Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via Deep Reinforcement Learning

Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services, which require low delay and high accuracy. Sampling rate adaption, which dynamically configures the sampling rates of industri...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial informatics Vol. 17; no. 7; pp. 4988 - 4998
Main Authors Wu, Wen, Yang, Peng, Zhang, Weiting, Zhou, Conghao, Shen, Xuemin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1551-3203
1941-0050
DOI10.1109/TII.2020.3017573

Cover

Abstract Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services, which require low delay and high accuracy. Sampling rate adaption, which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this article, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading, and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
AbstractList Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services, which require low delay and high accuracy. Sampling rate adaption, which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this article, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading, and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability.
Author Zhou, Conghao
Zhang, Weiting
Yang, Peng
Shen, Xuemin
Wu, Wen
Author_xml – sequence: 1
  givenname: Wen
  orcidid: 0000-0002-0458-1282
  surname: Wu
  fullname: Wu, Wen
  email: 17111018@bjtu.edu.cn
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
– sequence: 2
  givenname: Peng
  orcidid: 0000-0001-8964-0597
  surname: Yang
  fullname: Yang, Peng
  email: yangpeng@hust.edu.cn
  organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
– sequence: 3
  givenname: Weiting
  orcidid: 0000-0002-7473-2234
  surname: Zhang
  fullname: Zhang, Weiting
  email: w77wu@uwaterloo.ca
  organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China
– sequence: 4
  givenname: Conghao
  orcidid: 0000-0002-5727-2432
  surname: Zhou
  fullname: Zhou, Conghao
  email: c89zhou@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
– sequence: 5
  givenname: Xuemin
  orcidid: 0000-0002-4140-287X
  surname: Shen
  fullname: Shen, Xuemin
  email: sshen@uwaterloo.ca
  organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
BookMark eNp9kMFLwzAUh4NMcE7vgpeA586XZkmb49h0FsYEmeeQpq-S0SUzbQX_ezs2PHjw9N6D3_d-8F2TkQ8eCbljMGUM1OO2KKYppDDlwDKR8QsyZmrGEgABo2EXgiU8BX5Frtt2B8Az4GpMzNzaPhr7nax6E43vECu6CE1jyhBN576QLjcbWvgaI3qL1PnhqPq2i840tAhb-uUMXSIe6Bs6X4docY--o2s00Tv_cUMua9O0eHueE_L-_LRdvCTr11WxmK8TmyrWJSwXac6N5VDlvCzrTGJZcSVRGCkN1qxUaVlmUEmFkrNaiAok5ooh5ghC8Ql5OP09xPDZY9vpXeijHyp1KhjM0sGGGFJwStkY2jZirQ_R7U381gz0UaQeROqjSH0WOSDyD2JdN6gJvovGNf-B9yfQIeJvj2IZ5CznPxE9gdA
CODEN ITIICH
CitedBy_id crossref_primary_10_1109_JSYST_2022_3193200
crossref_primary_10_1016_j_eswa_2024_125834
crossref_primary_10_1109_JIOT_2023_3300696
crossref_primary_10_1109_JIOT_2024_3384546
crossref_primary_10_1109_ACCESS_2024_3405487
crossref_primary_10_1109_TVT_2024_3453557
crossref_primary_10_1109_TWC_2023_3239531
crossref_primary_10_1109_TMC_2023_3332668
crossref_primary_10_1109_TII_2024_3438284
crossref_primary_10_1109_JPROC_2024_3437365
crossref_primary_10_1109_TITS_2023_3266795
crossref_primary_10_3390_electronics13122307
crossref_primary_10_1109_JIOT_2023_3336600
crossref_primary_10_1109_TSC_2024_3495500
crossref_primary_10_1109_TII_2022_3192882
crossref_primary_10_1109_TII_2021_3093300
crossref_primary_10_1109_TMC_2024_3486728
crossref_primary_10_1016_j_adhoc_2025_103756
crossref_primary_10_1109_COMST_2024_3353265
crossref_primary_10_1109_TWC_2023_3278460
crossref_primary_10_1016_j_comnet_2024_110593
crossref_primary_10_1109_TMC_2024_3406607
crossref_primary_10_1109_JIOT_2024_3409271
crossref_primary_10_1109_TSUSC_2024_3353176
crossref_primary_10_1109_JIOT_2023_3243266
crossref_primary_10_1109_JIOT_2021_3104089
crossref_primary_10_1002_ett_4485
crossref_primary_10_1109_COMST_2023_3319952
crossref_primary_10_1109_JIOT_2022_3167417
crossref_primary_10_1109_TII_2023_3272696
crossref_primary_10_1109_COMST_2021_3135829
crossref_primary_10_1109_TVT_2024_3457777
crossref_primary_10_1109_TMC_2023_3276697
crossref_primary_10_1109_TVT_2024_3469281
crossref_primary_10_1109_JSAC_2021_3126079
crossref_primary_10_1109_TCOMM_2022_3229033
crossref_primary_10_1109_ACCESS_2021_3129465
crossref_primary_10_1109_TWC_2024_3452689
crossref_primary_10_1109_ACCESS_2022_3225092
crossref_primary_10_1109_JIOT_2022_3150386
crossref_primary_10_1109_JIOT_2023_3316139
crossref_primary_10_1109_TVT_2022_3219058
crossref_primary_10_1109_TMC_2023_3314580
crossref_primary_10_1109_JIOT_2023_3280746
crossref_primary_10_1109_TNSE_2024_3379552
crossref_primary_10_1109_JIOT_2023_3268339
crossref_primary_10_1109_TSC_2024_3441313
crossref_primary_10_1109_JIOT_2024_3397296
crossref_primary_10_1109_TII_2022_3162598
crossref_primary_10_1109_TMC_2024_3440066
crossref_primary_10_1109_JIOT_2024_3382738
crossref_primary_10_1109_TVT_2023_3310190
crossref_primary_10_1109_TVT_2021_3068255
crossref_primary_10_1109_TPDS_2024_3431189
crossref_primary_10_1016_j_dcan_2022_12_013
crossref_primary_10_1109_JSAC_2024_3365889
crossref_primary_10_1109_TMC_2024_3357874
crossref_primary_10_1016_j_comnet_2023_109814
crossref_primary_10_1016_j_cosrev_2024_100656
crossref_primary_10_1093_comjnl_bxac088
crossref_primary_10_1109_TMC_2024_3396612
crossref_primary_10_1109_TWC_2023_3322776
crossref_primary_10_1007_s00500_023_08767_9
crossref_primary_10_1109_TII_2022_3213603
crossref_primary_10_1016_j_comcom_2020_11_011
crossref_primary_10_1109_TCE_2023_3339468
crossref_primary_10_1109_TII_2022_3181986
crossref_primary_10_1109_JIOT_2024_3370553
crossref_primary_10_1142_S0218194023410085
crossref_primary_10_1002_ett_4962
crossref_primary_10_1109_TMC_2023_3335051
crossref_primary_10_1109_TMC_2022_3189186
crossref_primary_10_1364_JOCN_533206
Cites_doi 10.1109/TWC.2019.2940454
10.1145/3297858.3304011
10.1109/TMM.2018.2870521
10.1109/JSAC.2020.2980908
10.1109/TMC.2019.2957804
10.1109/TWC.2016.2558146
10.1109/OJVT.2020.2965100
10.1109/ICPR.2016.7900006
10.1145/3065386
10.1109/ISSCC.2016.7418007
10.1017/CBO9780511804441
10.1109/TII.2017.2683528
10.1109/INFOCOM.2018.8485977
10.1109/JIOT.2017.2670363
10.1109/TII.2018.2843802
10.1109/TWC.2019.2946140
10.1109/MCC.2014.51
10.1109/TII.2019.2949347
10.1109/TWC.2019.2955129
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TII.2020.3017573
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0050
EndPage 4998
ExternalDocumentID 10_1109_TII_2020_3017573
9170818
Genre orig-research
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: 10.13039/501100000038
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c291t-185283ac30d83bbf76ebd396e5a66aef1b92bb70d69e631f55d06e891ee8e0593
IEDL.DBID RIE
ISSN 1551-3203
IngestDate Tue Sep 23 17:40:48 EDT 2025
Wed Oct 01 03:40:17 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Wed Aug 27 02:41:08 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-185283ac30d83bbf76ebd396e5a66aef1b92bb70d69e631f55d06e891ee8e0593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8964-0597
0000-0002-5727-2432
0000-0002-7473-2234
0000-0002-4140-287X
0000-0002-0458-1282
PQID 2510429415
PQPubID 85507
PageCount 11
ParticipantIDs proquest_journals_2510429415
crossref_primary_10_1109_TII_2020_3017573
crossref_citationtrail_10_1109_TII_2020_3017573
ieee_primary_9170818
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on industrial informatics
PublicationTitleAbbrev TII
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref11
ref10
ref2
ref1
ref17
ref19
ref18
lillicrap (ref23) 0
altman (ref15) 1999; 7
neely (ref20) 2010; 3
ref24
ref26
ref25
ref22
ref21
chen (ref9) 0
(ref8) 0
han (ref6) 2015
ref7
ref4
ref3
ref5
liang (ref16) 2018
References_xml – volume: 7
  year: 1999
  ident: ref15
  publication-title: Constrained Markov Decision Processes
– volume: 3
  start-page: 1
  year: 2010
  ident: ref20
  publication-title: Stochastic Network Optimization with Application to Communication and Queueing Systems
– ident: ref25
  doi: 10.1109/TWC.2019.2940454
– ident: ref2
  doi: 10.1145/3297858.3304011
– year: 0
  ident: ref8
  article-title: Case Western Reserve University
– ident: ref13
  doi: 10.1109/TMM.2018.2870521
– ident: ref14
  doi: 10.1109/JSAC.2020.2980908
– ident: ref11
  doi: 10.1109/TMC.2019.2957804
– ident: ref17
  doi: 10.1109/TWC.2016.2558146
– ident: ref12
  doi: 10.1109/OJVT.2020.2965100
– ident: ref7
  doi: 10.1109/ICPR.2016.7900006
– ident: ref19
  doi: 10.1145/3065386
– year: 2015
  ident: ref6
  article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding
– ident: ref3
  doi: 10.1109/ISSCC.2016.7418007
– ident: ref26
  doi: 10.1017/CBO9780511804441
– ident: ref1
  doi: 10.1109/TII.2017.2683528
– year: 2018
  ident: ref16
  article-title: Accelerated primal-dual policy optimization for safe reinforcement learning
– start-page: 1
  year: 0
  ident: ref23
  article-title: Continuous control with deep reinforcement learning
  publication-title: Proc Int Conf Learn Represent
– ident: ref22
  doi: 10.1109/INFOCOM.2018.8485977
– ident: ref24
  doi: 10.1109/JIOT.2017.2670363
– ident: ref4
  doi: 10.1109/TII.2018.2843802
– ident: ref5
  doi: 10.1109/TWC.2019.2946140
– start-page: 742
  year: 0
  ident: ref9
  article-title: Learning efficient object detection models with knowledge distillation
  publication-title: Proc Neural Inf Process Syst
– ident: ref18
  doi: 10.1109/MCC.2014.51
– ident: ref10
  doi: 10.1109/TII.2019.2949347
– ident: ref21
  doi: 10.1109/TWC.2019.2955129
SSID ssj0037039
Score 2.6301334
Snippet Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4988
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Collaboration
Collaborative deep neural network (DNN) inference
Computation offloading
Constraints
deep reinforcement learning (RL)
Delay
Delays
Edge computing
Electronic devices
Industrial applications
Industrial Internet of Things
Inference
inference accuracy
Inference algorithms
Internet of Things
Machine learning
Markov processes
Optimization
Optimization techniques
Resource allocation
Resource management
Sampling
sampling rate adaption
Sensors
Task analysis
Title Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via Deep Reinforcement Learning
URI https://ieeexplore.ieee.org/document/9170818
https://www.proquest.com/docview/2510429415
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037039
  issn: 1551-3203
  databaseCode: RIE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3Ukx78FqtVcvAimHZ3s5tsjqUqVrAHqeBtSbKzIkpb6lbQX2-S7rZ-Id72kEDIm828SWbeAJwEQlkSymOKjHMaMxNRyQpJi1DFqXYkX7kL_Zs-v7qLr--T-yU4m9fCIKJPPsOW-_Rv-fnITN1VWduGFk6BbRmWRcpntVr1qcus5UqvjZqElEUBq58kA9ke9Ho2EIxsfGrNLxHsiwvyPVV-HMTeu1xuwE29rllSyVNrWuqWef8m2fjfhW_CekUzSWdmF1uwhMNtWPskPrgDqmPMdKLMG3Vm4jYYc9JdmMUrkvN-n_TqikDyOCSLRh-kNxqQ10dFzhHH5Ba9AKvxd42k0mx92IW7y4tB94pWDReoiWRYUldInTJlWJCnTOtCcNQ5kxwTxbnCItQy0loEOZfIWVgkSR5wTGWImKLrDbgHK8PREPeBRCYVQqnYCBE6kT9leYQpYmXZIcOgiBrQrjHITKVG7ppiPGc-KglkZlHLHGpZhVoDTuczxjMljj_G7jgQ5uOq_W9As4Y5q37Vl8wSPOeULZE5-H3WIaxGLpHF5-g2YaWcTPHIMpFSH3sT_ADOwNiH
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHBAHdkQRiw9ckHCbxI4THxGLGqA9oCJxi2xngipQi6BFgq_HdpOyCnHLwZYsv4nnzdjzBuAgSJQloYJTZEJQzkxEJSslLUPFU-1IvnIJ_U5XtG_4xW18OwNH01oYRPSPz7DpPv1dfjE0Y5cqa9nQwimwzcJ8zDmPJ9Va9bnLrO1Kr44ah5RFAasvJQPZ6mWZDQUjG6FaA4wT9sUJ-a4qP45i71_Ol6FTr2zyrOS-OR7ppnn7Jtr436WvwFJFNMnxxDJWYQYHa7D4SX5wHdSxMeMnZV6pMxS3xViQkw_DeEFy2u2SrK4JJP0B-Wj1QbJhj7z0FTlFfCTX6CVYjc82kkq19W4Dbs7PeidtWrVcoCaS4Yi6UuqUKcOCImVal4lAXTApMFZCKCxDLSOtk6AQEgULyzguAoGpDBFTdN0BN2FuMBzgFpDIpEmiFDdJEjqZP2WZhCm5svyQYVBGDWjVGOSm0iN3bTEech-XBDK3qOUOtbxCrQGH0xmPEy2OP8auOxCm46r9b8BODXNe_azPuaV4zi1bKrP9-6x9WGj3Olf5Vda93IG50dMYdy0VGek9b4HvQ4vZyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy-Guaranteed+Collaborative+DNN+Inference+in+Industrial+IoT+via+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Wu%2C+Wen&rft.au=Yang%2C+Peng&rft.au=Zhang%2C+Weiting&rft.au=Zhou%2C+Conghao&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=7&rft.spage=4988&rft_id=info:doi/10.1109%2FTII.2020.3017573&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon