Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via Deep Reinforcement Learning
Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services, which require low delay and high accuracy. Sampling rate adaption, which dynamically configures the sampling rates of industri...
Saved in:
| Published in | IEEE transactions on industrial informatics Vol. 17; no. 7; pp. 4988 - 4998 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1551-3203 1941-0050 |
| DOI | 10.1109/TII.2020.3017573 |
Cover
| Abstract | Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services, which require low delay and high accuracy. Sampling rate adaption, which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this article, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading, and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability. |
|---|---|
| AbstractList | Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN) inference services, which require low delay and high accuracy. Sampling rate adaption, which dynamically configures the sampling rates of industrial IoT devices according to network conditions, is the key in minimizing the service delay. In this article, we investigate the collaborative DNN inference problem in industrial IoT networks. To capture the channel variation and task arrival randomness, we formulate the problem as a constrained Markov decision process (CMDP). Specifically, sampling rate adaption, inference task offloading, and edge computing resource allocation are jointly considered to minimize the average service delay while guaranteeing the long-term accuracy requirements of different inference services. Since CMDP cannot be directly solved by general reinforcement learning (RL) algorithms due to the intractable long-term constraints, we first transform the CMDP into an MDP by leveraging the Lyapunov optimization technique. Then, a deep RL-based algorithm is proposed to solve the MDP. To expedite the training process, an optimization subroutine is embedded in the proposed algorithm to directly obtain the optimal edge computing resource allocation. Extensive simulation results are provided to demonstrate that the proposed RL-based algorithm can significantly reduce the average service delay while preserving long-term inference accuracy with a high probability. |
| Author | Zhou, Conghao Zhang, Weiting Yang, Peng Shen, Xuemin Wu, Wen |
| Author_xml | – sequence: 1 givenname: Wen orcidid: 0000-0002-0458-1282 surname: Wu fullname: Wu, Wen email: 17111018@bjtu.edu.cn organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada – sequence: 2 givenname: Peng orcidid: 0000-0001-8964-0597 surname: Yang fullname: Yang, Peng email: yangpeng@hust.edu.cn organization: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China – sequence: 3 givenname: Weiting orcidid: 0000-0002-7473-2234 surname: Zhang fullname: Zhang, Weiting email: w77wu@uwaterloo.ca organization: School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, China – sequence: 4 givenname: Conghao orcidid: 0000-0002-5727-2432 surname: Zhou fullname: Zhou, Conghao email: c89zhou@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada – sequence: 5 givenname: Xuemin orcidid: 0000-0002-4140-287X surname: Shen fullname: Shen, Xuemin email: sshen@uwaterloo.ca organization: Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada |
| BookMark | eNp9kMFLwzAUh4NMcE7vgpeA586XZkmb49h0FsYEmeeQpq-S0SUzbQX_ezs2PHjw9N6D3_d-8F2TkQ8eCbljMGUM1OO2KKYppDDlwDKR8QsyZmrGEgABo2EXgiU8BX5Frtt2B8Az4GpMzNzaPhr7nax6E43vECu6CE1jyhBN576QLjcbWvgaI3qL1PnhqPq2i840tAhb-uUMXSIe6Bs6X4docY--o2s00Tv_cUMua9O0eHueE_L-_LRdvCTr11WxmK8TmyrWJSwXac6N5VDlvCzrTGJZcSVRGCkN1qxUaVlmUEmFkrNaiAok5ooh5ghC8Ql5OP09xPDZY9vpXeijHyp1KhjM0sGGGFJwStkY2jZirQ_R7U381gz0UaQeROqjSH0WOSDyD2JdN6gJvovGNf-B9yfQIeJvj2IZ5CznPxE9gdA |
| CODEN | ITIICH |
| CitedBy_id | crossref_primary_10_1109_JSYST_2022_3193200 crossref_primary_10_1016_j_eswa_2024_125834 crossref_primary_10_1109_JIOT_2023_3300696 crossref_primary_10_1109_JIOT_2024_3384546 crossref_primary_10_1109_ACCESS_2024_3405487 crossref_primary_10_1109_TVT_2024_3453557 crossref_primary_10_1109_TWC_2023_3239531 crossref_primary_10_1109_TMC_2023_3332668 crossref_primary_10_1109_TII_2024_3438284 crossref_primary_10_1109_JPROC_2024_3437365 crossref_primary_10_1109_TITS_2023_3266795 crossref_primary_10_3390_electronics13122307 crossref_primary_10_1109_JIOT_2023_3336600 crossref_primary_10_1109_TSC_2024_3495500 crossref_primary_10_1109_TII_2022_3192882 crossref_primary_10_1109_TII_2021_3093300 crossref_primary_10_1109_TMC_2024_3486728 crossref_primary_10_1016_j_adhoc_2025_103756 crossref_primary_10_1109_COMST_2024_3353265 crossref_primary_10_1109_TWC_2023_3278460 crossref_primary_10_1016_j_comnet_2024_110593 crossref_primary_10_1109_TMC_2024_3406607 crossref_primary_10_1109_JIOT_2024_3409271 crossref_primary_10_1109_TSUSC_2024_3353176 crossref_primary_10_1109_JIOT_2023_3243266 crossref_primary_10_1109_JIOT_2021_3104089 crossref_primary_10_1002_ett_4485 crossref_primary_10_1109_COMST_2023_3319952 crossref_primary_10_1109_JIOT_2022_3167417 crossref_primary_10_1109_TII_2023_3272696 crossref_primary_10_1109_COMST_2021_3135829 crossref_primary_10_1109_TVT_2024_3457777 crossref_primary_10_1109_TMC_2023_3276697 crossref_primary_10_1109_TVT_2024_3469281 crossref_primary_10_1109_JSAC_2021_3126079 crossref_primary_10_1109_TCOMM_2022_3229033 crossref_primary_10_1109_ACCESS_2021_3129465 crossref_primary_10_1109_TWC_2024_3452689 crossref_primary_10_1109_ACCESS_2022_3225092 crossref_primary_10_1109_JIOT_2022_3150386 crossref_primary_10_1109_JIOT_2023_3316139 crossref_primary_10_1109_TVT_2022_3219058 crossref_primary_10_1109_TMC_2023_3314580 crossref_primary_10_1109_JIOT_2023_3280746 crossref_primary_10_1109_TNSE_2024_3379552 crossref_primary_10_1109_JIOT_2023_3268339 crossref_primary_10_1109_TSC_2024_3441313 crossref_primary_10_1109_JIOT_2024_3397296 crossref_primary_10_1109_TII_2022_3162598 crossref_primary_10_1109_TMC_2024_3440066 crossref_primary_10_1109_JIOT_2024_3382738 crossref_primary_10_1109_TVT_2023_3310190 crossref_primary_10_1109_TVT_2021_3068255 crossref_primary_10_1109_TPDS_2024_3431189 crossref_primary_10_1016_j_dcan_2022_12_013 crossref_primary_10_1109_JSAC_2024_3365889 crossref_primary_10_1109_TMC_2024_3357874 crossref_primary_10_1016_j_comnet_2023_109814 crossref_primary_10_1016_j_cosrev_2024_100656 crossref_primary_10_1093_comjnl_bxac088 crossref_primary_10_1109_TMC_2024_3396612 crossref_primary_10_1109_TWC_2023_3322776 crossref_primary_10_1007_s00500_023_08767_9 crossref_primary_10_1109_TII_2022_3213603 crossref_primary_10_1016_j_comcom_2020_11_011 crossref_primary_10_1109_TCE_2023_3339468 crossref_primary_10_1109_TII_2022_3181986 crossref_primary_10_1109_JIOT_2024_3370553 crossref_primary_10_1142_S0218194023410085 crossref_primary_10_1002_ett_4962 crossref_primary_10_1109_TMC_2023_3335051 crossref_primary_10_1109_TMC_2022_3189186 crossref_primary_10_1364_JOCN_533206 |
| Cites_doi | 10.1109/TWC.2019.2940454 10.1145/3297858.3304011 10.1109/TMM.2018.2870521 10.1109/JSAC.2020.2980908 10.1109/TMC.2019.2957804 10.1109/TWC.2016.2558146 10.1109/OJVT.2020.2965100 10.1109/ICPR.2016.7900006 10.1145/3065386 10.1109/ISSCC.2016.7418007 10.1017/CBO9780511804441 10.1109/TII.2017.2683528 10.1109/INFOCOM.2018.8485977 10.1109/JIOT.2017.2670363 10.1109/TII.2018.2843802 10.1109/TWC.2019.2946140 10.1109/MCC.2014.51 10.1109/TII.2019.2949347 10.1109/TWC.2019.2955129 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TII.2020.3017573 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0050 |
| EndPage | 4998 |
| ExternalDocumentID | 10_1109_TII_2020_3017573 9170818 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: 10.13039/501100000038 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c291t-185283ac30d83bbf76ebd396e5a66aef1b92bb70d69e631f55d06e891ee8e0593 |
| IEDL.DBID | RIE |
| ISSN | 1551-3203 |
| IngestDate | Tue Sep 23 17:40:48 EDT 2025 Wed Oct 01 03:40:17 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Wed Aug 27 02:41:08 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-185283ac30d83bbf76ebd396e5a66aef1b92bb70d69e631f55d06e891ee8e0593 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8964-0597 0000-0002-5727-2432 0000-0002-7473-2234 0000-0002-4140-287X 0000-0002-0458-1282 |
| PQID | 2510429415 |
| PQPubID | 85507 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2510429415 crossref_primary_10_1109_TII_2020_3017573 crossref_citationtrail_10_1109_TII_2020_3017573 ieee_primary_9170818 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on industrial informatics |
| PublicationTitleAbbrev | TII |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref11 ref10 ref2 ref1 ref17 ref19 ref18 lillicrap (ref23) 0 altman (ref15) 1999; 7 neely (ref20) 2010; 3 ref24 ref26 ref25 ref22 ref21 chen (ref9) 0 (ref8) 0 han (ref6) 2015 ref7 ref4 ref3 ref5 liang (ref16) 2018 |
| References_xml | – volume: 7 year: 1999 ident: ref15 publication-title: Constrained Markov Decision Processes – volume: 3 start-page: 1 year: 2010 ident: ref20 publication-title: Stochastic Network Optimization with Application to Communication and Queueing Systems – ident: ref25 doi: 10.1109/TWC.2019.2940454 – ident: ref2 doi: 10.1145/3297858.3304011 – year: 0 ident: ref8 article-title: Case Western Reserve University – ident: ref13 doi: 10.1109/TMM.2018.2870521 – ident: ref14 doi: 10.1109/JSAC.2020.2980908 – ident: ref11 doi: 10.1109/TMC.2019.2957804 – ident: ref17 doi: 10.1109/TWC.2016.2558146 – ident: ref12 doi: 10.1109/OJVT.2020.2965100 – ident: ref7 doi: 10.1109/ICPR.2016.7900006 – ident: ref19 doi: 10.1145/3065386 – year: 2015 ident: ref6 article-title: Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding – ident: ref3 doi: 10.1109/ISSCC.2016.7418007 – ident: ref26 doi: 10.1017/CBO9780511804441 – ident: ref1 doi: 10.1109/TII.2017.2683528 – year: 2018 ident: ref16 article-title: Accelerated primal-dual policy optimization for safe reinforcement learning – start-page: 1 year: 0 ident: ref23 article-title: Continuous control with deep reinforcement learning publication-title: Proc Int Conf Learn Represent – ident: ref22 doi: 10.1109/INFOCOM.2018.8485977 – ident: ref24 doi: 10.1109/JIOT.2017.2670363 – ident: ref4 doi: 10.1109/TII.2018.2843802 – ident: ref5 doi: 10.1109/TWC.2019.2946140 – start-page: 742 year: 0 ident: ref9 article-title: Learning efficient object detection models with knowledge distillation publication-title: Proc Neural Inf Process Syst – ident: ref18 doi: 10.1109/MCC.2014.51 – ident: ref10 doi: 10.1109/TII.2019.2949347 – ident: ref21 doi: 10.1109/TWC.2019.2955129 |
| SSID | ssj0037039 |
| Score | 2.6301334 |
| Snippet | Collaboration among industrial Internet of Things (IoT) devices and edge networks is essential to support computation-intensive deep neural network (DNN)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4988 |
| SubjectTerms | Accuracy Algorithms Artificial neural networks Collaboration Collaborative deep neural network (DNN) inference Computation offloading Constraints deep reinforcement learning (RL) Delay Delays Edge computing Electronic devices Industrial applications Industrial Internet of Things Inference inference accuracy Inference algorithms Internet of Things Machine learning Markov processes Optimization Optimization techniques Resource allocation Resource management Sampling sampling rate adaption Sensors Task analysis |
| Title | Accuracy-Guaranteed Collaborative DNN Inference in Industrial IoT via Deep Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/9170818 https://www.proquest.com/docview/2510429415 |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037039 issn: 1551-3203 databaseCode: RIE dateStart: 20050101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3Ukx78FqtVcvAimHZ3s5tsjqUqVrAHqeBtSbKzIkpb6lbQX2-S7rZ-Id72kEDIm828SWbeAJwEQlkSymOKjHMaMxNRyQpJi1DFqXYkX7kL_Zs-v7qLr--T-yU4m9fCIKJPPsOW-_Rv-fnITN1VWduGFk6BbRmWRcpntVr1qcus5UqvjZqElEUBq58kA9ke9Ho2EIxsfGrNLxHsiwvyPVV-HMTeu1xuwE29rllSyVNrWuqWef8m2fjfhW_CekUzSWdmF1uwhMNtWPskPrgDqmPMdKLMG3Vm4jYYc9JdmMUrkvN-n_TqikDyOCSLRh-kNxqQ10dFzhHH5Ba9AKvxd42k0mx92IW7y4tB94pWDReoiWRYUldInTJlWJCnTOtCcNQ5kxwTxbnCItQy0loEOZfIWVgkSR5wTGWImKLrDbgHK8PREPeBRCYVQqnYCBE6kT9leYQpYmXZIcOgiBrQrjHITKVG7ppiPGc-KglkZlHLHGpZhVoDTuczxjMljj_G7jgQ5uOq_W9As4Y5q37Vl8wSPOeULZE5-H3WIaxGLpHF5-g2YaWcTPHIMpFSH3sT_ADOwNiH |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHBAHdkQRiw9ckHCbxI4THxGLGqA9oCJxi2xngipQi6BFgq_HdpOyCnHLwZYsv4nnzdjzBuAgSJQloYJTZEJQzkxEJSslLUPFU-1IvnIJ_U5XtG_4xW18OwNH01oYRPSPz7DpPv1dfjE0Y5cqa9nQwimwzcJ8zDmPJ9Va9bnLrO1Kr44ah5RFAasvJQPZ6mWZDQUjG6FaA4wT9sUJ-a4qP45i71_Ol6FTr2zyrOS-OR7ppnn7Jtr436WvwFJFNMnxxDJWYQYHa7D4SX5wHdSxMeMnZV6pMxS3xViQkw_DeEFy2u2SrK4JJP0B-Wj1QbJhj7z0FTlFfCTX6CVYjc82kkq19W4Dbs7PeidtWrVcoCaS4Yi6UuqUKcOCImVal4lAXTApMFZCKCxDLSOtk6AQEgULyzguAoGpDBFTdN0BN2FuMBzgFpDIpEmiFDdJEjqZP2WZhCm5svyQYVBGDWjVGOSm0iN3bTEech-XBDK3qOUOtbxCrQGH0xmPEy2OP8auOxCm46r9b8BODXNe_azPuaV4zi1bKrP9-6x9WGj3Olf5Vda93IG50dMYdy0VGek9b4HvQ4vZyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy-Guaranteed+Collaborative+DNN+Inference+in+Industrial+IoT+via+Deep+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+industrial+informatics&rft.au=Wu%2C+Wen&rft.au=Yang%2C+Peng&rft.au=Zhang%2C+Weiting&rft.au=Zhou%2C+Conghao&rft.date=2021-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1551-3203&rft.eissn=1941-0050&rft.volume=17&rft.issue=7&rft.spage=4988&rft_id=info:doi/10.1109%2FTII.2020.3017573&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-3203&client=summon |