Stochastic analysis and optimal control of a donation game system with non-uniform interaction rates and Gram–Schmidt orthogonalization procedure

This paper investigates an evolutionary donation game with non-uniform interaction rates in well-mixed populations. Further, we consider that the costs and benefits of the game are subject to stochastic disturbances and explore the stochastic replicator dynamics. Firstly, the system has two interior...

Full description

Saved in:
Bibliographic Details
Published inComputational & applied mathematics Vol. 42; no. 5
Main Authors Yuan, Hairui, Meng, Xinzhu, Alzahrani, Abdullah Khames, Zhang, Tonghua
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2023
Subjects
Online AccessGet full text
ISSN2238-3603
1807-0302
DOI10.1007/s40314-023-02369-9

Cover

Abstract This paper investigates an evolutionary donation game with non-uniform interaction rates in well-mixed populations. Further, we consider that the costs and benefits of the game are subject to stochastic disturbances and explore the stochastic replicator dynamics. Firstly, the system has two interior equilibrium points, one of which is stable. In other words, cooperators and defectors coexist when the interaction rates satisfy certain conditions. And the number of cooperators may exceed the number of defectors, which changes the final steady state of the traditional donation game system. Secondly, according to It o ^ ′ s formula and Gram-Schmidt orthogonalization procedure, we obtain the stochastic replicator equation of the game. Since the different interaction rates between players lead to the emergence of the interior equilibria of the system, we give the conditions for the stochastic stability of equilibria. The relationship between interaction rate and disturbance value is shown, and we explore the optimal path from the area of stochastic stability to the area of stochastic instability. In short, the donation game system has two stable states, and we can control the cooperators in the population by the non-uniform interaction rates. Finally, we conduct numerical simulations and find that it is consistent with the theoretical results described previously.
AbstractList This paper investigates an evolutionary donation game with non-uniform interaction rates in well-mixed populations. Further, we consider that the costs and benefits of the game are subject to stochastic disturbances and explore the stochastic replicator dynamics. Firstly, the system has two interior equilibrium points, one of which is stable. In other words, cooperators and defectors coexist when the interaction rates satisfy certain conditions. And the number of cooperators may exceed the number of defectors, which changes the final steady state of the traditional donation game system. Secondly, according to It o ^ ′ s formula and Gram-Schmidt orthogonalization procedure, we obtain the stochastic replicator equation of the game. Since the different interaction rates between players lead to the emergence of the interior equilibria of the system, we give the conditions for the stochastic stability of equilibria. The relationship between interaction rate and disturbance value is shown, and we explore the optimal path from the area of stochastic stability to the area of stochastic instability. In short, the donation game system has two stable states, and we can control the cooperators in the population by the non-uniform interaction rates. Finally, we conduct numerical simulations and find that it is consistent with the theoretical results described previously.
ArticleNumber 225
Author Alzahrani, Abdullah Khames
Zhang, Tonghua
Meng, Xinzhu
Yuan, Hairui
Author_xml – sequence: 1
  givenname: Hairui
  surname: Yuan
  fullname: Yuan, Hairui
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology
– sequence: 2
  givenname: Xinzhu
  surname: Meng
  fullname: Meng, Xinzhu
  email: mxz721106@sdust.edu.cn
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, Department of Mathematics, Faculty of Science, King Abdulaziz University
– sequence: 3
  givenname: Abdullah Khames
  surname: Alzahrani
  fullname: Alzahrani, Abdullah Khames
  organization: Department of Mathematics, Faculty of Science, King Abdulaziz University
– sequence: 4
  givenname: Tonghua
  surname: Zhang
  fullname: Zhang, Tonghua
  organization: Department of Mathematics, Swinburne University of Technology
BookMark eNp9kEtOwzAQhi0EEuVxAVa-QGBsp42zRIiXVIkFsI4mttO6SuzKdoXKijtwQ06C27Bi0YU1s5jv98x3Ro6dd4aQKwbXDKC6iSUIVhbAxe7N6qI-IhMmoSpAAD8mE86FLMQMxCk5i3EFICpWlhPy_Zq8WmJMVlF02G-jjbnR1K-THbCnyrsUfE99R5Fq7zBZ7-gCB0PjNiYz0A-bljTvU2yc7XwYqHXJBFT7wYDJjIGPAYefr-9XtRysTtSHtPSLnNfbzzFzHbwyehPMBTnpsI_m8q-ek_eH-7e7p2L-8vh8dzsvFK9ZKthUtjUa0IBtp4ystGy5Bl4hQDud5q5Vlez0DEBLiZ3JjuRsypmusRRYi3PCx1wVfIzBdM065JvDtmHQ7LQ2o9YmK232WpsdJP9Byqb9ASmg7Q-jYkRj_sctTGhWfhOygXiI-gW16JR0
CitedBy_id crossref_primary_10_1007_s12346_025_01237_7
crossref_primary_10_1016_j_chaos_2024_114698
Cites_doi 10.1142/S1793524521500558
10.1016/j.jtbi.2017.09.006
10.1016/0040-5809(90)90011-J
10.1007/s13235-011-0028-1
10.1016/j.tpb.2005.06.009
10.1063/1.5051422
10.1038/nature03204
10.1038/246015a0
10.1016/j.tpb.2005.09.002
10.1016/0040-5809(84)90019-4
10.1016/j.jtbi.2004.06.003
10.1016/j.jclepro.2019.05.118
10.1016/j.jtbi.2022.111086
10.1016/j.chaos.2022.112058
10.1103/PhysRevE.105.044403
10.1088/0253-6102/60/1/06
10.1038/nature02360
10.1016/j.chaos.2022.112426
10.1090/S0273-0979-03-00988-1
10.1016/j.matcom.2021.03.027
10.1016/0025-5564(78)90077-9
10.1016/j.physd.2011.04.008
10.1016/0022-5193(79)90058-4
10.1007/s11538-022-01106-3
10.1006/jeth.1999.2596
10.1126/science.7466396
10.1080/17513750801915269
10.1007/s00285-022-01776-6
10.1007/s00285-012-0516-y
10.1016/0022-0531(92)90044-I
10.1201/b14069
10.1016/j.nonrwa.2020.103107
10.1007/s13235-022-00464-w
10.1016/B978-0-12-550350-1.50047-3
10.1007/s13235-021-00414-y
10.1016/j.nonrwa.2009.01.009
10.1533/9780857099402
10.1017/CBO9780511806292
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s40314-023-02369-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
ExternalDocumentID 10_1007_s40314_023_02369_9
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: No. 12271308
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Shandong Provincial Natural Science Foundation of China
  grantid: No. ZR2019MA003
– fundername: Taishan Scholar Project of Shandong Province of China
– fundername: SDUST Innovation Fund
  grantid: YC20210231
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
ID FETCH-LOGICAL-c291t-158b9ae0d0abfce87d8b2d027a00b55d02bc78fd600d88afe40386521d9a43a93
IEDL.DBID AGYKE
ISSN 2238-3603
IngestDate Wed Oct 01 01:21:52 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Fri Feb 21 02:41:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 60H10
91A22
Stochastic replicator equation
34A34
Nonlinear fitness function
Non-uniform interaction rates
Saddle-node bifurcation
Evolutionary game theory
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-158b9ae0d0abfce87d8b2d027a00b55d02bc78fd600d88afe40386521d9a43a93
ParticipantIDs crossref_primary_10_1007_s40314_023_02369_9
crossref_citationtrail_10_1007_s40314_023_02369_9
springer_journals_10_1007_s40314_023_02369_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230700
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 7
  year: 2023
  text: 20230700
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2023
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Qi, Meng (CR27) 2021; 187
CR35
CR12
Smith, Price (CR31) 1973; 246
CR32
Liu, Wang, Chen, Perc (CR21) 2018; 28
Quan, Wang (CR28) 2013; 60
Sansone, Eshel (CR30) 2006; 70
Corradi, Sarin (CR6) 2000; 94
Yuan, Meng (CR36) 2022; 158
Fudenberg, Harris (CR11) 1992; 57
Kang, Zhao, Zhang, Qiang (CR18) 2019; 230
Hofbauer, Schuster, Sigmund (CR16) 1979; 81
Axelrod, Hamilton (CR1) 1981; 211
CR4
Taylor, Nowak (CR34) 2006; 69
CR3
Harper (CR13) 2011; 240
Lieberman, Hauert, Nowak (CR20) 2005; 433
Miekisz, Wesołowski (CR25) 2011; 1
Zhao, Yuan, Zhang (CR39) 2022; 162
CR9
Reeves, Ohtsuki, Fukui (CR29) 2017; 435
Lessard (CR19) 1984; 25
CR23
Ifti, Killingback, Doebeli (CR17) 2004; 231
CR22
Nakamaru, Iwasa (CR26) 2005; 7
Cooney, Mori (CR5) 2022; 85
Zhang, Duan, Zhang, Yuan (CR38) 2023; 85
Benaïm, Hofbauer, Sandholm (CR2) 2008; 2
Yuan, Meng, Li (CR37) 2021; 14
Ding, Wang, Yang (CR7) 2013; 66
Mei, Tao, Li, Zheng (CR24) 2022; 540
Foster, Young (CR10) 1990; 38
Taylor, Jonker (CR33) 1978; 40
Feng, Li, Zheng, Lessard, Tao (CR8) 2022; 105
Hofbauer, Sigmund (CR15) 2003; 40
Hauert, Doebeli (CR14) 2004; 428
2369_CR32
2369_CR12
J Smith (2369_CR31) 1973; 246
PD Taylor (2369_CR33) 1978; 40
2369_CR35
H Qi (2369_CR27) 2021; 187
M Harper (2369_CR13) 2011; 240
R Axelrod (2369_CR1) 1981; 211
T Feng (2369_CR8) 2022; 105
L Liu (2369_CR21) 2018; 28
H Yuan (2369_CR37) 2021; 14
M Ifti (2369_CR17) 2004; 231
H Yuan (2369_CR36) 2022; 158
C Taylor (2369_CR34) 2006; 69
J Quan (2369_CR28) 2013; 60
J Hofbauer (2369_CR15) 2003; 40
S Zhao (2369_CR39) 2022; 162
J Miekisz (2369_CR25) 2011; 1
S Zhang (2369_CR38) 2023; 85
2369_CR9
2369_CR22
DB Cooney (2369_CR5) 2022; 85
2369_CR23
2369_CR3
C Hauert (2369_CR14) 2004; 428
K Kang (2369_CR18) 2019; 230
M Benaïm (2369_CR2) 2008; 2
2369_CR4
E Sansone (2369_CR30) 2006; 70
T Reeves (2369_CR29) 2017; 435
J Hofbauer (2369_CR16) 1979; 81
M Nakamaru (2369_CR26) 2005; 7
J Mei (2369_CR24) 2022; 540
V Corradi (2369_CR6) 2000; 94
Z Ding (2369_CR7) 2013; 66
D Foster (2369_CR10) 1990; 38
D Fudenberg (2369_CR11) 1992; 57
E Lieberman (2369_CR20) 2005; 433
S Lessard (2369_CR19) 1984; 25
References_xml – ident: CR22
– volume: 14
  start-page: 2150055
  issue: 07
  year: 2021
  ident: CR37
  article-title: Natural selection between two games with environmental feedback
  publication-title: Int J Biomath
  doi: 10.1142/S1793524521500558
– volume: 435
  start-page: 238
  year: 2017
  end-page: 247
  ident: CR29
  article-title: Asymmetric public goods game cooperation through pest control
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2017.09.006
– volume: 38
  start-page: 219
  issue: 2
  year: 1990
  end-page: 232
  ident: CR10
  article-title: Stochastic evolutionary game dynamics*
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(90)90011-J
– volume: 1
  start-page: 440
  issue: 3
  year: 2011
  end-page: 448
  ident: CR25
  article-title: Stochasticity and time delays in evolutionary games
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-011-0028-1
– ident: CR4
– volume: 69
  start-page: 243
  issue: 3
  year: 2006
  end-page: 252
  ident: CR34
  article-title: Evolutionary game dynamics with non-uniform interaction rates
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2005.06.009
– volume: 28
  issue: 10
  year: 2018
  ident: CR21
  article-title: Evolutionary dynamics in the public goods games with switching between punishment and exclusion
  publication-title: Chaos
  doi: 10.1063/1.5051422
– ident: CR12
– volume: 433
  start-page: 312
  issue: 7023
  year: 2005
  end-page: 316
  ident: CR20
  article-title: Evolutionary dynamics on graphs
  publication-title: Nature
  doi: 10.1038/nature03204
– volume: 246
  start-page: 15
  issue: 5427
  year: 1973
  end-page: 18
  ident: CR31
  article-title: The logic of animal conflict
  publication-title: Nature
  doi: 10.1038/246015a0
– volume: 70
  start-page: 76
  issue: 1
  year: 2006
  end-page: 81
  ident: CR30
  article-title: Evolutionarily stable strategies and short-term selection in Mendelian populations re-visited
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2005.09.002
– ident: CR35
– volume: 25
  start-page: 210
  issue: 2
  year: 1984
  end-page: 234
  ident: CR19
  article-title: Evolutionary dynamics in frequency-dependent two-phenotype models
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(84)90019-4
– volume: 231
  start-page: 97
  issue: 1
  year: 2004
  end-page: 106
  ident: CR17
  article-title: Effects of neighbourhood size and connectivity on the spatial continuous prisoner’s dilemma
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2004.06.003
– volume: 230
  start-page: 981
  year: 2019
  end-page: 994
  ident: CR18
  article-title: Evolutionary game theoretic analysis on low-carbon strategy for supply chain enterprises
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.118
– volume: 540
  year: 2022
  ident: CR24
  article-title: Evolutionary game dynamics with non-uniform interaction rates in finite population
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2022.111086
– volume: 158
  year: 2022
  ident: CR36
  article-title: Replicator dynamics of division of labor games with delayed payoffs in infinite populations
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2022.112058
– volume: 105
  issue: 4
  year: 2022
  ident: CR8
  article-title: Stochastic replicator dynamics and evolutionary stability
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.105.044403
– ident: CR23
– volume: 60
  start-page: 37
  issue: 1
  year: 2013
  ident: CR28
  article-title: Some analytical properties of the model for stochastic evolutionary games in finite populations with non-uniform interaction rate
  publication-title: Commun Theor Phys
  doi: 10.1088/0253-6102/60/1/06
– volume: 428
  start-page: 643
  issue: 6983
  year: 2004
  end-page: 646
  ident: CR14
  article-title: Spatial structure often inhibits the evolution of cooperation in the snowdrift game
  publication-title: Nature
  doi: 10.1038/nature02360
– volume: 162
  year: 2022
  ident: CR39
  article-title: The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration
  publication-title: Chaos Soliton Fract
  doi: 10.1016/j.chaos.2022.112426
– volume: 40
  start-page: 479
  issue: 4
  year: 2003
  end-page: 519
  ident: CR15
  article-title: Evolutionary game dynamics
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0273-0979-03-00988-1
– volume: 187
  start-page: 700
  year: 2021
  end-page: 719
  ident: CR27
  article-title: Mathematical modeling, analysis and numerical simulation of HIV: The influence of stochastic environmental fluctuations on dynamics
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.03.027
– volume: 40
  start-page: 145
  issue: 1–2
  year: 1978
  end-page: 156
  ident: CR33
  article-title: Evolutionary stable strategies and game dynamics
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(78)90077-9
– volume: 240
  start-page: 1411
  issue: 18
  year: 2011
  end-page: 1415
  ident: CR13
  article-title: Escort evolutionary game theory
  publication-title: Phys D
  doi: 10.1016/j.physd.2011.04.008
– volume: 81
  start-page: 609
  issue: 3
  year: 1979
  end-page: 612
  ident: CR16
  article-title: A note on evolutionary stable strategies and game dynamics
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(79)90058-4
– volume: 85
  start-page: 2
  issue: 1
  year: 2023
  ident: CR38
  article-title: Controlling biological invasions: a stochastic host-generalist parasitoid model
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-022-01106-3
– volume: 7
  start-page: 853
  issue: 6
  year: 2005
  end-page: 870
  ident: CR26
  article-title: The evolution of altruism by costly punishment in lattice-structured populations: score-dependent viability versus score-dependent fertility
  publication-title: Evol Ecol Res
– ident: CR3
– volume: 94
  start-page: 163
  issue: 2
  year: 2000
  end-page: 191
  ident: CR6
  article-title: Continuous approximations of stochastic evolutionary game dynamics
  publication-title: J. Econ. Theory
  doi: 10.1006/jeth.1999.2596
– volume: 211
  start-page: 1390
  issue: 4489
  year: 1981
  end-page: 1396
  ident: CR1
  article-title: The evolution of cooperation
  publication-title: Science
  doi: 10.1126/science.7466396
– volume: 2
  start-page: 180
  issue: 2
  year: 2008
  end-page: 195
  ident: CR2
  article-title: Robust permanence and impermanence for stochastic replicator dynamics
  publication-title: J Biol Dyn
  doi: 10.1080/17513750801915269
– ident: CR9
– volume: 85
  start-page: 1
  issue: 2
  year: 2022
  end-page: 67
  ident: CR5
  article-title: Long-time behavior of a PDE replicator equation for multilevel selection in group-structured populations
  publication-title: J Math Biol
  doi: 10.1007/s00285-022-01776-6
– volume: 66
  start-page: 383
  issue: 1
  year: 2013
  end-page: 397
  ident: CR7
  article-title: Evolutionarily stable strategy and invader strategy in matrix games
  publication-title: J Math Biol
  doi: 10.1007/s00285-012-0516-y
– ident: CR32
– volume: 57
  start-page: 420
  issue: 2
  year: 1992
  end-page: 441
  ident: CR11
  article-title: Evolutionary dynamics with aggregate shocks
  publication-title: J Econ Theory
  doi: 10.1016/0022-0531(92)90044-I
– volume: 40
  start-page: 479
  issue: 4
  year: 2003
  ident: 2369_CR15
  publication-title: Bull Am Math Soc
  doi: 10.1090/S0273-0979-03-00988-1
– volume: 60
  start-page: 37
  issue: 1
  year: 2013
  ident: 2369_CR28
  publication-title: Commun Theor Phys
  doi: 10.1088/0253-6102/60/1/06
– volume: 57
  start-page: 420
  issue: 2
  year: 1992
  ident: 2369_CR11
  publication-title: J Econ Theory
  doi: 10.1016/0022-0531(92)90044-I
– ident: 2369_CR3
  doi: 10.1201/b14069
– volume: 40
  start-page: 145
  issue: 1–2
  year: 1978
  ident: 2369_CR33
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(78)90077-9
– volume: 105
  issue: 4
  year: 2022
  ident: 2369_CR8
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.105.044403
– volume: 25
  start-page: 210
  issue: 2
  year: 1984
  ident: 2369_CR19
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(84)90019-4
– volume: 38
  start-page: 219
  issue: 2
  year: 1990
  ident: 2369_CR10
  publication-title: Theor Popul Biol
  doi: 10.1016/0040-5809(90)90011-J
– volume: 230
  start-page: 981
  year: 2019
  ident: 2369_CR18
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.118
– volume: 231
  start-page: 97
  issue: 1
  year: 2004
  ident: 2369_CR17
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2004.06.003
– volume: 435
  start-page: 238
  year: 2017
  ident: 2369_CR29
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2017.09.006
– volume: 211
  start-page: 1390
  issue: 4489
  year: 1981
  ident: 2369_CR1
  publication-title: Science
  doi: 10.1126/science.7466396
– volume: 433
  start-page: 312
  issue: 7023
  year: 2005
  ident: 2369_CR20
  publication-title: Nature
  doi: 10.1038/nature03204
– volume: 94
  start-page: 163
  issue: 2
  year: 2000
  ident: 2369_CR6
  publication-title: J. Econ. Theory
  doi: 10.1006/jeth.1999.2596
– volume: 85
  start-page: 1
  issue: 2
  year: 2022
  ident: 2369_CR5
  publication-title: J Math Biol
  doi: 10.1007/s00285-022-01776-6
– volume: 69
  start-page: 243
  issue: 3
  year: 2006
  ident: 2369_CR34
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2005.06.009
– volume: 162
  year: 2022
  ident: 2369_CR39
  publication-title: Chaos Soliton Fract
  doi: 10.1016/j.chaos.2022.112426
– ident: 2369_CR12
  doi: 10.1016/j.nonrwa.2020.103107
– volume: 14
  start-page: 2150055
  issue: 07
  year: 2021
  ident: 2369_CR37
  publication-title: Int J Biomath
  doi: 10.1142/S1793524521500558
– volume: 240
  start-page: 1411
  issue: 18
  year: 2011
  ident: 2369_CR13
  publication-title: Phys D
  doi: 10.1016/j.physd.2011.04.008
– ident: 2369_CR4
  doi: 10.1007/s13235-022-00464-w
– volume: 81
  start-page: 609
  issue: 3
  year: 1979
  ident: 2369_CR16
  publication-title: J Theor Biol
  doi: 10.1016/0022-5193(79)90058-4
– volume: 158
  year: 2022
  ident: 2369_CR36
  publication-title: Chaos Soliton. Fract.
  doi: 10.1016/j.chaos.2022.112058
– volume: 2
  start-page: 180
  issue: 2
  year: 2008
  ident: 2369_CR2
  publication-title: J Biol Dyn
  doi: 10.1080/17513750801915269
– volume: 540
  year: 2022
  ident: 2369_CR24
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2022.111086
– ident: 2369_CR32
  doi: 10.1016/B978-0-12-550350-1.50047-3
– volume: 28
  issue: 10
  year: 2018
  ident: 2369_CR21
  publication-title: Chaos
  doi: 10.1063/1.5051422
– volume: 246
  start-page: 15
  issue: 5427
  year: 1973
  ident: 2369_CR31
  publication-title: Nature
  doi: 10.1038/246015a0
– volume: 187
  start-page: 700
  year: 2021
  ident: 2369_CR27
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2021.03.027
– ident: 2369_CR9
  doi: 10.1007/s13235-021-00414-y
– volume: 70
  start-page: 76
  issue: 1
  year: 2006
  ident: 2369_CR30
  publication-title: Theor Popul Biol
  doi: 10.1016/j.tpb.2005.09.002
– volume: 1
  start-page: 440
  issue: 3
  year: 2011
  ident: 2369_CR25
  publication-title: Dyn Games Appl
  doi: 10.1007/s13235-011-0028-1
– ident: 2369_CR35
  doi: 10.1016/j.nonrwa.2009.01.009
– volume: 7
  start-page: 853
  issue: 6
  year: 2005
  ident: 2369_CR26
  publication-title: Evol Ecol Res
– volume: 66
  start-page: 383
  issue: 1
  year: 2013
  ident: 2369_CR7
  publication-title: J Math Biol
  doi: 10.1007/s00285-012-0516-y
– ident: 2369_CR22
  doi: 10.1533/9780857099402
– volume: 428
  start-page: 643
  issue: 6983
  year: 2004
  ident: 2369_CR14
  publication-title: Nature
  doi: 10.1038/nature02360
– volume: 85
  start-page: 2
  issue: 1
  year: 2023
  ident: 2369_CR38
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-022-01106-3
– ident: 2369_CR23
  doi: 10.1017/CBO9780511806292
SSID ssj0037144
Score 2.2410178
Snippet This paper investigates an evolutionary donation game with non-uniform interaction rates in well-mixed populations. Further, we consider that the costs and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Title Stochastic analysis and optimal control of a donation game system with non-uniform interaction rates and Gram–Schmidt orthogonalization procedure
URI https://link.springer.com/article/10.1007/s40314-023-02369-9
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1807-0302
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: AMVHM
  dateStart: 20050901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: AFBBN
  dateStart: 20130401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1807-0302
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037144
  issn: 2238-3603
  databaseCode: AGYKE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6x5cIetjwFy0M-cFuM0sRx7WNBFASCC1sJTpFfAQRpUJte9rT_gX_IL2GcOJVACAlFkXJwRpZn7PnsmfkMsB9robnThkrXV5TxJKHKsIjmeU9HOdOJ0b52-PKKn43Y-U16E4rCpm22exuSrFfqebEb80zrFH2Mf7mk8gcs1nxbHVgcnN5enLQrsCeh89Fk9HyCJjxKQrHM51LeO6T30dDayQy7MGq71-SWPB7OKn1o_n1gbvxu_5fhV0CdZNCYyQosuPEqdAMCJWF-T1fh5-WcxXW6Bi_XVWnulWdyJiqQl-CHJSWuMwXKC3nupMyJIrZsDhbJnSocaRiiiT_mJeNyTGdjXwJWEE9PMWmKKYhnqWgEnk5U8fr_5drcFw-2Ij6WVN7Ve4SmSpTUftbOJm4dRsOTv8dnNFziQE0sexXtpUJL5SIbKZ0bJ_pW6NjiZlhFkU5T_NKmL3KLwMsKoXKHwyQ4ggorFUuUTDagg910m0AY557JAMUhjuLS4sNUIhBjpC5WjG9Br9VkZgLDub9o4ymbczPXOshw_LNaB5ncgj_zf54bfo8vWx-0us3CXJ9-0fz395pvw1Jcm4dPBt6BTjWZuV2EPJXeQwsfHh1d7QVLfwOYVvyG
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB61y6HlwBbaCii0PnArRtnE8drHVQVsC8sFVoJT5L8AKtmg3eyFE-_AG_IkjBNnJRBCQlGkHJyR5Rl7xp75PgPsxFpo7rSh0vUVZTxJqDIsonne01HOdGK0xw6PTvhwzP6dp-cBFDZrq93blGS9Ui_AbswzrVP0Mf7lksqPsMRwgxJ3YGlweHG0367AnoTOZ5PR8wma8CgJYJnXpTx3SM-zobWTOejCuO1eU1vyf29e6T1z94K58b39_wIrIeokg8ZMVuGDm6xBN0SgJMzv2RosjxYsrrOv8HBaleZKeSZnogJ5CX5YUuI6U6C8UOdOypwoYsvmYJFcqsKRhiGa-GNeMikndD7xELCCeHqKaQOmIJ6lohF4OFXF4_3Dqbkqrm1FfC6pvKz3CA1KlNR-1s6n7huMD_bP_gxpuMSBmlj2KtpLhZbKRTZSOjdO9K3QscXNsIoinab4pU1f5BYDLyuEyh0Ok-AYVFipWKJk8h062E23DoRx7pkMUBzGUVxafJhK0AB46mLF-Ab0Wk1mJjCc-4s2brIFN3OtgwzHP6t1kMkN-L3457bh93iz9W6r2yzM9dkbzTff1_wXfBqejY6z478nRz_gc1ybii8M3oJONZ27bQx_Kv0zWPsTf3H96Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5RkKr2UCgtKi1QH3prDdnE8dpHBCy0FFSJItFT5L9A1SZBu9lLT30H3pAnYRw7K0AIqaqiSD44o8Qz8Yw9830G-JBqobnThko3VJTxLKPKsISW5UAnJdOZ0R47fHTMD07Zl7P87BaKv6t271OSAdPgWZrqduvSllsz4BvzrOsU_Y2_uaTyCSzg0mSIlr6wvf_jcK-fjT0hnc8soxcUNONJFoEzD0u565zuZkY7hzNaBNW_aqgz-bU5bfWm-XOPxfF_vmUJXsRolGwH83kJc65ehsUYmZL430-W4fnRjN118gquTtrGXCjP8ExUJDXBhiUNzj8Vyov176QpiSK2CRuO5FxVjgTmaOK3f0nd1HRae2hYRTxtxTiALIhnrwgC98equv57dWIuqp-2JT7H1Jx3a4eAHiWd_7XTsXsNp6O97zsHNB7uQE0qBy0d5EJL5RKbKF0aJ4ZW6NTiIlklic5zbGkzFKXFgMwKoUqHwyQ4BhtWKpYpma3APL6mewOEce4ZDlAcxldcWryYygTGHrlLFeOrMOi1WpjIfO4P4PhdzDibOx0UOP5Fp4NCrsLH2TOXgffj0d6fej0XcQ6YPNL97b91fw9Pv-2Oiq-fjw_fwbO0sxRfL7wG8-146tYxKmr1RjT8G4OABtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+analysis+and+optimal+control+of+a+donation+game+system+with+non-uniform+interaction+rates+and+Gram%E2%80%93Schmidt+orthogonalization+procedure&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Yuan%2C+Hairui&rft.au=Meng%2C+Xinzhu&rft.au=Alzahrani%2C+Abdullah+Khames&rft.au=Zhang%2C+Tonghua&rft.date=2023-07-01&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=42&rft.issue=5&rft_id=info:doi/10.1007%2Fs40314-023-02369-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s40314_023_02369_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon