidariAAAljarahIFarisHFeature selection using binary grey wolf optimizer with elite-based crossover for arabic text classificationNeural Comput Appl2020321612,20112,22010.1007/s00521-019-04368-6
Kim K, Zzang SY (2019) Trigonometric comparison measure: a feature selection method for text categorization. Data Knowl Eng 119:1–21. https://doi.org/10.1016/j.datak.2018.10.003https://www.sciencedirect.com/science/article/pii/S0169023X18300922
Yazdani M, Jolai F (2016) Lion optimization algorithm (loa): A nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36. https://doi.org/10.1016/j.jcde.2015.06.003. www.sciencedirect.com/science/article/pii/S2288430015000524
SaigalPKhannaVMulti-category news classification using support vector machine based classifiersSN Appl Sci20202345810.1007/s42452-020-2266-6
Venkata RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput20167193410.5267/j.ijiec.2015.8.004
Moosavi SHS, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181. https://doi.org/10.1016/j.engappai.2019.08.025 . http://www.sciencedirect.com/science/article/pii/S0952197619302167
ChakravarthySRajaguruHComparison analysis of linear discriminant analysis and cuckoo-search algorithm in the classification of breast cancer from digital mammogramsAsian Pacific J Cancer Prev2019202333233710.31557/APJCP.2019.20.8.2333
KawadeDSentiment analysis: Machine learning approachInt J Eng Technol2017192183218610.21817/ijet/2017/v9i3/170903151
NeogiPPGDasAKGoswamiSMustafiJMandalJKBhattacharyaDTopic modeling for text classificationEmerging technology in modelling and graphics2020SingaporeSpringer39540710.1007/978-981-13-7403-6_36
WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893
Wang L, Gao Y, Li J, Wang X (2021) A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification. Discr Dyn Nat Soc 2021:1–19. https://doi.org/10.1155/2021/7796696
BehjatAMustaphaANezamabadi-pourHSulaiman, MNA PSO-based feature subset selection for application of spam/non-spam detection201337818319310.1007/978-3-642-40567-9_16
Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004 . http://www.sciencedirect.com/science/article/pii/S0965997816305646
FengGGuoJJingBYSunTFeature subset selection using naive bayes for text classificationPattern Recogn Lett20156510911510.1016/j.patrec.2015.07.028
RustamZAmaliaYHartiniSSaragihGLinear discriminant analysis and support vector machines for classifying breast cancerIAES Int J Artif Intell (IJ-AI)20211025310.11591/ijai.v10.i1.pp253-256
Shadravan S, Naji H, Bardsiri V (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001 . http://www.sciencedirect.com/science/article/pii/S0952197619300016
Venkata Rao, R (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput :107–130. https://doi.org/10.5267/j.ijiec.2019.6.002
Mirjalili S (2015) Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1920-1
Dada EG, Bassi JS, Chiroma H, Abdulhamid SM, Adetunmbi AO, Ajibuwa OE (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6):e01,802. https://doi.org/10.1016/j.heliyon.2019.e01802, https://www.sciencedirect.com/science/article/pii/S2405844018353404
ElakiyaERajkumarNIn text mining: detection of topic and sub-topic using multiple spider hunting modelJ Amb Intell Human Comput20211233571358010.1007/s12652-019-01588-5
BalochianSBaloochianHSocial mimic optimization algorithm and engineering applicationsExp Syst Appl201913417819110.1016/j.eswa.2019.05.035
Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 . http://www.sciencedirect.com/science/article/pii/S0965997816300163
Rehman A, Javed K, Babri HA, Asim MN (2018) Selection of the most relevant terms based on a max-min ratio metric for text classification. Exp Syst Appl 114:78–96. https://doi.org/10.1016/j.eswa.2018.07.028 . https://www.sciencedirect.com/science/article/pii/S0957417418304457
Bai, X, Gao, X, Xue, B (2018) Particle swarm optimization based two-stage feature selection in text mining. In: 2018 IEEE Congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477773
Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022 . http://www.sciencedirect.com/science/article/pii/S0950705115005043
Zhu, W, Feng, J, Lin, Y (2014) Using gini-index for feature selection in text categorization. In: Proceedings of the 2014 International conference on information, business and education technology, Atlantis Press, pp 76–80. https://doi.org/10.2991/icibet-14.2014.22
Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Applied Soft Comput 64:161–185. https://doi.org/10.101
E Elakiya (15828_CR11) 2021; 12
15828_CR37
15828_CR39
15828_CR34
15828_CR35
15828_CR36
15828_CR31
15828_CR2
15828_CR3
MZ Dehghani (15828_CR26) 2020; 13
PPG Neogi (15828_CR28) 2020
DH Wolpert (15828_CR45) 1997; 1
G Feng (15828_CR12) 2015; 65
15828_CR49
15828_CR46
15828_CR47
15828_CR40
R Venkata Rao (15828_CR41) 2016; 7
A Kumar (15828_CR18) 2019; 9
15828_CR42
15828_CR43
S Balochian (15828_CR4) 2019; 134
S Chakravarthy (15828_CR6) 2019; 20
15828_CR19
L Wei (15828_CR44) 2012; 05
15828_CR15
15828_CR17
15828_CR13
15828_CR14
15828_CR10
SP Adam (15828_CR1) 2019
S Dey Sarkar (15828_CR9) 2014; 717
15828_CR50
Z Rustam (15828_CR32) 2021; 10
P Saigal (15828_CR33) 2020; 2
H Zhou (15828_CR48) 2018; 6
K Thirumoorthy (15828_CR38) 2020; 45
15828_CR27
15828_CR29
H Chantar (15828_CR7) 2020; 32
15828_CR22
15828_CR23
15828_CR24
15828_CR25
15828_CR8
15828_CR20
15828_CR21
A Rehman (15828_CR30) 2017; 53
D Kawade (15828_CR16) 2017; 19
A Behjat (15828_CR5) 2013; 378
References_xml – reference: Bahassine S, Madani A, Al-Sarem M, Kissi M (2020) Feature selection using an improved chi-square for arabic text classification. J King Saud Univ Comput Inf Sci 32(2):225–231 . http://www.sciencedirect.com/science/article/pii/S131915781730544X
– reference: Zhu, W, Feng, J, Lin, Y (2014) Using gini-index for feature selection in text categorization. In: Proceedings of the 2014 International conference on information, business and education technology, Atlantis Press, pp 76–80. https://doi.org/10.2991/icibet-14.2014.22
– reference: BehjatAMustaphaANezamabadi-pourHSulaiman, MNA PSO-based feature subset selection for application of spam/non-spam detection201337818319310.1007/978-3-642-40567-9_16
– reference: ThirumoorthyKMuneeswaranKOptimal feature subset selection using hybrid binary jaya optimization algorithm for text classificationSādhanā202045120110.1007/s12046-020-01443-w
– reference: AdamSPAlexandropoulosSANPardalosPMVrahatisMNNo free lunch theorem: a review2019ChamSpringer578210.1007/978-3-030-12767-1_5
– reference: Yazdani M, Jolai F (2016) Lion optimization algorithm (loa): A nature-inspired metaheuristic algorithm. J Comput Des Eng 3(1):24–36. https://doi.org/10.1016/j.jcde.2015.06.003. www.sciencedirect.com/science/article/pii/S2288430015000524
– reference: Shang C, Li M, Feng S, Jiang Q, Fan J (2013) Feature selection via maximizing global information gain for text classification. Knowl-Based Syst 54:298–309. https://doi.org/10.1016/j.knosys.2013.09.019 . https://www.sciencedirect.com/science/article/pii/S0950705113003067
– reference: Yigit, F, Baykan, OK (2014) A new feature selection method for text categorization based on information gain and particle swarm optimization. In: 2014 IEEE 3rd International conference on cloud computing and intelligence systems, pp 523–529. https://doi.org/10.1109/CCIS.2014.7175792
– reference: FengGGuoJJingBYSunTFeature subset selection using naive bayes for text classificationPattern Recogn Lett20156510911510.1016/j.patrec.2015.07.028
– reference: KumarAJaiswalAGargSVermaSKumarSSentiment analysis using cuckoo search for optimized feature selection on kaggle tweetsInt J Inf Retr Res2019911510.4018/IJIRR.2019010101
– reference: Parlak, B, Uysal, AK (2021) A novel filter feature selection method for text classification: extensive feature selector. J Inf Sci :1–20. https://doi.org/10.1177/0165551521991037
– reference: Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47. https://doi.org/10.1016/j.advengsoft.2017.01.004 . http://www.sciencedirect.com/science/article/pii/S0965997816305646
– reference: Wang L, Gao Y, Li J, Wang X (2021) A feature selection method by using chaotic cuckoo search optimization algorithm with elitist preservation and uniform mutation for data classification. Discr Dyn Nat Soc 2021:1–19. https://doi.org/10.1155/2021/7796696
– reference: Dey SarkarSGoswamiSAgarwalAAktar, J (2014) A novel feature selection technique for text classification using naïve bayesInt Scholarly Res Notices201471709210.1155/2014/717092
– reference: ChakravarthySRajaguruHComparison analysis of linear discriminant analysis and cuckoo-search algorithm in the classification of breast cancer from digital mammogramsAsian Pacific J Cancer Prev2019202333233710.31557/APJCP.2019.20.8.2333
– reference: Sel, I, Karci, A, Hanbay, D.: Feature selection for text classification using mutual information. In: 2019 International artificial intelligence and data processing symposium (IDAP), pp 1–4. https://doi.org/10.1109/IDAP.2019.8875927
– reference: Ghareb AS, Bakar AA, Hamdan AR (2016) Hybrid feature selection based on enhanced genetic algorithm for text categorization. Exp Syst Appl 49:31–47. https://doi.org/10.1016/j.eswa.2015.12.004https://www.sciencedirect.com/science/article/pii/S0957417415007952
– reference: Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 . http://www.sciencedirect.com/science/article/pii/S0965997813001853
– reference: Mirjalili S (2015) Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl. https://doi.org/10.1007/s00521-015-1920-1
– reference: Dhar, A, Dash, N, Roy, K (2019) Efficient feature selection based on modified cuckoo search optimization problem for classifying web text documents, pp 640–651. https://doi.org/10.1007/978-981-13-9187-3_57
– reference: Uysal AK, Gunal S (2012) A novel probabilistic feature selection method for text classification. Knowl-Based Syst 36:226–235. https://doi.org/10.1016/j.knosys.2012.06.005. www.sciencedirect.com/science/article/pii/S0950705112001761
– reference: Kumar, A, Khorwal, R (2017) Firefly algorithm for feature selection in sentiment analysis, pp 693–703. https://doi.org/10.1007/978-981-10-3874-7_66
– reference: WolpertDHMacreadyWGNo free lunch theorems for optimizationIEEE Trans Evol Comput199711678210.1109/4235.585893
– reference: Karpagalingam T, Karuppaiah M (2021) Feature selection using hybrid poor and rich optimization algorithm for text classification. Pattern Recogn Lett 147:63–70 https://doi.org/10.1016/j.patrec.2021.03.034https://www.sciencedirect.com/science/article/pii/S016786552100129X
– reference: Moosavi SHS, Bardsiri VK (2019) Poor and rich optimization algorithm: a new human-based and multi populations algorithm. Eng Appl Artif Intell 86:165–181. https://doi.org/10.1016/j.engappai.2019.08.025 . http://www.sciencedirect.com/science/article/pii/S0952197619302167
– reference: Larabi Marie-Sainte S, Alalyani N (2020) Firefly algorithm based feature selection for arabic text classification. J King Saud Univ Comput Inf Sci 32(3):320–328. https://doi.org/10.1016/j.jksuci.2018.06.004 . https://www.sciencedirect.com/science/article/pii/S131915781830106X
– reference: WeiLWeiBWangBText classification using support vector machine with mixture of kernelJ Softw Eng Appl201205555810.4236/jsea.2012.512B012
– reference: Kim K, Zzang SY (2019) Trigonometric comparison measure: a feature selection method for text categorization. Data Knowl Eng 119:1–21. https://doi.org/10.1016/j.datak.2018.10.003https://www.sciencedirect.com/science/article/pii/S0169023X18300922
– reference: NeogiPPGDasAKGoswamiSMustafiJMandalJKBhattacharyaDTopic modeling for text classificationEmerging technology in modelling and graphics2020SingaporeSpringer39540710.1007/978-981-13-7403-6_36
– reference: Venkata RaoRJaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problemsInt J Ind Eng Comput20167193410.5267/j.ijiec.2015.8.004
– reference: Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 . http://www.sciencedirect.com/science/article/pii/S0965997816300163
– reference: RustamZAmaliaYHartiniSSaragihGLinear discriminant analysis and support vector machines for classifying breast cancerIAES Int J Artif Intell (IJ-AI)20211025310.11591/ijai.v10.i1.pp253-256
– reference: SaigalPKhannaVMulti-category news classification using support vector machine based classifiersSN Appl Sci20202345810.1007/s42452-020-2266-6
– reference: Dada EG, Bassi JS, Chiroma H, Abdulhamid SM, Adetunmbi AO, Ajibuwa OE (2019) Machine learning for email spam filtering: review, approaches and open research problems. Heliyon 5(6):e01,802. https://doi.org/10.1016/j.heliyon.2019.e01802, https://www.sciencedirect.com/science/article/pii/S2405844018353404
– reference: KawadeDSentiment analysis: Machine learning approachInt J Eng Technol2017192183218610.21817/ijet/2017/v9i3/170903151
– reference: Thirumoorthy K, Muneeswaran K (2021) Feature selection for text classification using machine learning approaches. Nat’l Acad Sci Lett. https://doi.org/10.1007/s40009-021-01043-0
– reference: ChantarHMafarjaMAlsawalqahHHeidariAAAljarahIFarisHFeature selection using binary grey wolf optimizer with elite-based crossover for arabic text classificationNeural Comput Appl2020321612,20112,22010.1007/s00521-019-04368-6
– reference: RehmanAJavedKBabriHAFeature selection based on a normalized difference measure for text classificationInf Process Manag201753247348910.1016/j.ipm.2016.12.004
– reference: Zhu, L, Wang, G, Zou, X (2017) Improved information gain feature selection method for chinese text classification based on word embedding. In: Proceedings of the 6th international conference on software and computer applications, ICSCA ’17, Association for Computing Machinery, New York, pp 72–76. https://doi.org/10.1145/3056662.3056671
– reference: Mirjalili S (2016) Sca: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022 . http://www.sciencedirect.com/science/article/pii/S0950705115005043
– reference: Moghdani R, Salimifard K (2018) Volleyball premier league algorithm. Applied Soft Comput 64:161–185. https://doi.org/10.1016/j.asoc.2017.11.043 . http://www.sciencedirect.com/science/article/pii/S1568494617307068
– reference: ZhouHZhangYLiuHZhangYFeature selection based on term frequency reordering of document levelIEEE Access2018651,65551,66810.1109/ACCESS.2018.2868844
– reference: BalochianSBaloochianHSocial mimic optimization algorithm and engineering applicationsExp Syst Appl201913417819110.1016/j.eswa.2019.05.035
– reference: Venkata Rao, R (2020) Rao algorithms: three metaphor-less simple algorithms for solving optimization problems. Int J Ind Eng Comput :107–130. https://doi.org/10.5267/j.ijiec.2019.6.002
– reference: Bai, X, Gao, X, Xue, B (2018) Particle swarm optimization based two-stage feature selection in text mining. In: 2018 IEEE Congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477773
– reference: DehghaniMZMontazeriOPMHGGuerreroJMShell game optimization: a novel game-based algorithmInt J Intell Eng Syst20201324625510.22266/ijies2020.0630.23
– reference: Shadravan S, Naji H, Bardsiri V (2019) The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001 . http://www.sciencedirect.com/science/article/pii/S0952197619300016
– reference: Rehman A, Javed K, Babri HA, Asim MN (2018) Selection of the most relevant terms based on a max-min ratio metric for text classification. Exp Syst Appl 114:78–96. https://doi.org/10.1016/j.eswa.2018.07.028 . https://www.sciencedirect.com/science/article/pii/S0957417418304457
– reference: ElakiyaERajkumarNIn text mining: detection of topic and sub-topic using multiple spider hunting modelJ Amb Intell Human Comput20211233571358010.1007/s12652-019-01588-5
– reference: Jalal, N, Mehmood, A, Choi, GS, Ashraf, I (2022) A novel improved random forest for text classification using feature ranking and optimal number of trees. J King Saud Univ Comput Inf Sci 34(6, Part A):2733–2742. https://doi.org/10.1016/j.jksuci.2022.03.012. https://www.sciencedirect.com/science/article/pii/S1319157822000969
– volume: 45
  start-page: 201
  issue: 1
  year: 2020
  ident: 15828_CR38
  publication-title: Sādhanā
  doi: 10.1007/s12046-020-01443-w
– volume: 378
  start-page: 183
  year: 2013
  ident: 15828_CR5
  publication-title: A PSO-based feature subset selection for application of spam/non-spam detection
  doi: 10.1007/978-3-642-40567-9_16
– volume: 13
  start-page: 246
  year: 2020
  ident: 15828_CR26
  publication-title: Int J Intell Eng Syst
  doi: 10.22266/ijies2020.0630.23
– ident: 15828_CR17
  doi: 10.1016/j.datak.2018.10.003
– ident: 15828_CR2
  doi: 10.1016/j.jksuci.2018.05.010
– volume: 717
  start-page: 092
  year: 2014
  ident: 15828_CR9
  publication-title: Int Scholarly Res Notices
  doi: 10.1155/2014/717092
– volume: 12
  start-page: 3571
  issue: 3
  year: 2021
  ident: 15828_CR11
  publication-title: J Amb Intell Human Comput
  doi: 10.1007/s12652-019-01588-5
– ident: 15828_CR25
  doi: 10.1016/j.asoc.2017.11.043
– start-page: 395
  volume-title: Emerging technology in modelling and graphics
  year: 2020
  ident: 15828_CR28
  doi: 10.1007/978-981-13-7403-6_36
– ident: 15828_CR46
  doi: 10.1016/j.jcde.2015.06.003
– ident: 15828_CR34
  doi: 10.1016/j.advengsoft.2017.01.004
– volume: 134
  start-page: 178
  year: 2019
  ident: 15828_CR4
  publication-title: Exp Syst Appl
  doi: 10.1016/j.eswa.2019.05.035
– ident: 15828_CR29
  doi: 10.1177/0165551521991037
– volume: 6
  start-page: 51,655
  year: 2018
  ident: 15828_CR48
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868844
– ident: 15828_CR49
  doi: 10.1145/3056662.3056671
– ident: 15828_CR21
  doi: 10.1007/s00521-015-1920-1
– ident: 15828_CR31
  doi: 10.1016/j.eswa.2018.07.028
– ident: 15828_CR39
  doi: 10.1007/s40009-021-01043-0
– ident: 15828_CR3
  doi: 10.1109/CEC.2018.8477773
– ident: 15828_CR23
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 2
  start-page: 458
  issue: 3
  year: 2020
  ident: 15828_CR33
  publication-title: SN Appl Sci
  doi: 10.1007/s42452-020-2266-6
– ident: 15828_CR50
  doi: 10.2991/icibet-14.2014.22
– ident: 15828_CR22
  doi: 10.1016/j.knosys.2015.12.022
– volume: 7
  start-page: 19
  year: 2016
  ident: 15828_CR41
  publication-title: Int J Ind Eng Comput
  doi: 10.5267/j.ijiec.2015.8.004
– ident: 15828_CR15
  doi: 10.1016/j.patrec.2021.03.034
– ident: 15828_CR37
  doi: 10.1016/j.knosys.2013.09.019
– ident: 15828_CR13
  doi: 10.1016/j.eswa.2015.12.004
– volume: 10
  start-page: 253
  year: 2021
  ident: 15828_CR32
  publication-title: IAES Int J Artif Intell (IJ-AI)
  doi: 10.11591/ijai.v10.i1.pp253-256
– ident: 15828_CR14
  doi: 10.1016/j.jksuci.2022.03.012
– ident: 15828_CR36
  doi: 10.1016/j.engappai.2019.01.001
– volume: 32
  start-page: 12,201
  issue: 16
  year: 2020
  ident: 15828_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-019-04368-6
– ident: 15828_CR27
  doi: 10.1016/j.engappai.2019.08.025
– ident: 15828_CR35
  doi: 10.1109/IDAP.2019.8875927
– ident: 15828_CR43
  doi: 10.1155/2021/7796696
– ident: 15828_CR20
  doi: 10.1016/j.jksuci.2018.06.004
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 15828_CR45
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 65
  start-page: 109
  year: 2015
  ident: 15828_CR12
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.07.028
– volume: 53
  start-page: 473
  issue: 2
  year: 2017
  ident: 15828_CR30
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2016.12.004
– ident: 15828_CR47
  doi: 10.1109/CCIS.2014.7175792
– volume: 20
  start-page: 2333
  year: 2019
  ident: 15828_CR6
  publication-title: Asian Pacific J Cancer Prev
  doi: 10.31557/APJCP.2019.20.8.2333
– volume: 05
  start-page: 55
  year: 2012
  ident: 15828_CR44
  publication-title: J Softw Eng Appl
  doi: 10.4236/jsea.2012.512B012
– volume: 19
  start-page: 2183
  year: 2017
  ident: 15828_CR16
  publication-title: Int J Eng Technol
  doi: 10.21817/ijet/2017/v9i3/170903151
– ident: 15828_CR8
  doi: 10.1016/j.heliyon.2019.e01802
– ident: 15828_CR10
  doi: 10.1007/978-981-13-9187-3_57
– ident: 15828_CR24
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: 15828_CR42
  doi: 10.5267/j.ijiec.2019.6.002
– start-page: 57
  volume-title: No free lunch theorem: a review
  year: 2019
  ident: 15828_CR1
  doi: 10.1007/978-3-030-12767-1_5
– volume: 9
  start-page: 1
  year: 2019
  ident: 15828_CR18
  publication-title: Int J Inf Retr Res
  doi: 10.4018/IJIRR.2019010101
– ident: 15828_CR19
  doi: 10.1007/978-981-10-3874-7_66
– ident: 15828_CR40
  doi: 10.1016/j.knosys.2012.06.005
SSID ssj0016524
Score 2.3462355
Snippet Since the last decade, high-dimensional data has been increasing in various document mining fields, such as text summarization, text clustering, and text...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 10273
SubjectTerms Computer Communication Networks
Computer Science
Data Structures and Information Theory
Multimedia Information Systems
Special Purpose and Application-Based Systems
Title A feature selection model for document classification using Tom and Jerry Optimization algorithm
URI https://link.springer.com/article/10.1007/s11042-023-15828-6
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8IwGG4ULnrwAzXiB-nBmzZZ91G64zQgwYjGQIKnWboOTWAzMA7-e9-WDiQxJl62S7csbz-ep3v7Pg9CVwmAKFNpkwAUO3BRkgjRVGQUSqAfXiKpsQN67LHOwO8Og6EtCpuXp93LlKRZqdfFblSXkgDGEKpzPYRto2qg5bxgFA_caJU7YIG1suUOATyktlTm93dswtFmLtRATPsA7VluiKNlZx6iLZXV0H7pu4DtNKyh3R8igkfoLcKpMvKceG5MbSDS2BjcYCCkOMnlQv8BxFLzZH0wyPQF1gfex7ifT7HIEtxVs9kXfoL1Y2oLM7GYjPPZR_E-PUaDdqt_1yHWN4FIN6QFoRxoVNIMhQwE7PakCjz4Dh4CmKtR4kL8uZ96vgTmFaZJIDl1pNZFlCHwk1QK7wRVsjxTpwh7qS-1QAxjXJuRS-EznnARwq5MOCJw64iW4YulFRXX3haTeC2HrEMeQ8hjE_KY1dH16pnPpaTGn61vyl6J7fSa_9H87H_Nz9GOCyxl-U_lAlWK2UJdAssoRg1Uje5fH1pwv231nl8aZpB9A_-0yrA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCBRwFRnh7YwKh5NhkrRCmPlqWVYAru2SmIPlCaDvDrOSdOoQghsWRyLMtn-z777r4P4ESSE_VVXOPkiqv0UciFqCneC5HghyPRyuSAWm2_2XVvHrwHUxQ2KbLdi5BkdlJ_FbtZupSEfAy3dKyH-4uw5NIFxS7BUv3q8fZyFj3wPSNmG1Q5eUTLFMv83su8Q5qPhmZOprEO3WJ4eW7J6_k07Z3jxw_mxv-OfwPWDOpk9XyZbMKCGpVhvVB0YGaDl2H1Gz3hFjzVWawy4k82yeRyyIYsk85hBHWZHONUvy0y1AhcpxxlVmY6lb7POuMhEyPJblSSvLN7OpmGpuSTiUF_nLykz8Nt6DYuOxdNbhQZONqhlXIrIIAma6FAT9A9EpXn0DiCkGCC6kmbLBu4seMiYbowlh4GVhU14yKGhHxiFM4OlEbjkdoF5sQuauoZ3w-0zDkK1w9kIEK674mq8OwKWIVZIjR05Vo1YxB9ES3rCY1oQqNsQiO_Aqezf95yso4_W58VhorMxp380Xzvf82PYbnZad1Fd9ft231YsQkL5S83B1BKk6k6JCyT9o7M0v0EdgPnYQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSAgOLAVEWX3gBhbZ6xwroCoFCodW6i24tlOQ2qRK0wN_z9hxukioEpecnCiasfOeM573ELoRAKKBjOsEoNiCi-SEsbokg5AD_XAFt7Ud0FsnaPW8dt_vL3Xx69PuZUmy6GlQKk1Jfj8R8f2i8c1WbSWAN8RWdR8SbKItTwklwIzuOY15HSHwja0ttQhgo23aZv5-xio0rdZFNdw0D9Ce4Ym4UST2EG3IpIr2Sw8GbJZkFe0uCQoeoc8GjqWW6sRTbXADUcfa7AYDOcUi5TP1NxBzxZnVISGdF6wOvw9xNx1jlgjclln2g9_hWzI2TZqYjYZp9p1_jY9Rr_nUfWgR46FAuBPaObEpUCpRDxn3Gez8uPRdeA8aArDLgXAgF9SLXY8DCwtj4XNqW1xpJPIQuErMmXuCKkmayFOE3djjSiwmCKgyJufMC6igLIQdGrOY79SQXYYv4kZgXPlcjKKFNLIKeQQhj3TIo6CGbuf3TAp5jbWj78qsRGapTdcMP_vf8Gu0_fHYjF6fOy_naMcB8lL8arlAlTybyUsgH_ngSs-vX-vizqo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+feature+selection+model+for+document+classification+using+Tom+and+Jerry+Optimization+algorithm&rft.jtitle=Multimedia+tools+and+applications&rft.au=Thirumoorthy%2C+K&rft.au=Britto%2C+J+Jerold+John&rft.date=2024-01-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=83&rft.issue=4&rft.spage=10273&rft.epage=10295&rft_id=info:doi/10.1007%2Fs11042-023-15828-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_023_15828_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon