Hidden Markov Model-Based Attack Detection for Networked Control Systems Subject to Random Packet Dropouts

The problem of attack detection for Stuxnet in the industrial control system is discussed in this article. Different operating modes (normal and hazard modes) may occur in the nominal process. In this article, we consider that the transition between different modes follows a Markov chain model with...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 68; no. 1; pp. 642 - 653
Main Authors Lu, Genghong, Feng, Dongqin, Huang, Biao
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2020.2965467

Cover

Abstract The problem of attack detection for Stuxnet in the industrial control system is discussed in this article. Different operating modes (normal and hazard modes) may occur in the nominal process. In this article, we consider that the transition between different modes follows a Markov chain model with a certain transition probability. However, when the Stuxnet attack is launched, the attack signals with random multitude and frequency will be injected to trigger more hazard modes, and finally, hasten fatigue of control devices. Under this unpredictable attack, the transition between operating modes will not follow the regular transition probabilities. Therefore, a hidden Markov model with time-varying transition probabilities is utilized to describe the Stuxnet attack. The transition probabilities are estimated based on the measurements. By recognizing operating modes and predicting the number of the occurrence of hazard modes, the Stuxnet attack can be detected earlier if the predicted value exceeds the threshold. In the operating mode recognition, the expectation maximization algorithm is used to estimate the parameters considering random packet dropouts caused by the unreliable network. A simulation is conducted to verify the effectiveness of the proposed method.
AbstractList The problem of attack detection for Stuxnet in the industrial control system is discussed in this article. Different operating modes (normal and hazard modes) may occur in the nominal process. In this article, we consider that the transition between different modes follows a Markov chain model with a certain transition probability. However, when the Stuxnet attack is launched, the attack signals with random multitude and frequency will be injected to trigger more hazard modes, and finally, hasten fatigue of control devices. Under this unpredictable attack, the transition between operating modes will not follow the regular transition probabilities. Therefore, a hidden Markov model with time-varying transition probabilities is utilized to describe the Stuxnet attack. The transition probabilities are estimated based on the measurements. By recognizing operating modes and predicting the number of the occurrence of hazard modes, the Stuxnet attack can be detected earlier if the predicted value exceeds the threshold. In the operating mode recognition, the expectation maximization algorithm is used to estimate the parameters considering random packet dropouts caused by the unreliable network. A simulation is conducted to verify the effectiveness of the proposed method.
Author Huang, Biao
Feng, Dongqin
Lu, Genghong
Author_xml – sequence: 1
  givenname: Genghong
  orcidid: 0000-0001-5149-7430
  surname: Lu
  fullname: Lu, Genghong
  email: olivialu@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Dongqin
  surname: Feng
  fullname: Feng, Dongqin
  email: dongqinfeng@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Biao
  orcidid: 0000-0001-9082-2216
  surname: Huang
  fullname: Huang, Biao
  email: bhuang@ualberta.ca
  organization: Faculty of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
BookMark eNp9kD1PwzAQhi1UJNrCjsRiiTnFdhzHHktbaKUWEC1z5DgXKf2Ii-2A-u9J1YqBgVtuuPe50z091KltDQjdUjKglKiH1WwyYISRAVMi4SK9QF2aJGmkFJcd1CUslREhXFyhnvdrQihPaNJF62lVFFDjhXYb-4UXtoBt9Kg9FHgYgjYbPIYAJlS2xqV1-AXCt3WbdjyydXB2i5cHH2Dn8bLJ120QB4vfdV3YHX5rcQh47OzeNsFfo8tSbz3cnHsffTxNVqNpNH99no2G88gwRUNEaRLHTBjCDWgtZaqUKInUohQyNXkOKS9yIeO4UCovJYtLEKaUVKhYCk1o3Ef3p717Zz8b8CFb28bV7cmM8YRzoRQRbUqcUsZZ7x2UmamCPv4ZnK62GSXZ0WvWes2OXrOz1xYkf8C9q3baHf5D7k5IBQC_cakEi9v6AYTehP4
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TVT_2023_3313162
crossref_primary_10_3390_pr12092053
crossref_primary_10_1109_ACCESS_2024_3446047
crossref_primary_10_1016_j_isatra_2021_09_017
crossref_primary_10_1016_j_oceaneng_2023_115179
crossref_primary_10_1007_s10586_021_03413_1
crossref_primary_10_1109_TIE_2022_3148736
crossref_primary_10_1109_TNSE_2022_3161479
crossref_primary_10_1049_cth2_12776
Cites_doi 10.1007/s10845-017-1315-5
10.1109/ICDCS.Workshops.2008.40
10.1016/S0098-1354(03)00075-9
10.1145/2899015.2899016
10.1109/TIE.2015.2478743
10.1109/JPROC.2006.887288
10.1016/S0167-9473(02)00177-9
10.1162/neco.1996.8.1.129
10.1016/j.ress.2018.07.002
10.1007/978-3-319-17127-2_2
10.1109/TNSM.2015.2448656
10.1002/aic.14661
10.1007/978-3-319-99073-6_27
10.1109/MSP.2011.67
10.1007/978-94-011-5014-9_12
10.1080/00207721.2014.906683
10.1002/for.965
10.1109/JSYST.2015.2487684
10.1109/CRISIS.2012.6378942
10.1021/ie800386v
10.1080/07350015.1994.10524545
10.1016/j.jprocont.2018.12.010
10.1016/j.future.2013.06.030
10.1016/j.jprocont.2007.07.006
10.1111/j.2517-6161.1977.tb01600.x
10.1109/TSG.2014.2298195
10.1109/CDC.2013.6760152
10.1145/1966913.1966959
10.1109/ALLERTON.2009.5394956
10.1109/ACC.2013.6580475
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TIE.2020.2965467
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 653
ExternalDocumentID 10_1109_TIE_2020_2965467
8962333
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61433006
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c291t-1153326c04ceaa887996f08a6f687cbbe74db6833d99bf823fe6cf8169386a013
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Mon Jun 30 10:09:48 EDT 2025
Wed Oct 01 00:27:06 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Aug 27 02:31:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1153326c04ceaa887996f08a6f687cbbe74db6833d99bf823fe6cf8169386a013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9082-2216
0000-0001-5149-7430
PQID 2454469906
PQPubID 85464
PageCount 12
ParticipantIDs ieee_primary_8962333
crossref_citationtrail_10_1109_TIE_2020_2965467
proquest_journals_2454469906
crossref_primary_10_1109_TIE_2020_2965467
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-Jan.
2021-1-00
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref37
ref15
ref31
ref30
ref33
ref11
ref32
ref1
ref17
ref16
filonov (ref10) 0
diebold (ref18) 1994; 1
herr (ref2) 2015; 8
ref24
ref23
falliere (ref3) 2011
ref26
ref25
ref20
dempster (ref29) 1977; 39
ref22
ref21
ref28
govindarasu (ref14) 2014; 5
ref27
mo (ref12) 0
filardo (ref19) 1994; 12
ref8
gu (ref7) 2014
ref9
ref4
ref6
ref5
hink (ref36) 0
References_xml – ident: ref37
  doi: 10.1007/s10845-017-1315-5
– ident: ref25
  doi: 10.1109/ICDCS.Workshops.2008.40
– ident: ref17
  doi: 10.1016/S0098-1354(03)00075-9
– ident: ref35
  doi: 10.1145/2899015.2899016
– ident: ref22
  doi: 10.1109/TIE.2015.2478743
– ident: ref24
  doi: 10.1109/JPROC.2006.887288
– ident: ref32
  doi: 10.1016/S0167-9473(02)00177-9
– ident: ref31
  doi: 10.1162/neco.1996.8.1.129
– ident: ref23
  doi: 10.1016/j.ress.2018.07.002
– year: 0
  ident: ref10
  article-title: RNN-based early cyber-attack detection for the Tennessee Eastman process
– ident: ref11
  doi: 10.1007/978-3-319-17127-2_2
– ident: ref16
  doi: 10.1109/TNSM.2015.2448656
– ident: ref21
  doi: 10.1002/aic.14661
– ident: ref6
  doi: 10.1007/978-3-319-99073-6_27
– ident: ref1
  doi: 10.1109/MSP.2011.67
– volume: 8
  start-page: 301
  year: 2015
  ident: ref2
  article-title: Cyber weapons and export control: Incorporating dual use with the prep model
  publication-title: National Security Law & Policy
– ident: ref28
  doi: 10.1007/978-94-011-5014-9_12
– start-page: 1
  year: 0
  ident: ref12
  article-title: False data injection attacks in control systems
  publication-title: Proc Preprints 1st Workshop Secure Control Syst
– year: 2014
  ident: ref7
  article-title: Method for preventing Stuxnet attacks
– ident: ref26
  doi: 10.1080/00207721.2014.906683
– ident: ref20
  doi: 10.1002/for.965
– ident: ref5
  doi: 10.1109/JSYST.2015.2487684
– ident: ref4
  doi: 10.1109/CRISIS.2012.6378942
– ident: ref27
  doi: 10.1021/ie800386v
– volume: 12
  start-page: 299
  year: 1994
  ident: ref19
  article-title: Business-cycle phases and their transitional dynamics
  publication-title: J Bus Econ Statist
  doi: 10.1080/07350015.1994.10524545
– start-page: 29
  year: 2011
  ident: ref3
  article-title: W32. Stuxnet dossier
– start-page: 1
  year: 0
  ident: ref36
  article-title: Machine learning for power system disturbance and cyber-attack discrimination
  publication-title: Proc Int Symp Resilient Control Syst
– ident: ref30
  doi: 10.1016/j.jprocont.2018.12.010
– ident: ref9
  doi: 10.1016/j.future.2013.06.030
– ident: ref33
  doi: 10.1016/j.jprocont.2007.07.006
– volume: 39
  start-page: 1
  year: 1977
  ident: ref29
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Roy Stat Soc B Meth
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 5
  start-page: 580
  year: 2014
  ident: ref14
  article-title: Model-based attack detection and mitigation for automatic generation control
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2298195
– ident: ref15
  doi: 10.1109/CDC.2013.6760152
– ident: ref34
  doi: 10.1145/1966913.1966959
– ident: ref13
  doi: 10.1109/ALLERTON.2009.5394956
– volume: 1
  start-page: 144
  year: 1994
  ident: ref18
  article-title: Regime switching with time-varying transition probabilities
  publication-title: Business Cycles Durations Dynamics and Forecasting
– ident: ref8
  doi: 10.1109/ACC.2013.6580475
SSID ssj0014515
Score 2.437012
Snippet The problem of attack detection for Stuxnet in the industrial control system is discussed in this article. Different operating modes (normal and hazard modes)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 642
SubjectTerms Algorithms
Computer worms
Control systems
Cybersecurity
Dropouts
expectation maximization (EM) algorithm
Hazards
hidden Markov model (HMM)
Hidden Markov models
Industrial electronics
Markov chains
Networked control systems
Parameter estimation
Process control
Stuxnet attack
time-varying transition probabilities
Transition probabilities
Title Hidden Markov Model-Based Attack Detection for Networked Control Systems Subject to Random Packet Dropouts
URI https://ieeexplore.ieee.org/document/8962333
https://www.proquest.com/docview/2454469906
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0BJ3oACkUs0MqHXiqR3ZB4HftI-dBSCYQQSNwi2xkfYEkQeDn013cmya7aUlXcIiWWLI0zM88z8x7A14rlbD0hVUTtE4k-TRxKlYTCShconmnPA84Xl2pyK3_cje-W4GAxC4OIbfMZDvmxreVXjZ_xVdlIGwrWeb4My0VhulmtRcVAjju1gowZYwn0zUuSqRndnJ8SEMzSYWZ4dKf4IwS1mipvHHEbXc7W4WK-r66p5GE4i27of_5F2fjejW_AWp9miqPuXHyEJaw34cNv5INbcD9h9pBa8LRO8ypYFG2afKegVomjGK1_ECcY20atWlBmKy67hnF6fdy1t4ue7VyQ8-HbHBEbcW3rqnkUV7QcozhhCYZZfPkEt2enN8eTpFdeSHxmDmNyyFlgpnwqPVpLfohQUUi1VUHpwjuHhayc0nleGeOCzvKAygfNxC5aWcoqt2GlbmrcAaGk9VwatSaQvyB8pDHIPHXkO6yUaAYwmhuj9D0tOatjTMsWnqSmJPOVbL6yN98Avi1WPHWUHP_5doutsfiuN8QA9uf2Lvt_9qXM5JiwMUVntfvvVXuwmnFHS3sBsw8r8XmGnyklie5LexZ_AeD23Lw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcoAeykdBbGnBBy5IZDdNvI59LP3QFrorhLZSb5HtjA-0JFXr7aG_vjNJdgUUIW6REkuWxpmZ55l5D-BDxXK2npAqovaJRJ8mDqVKQmGlCxTPtOcB5-lMTc7kl_Px-Rp8Ws3CIGLbfIZDfmxr-VXjF3xVNtKGgnWeP4LHY0IVRTettaoZyHGnV5AxZyzBvmVRMjWj-ckRQcEsHWaGh3eK34JQq6rywBW38eX4GUyXO-vaSi6Gi-iG_u4P0sb_3fpz2OwTTbHfnYwXsIb1S9j4hX5wC35MmD-kFjyv09wKlkW7TD5TWKvEfozWX4hDjG2rVi0otxWzrmWcXh90De6i5zsX5H74PkfERny3ddX8FN9oOUZxyCIMi3jzCs6Oj-YHk6TXXkh8ZvZissd5YKZ8Kj1aS56IcFFItVVB6cI7h4WsnNJ5Xhnjgs7ygMoHzdQuWlnKK1_Det3U-AaEktZzcdSaQB6DEJLGIPPUkfewUqIZwGhpjNL3xOSsj3FZtgAlNSWZr2Tzlb35BvBxteKqI-X4x7dbbI3Vd70hBrCztHfZ_7U3ZSbpXCmKz2r776vew5PJfHpanp7Mvr6Fpxn3t7TXMTuwHq8XuEsJSnTv2nN5D6RM4A0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hidden+Markov+Model-Based+Attack+Detection+for+Networked+Control+Systems+Subject+to+Random+Packet+Dropouts&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Lu%2C+Genghong&rft.au=Feng%2C+Dongqin&rft.au=Huang%2C+Biao&rft.date=2021-01-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=68&rft.issue=1&rft.spage=642&rft.epage=653&rft_id=info:doi/10.1109%2FTIE.2020.2965467&rft.externalDocID=8962333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon