Smart Multi-RAT Access Based on Multiagent Reinforcement Learning

The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 67; no. 5; pp. 4539 - 4551
Main Authors Yan, Mu, Feng, Gang, Zhou, Jianhong, Qin, Shuang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2018.2793186

Cover

Abstract The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access technologies (RATs) of licensed or unlicensed bands has been widely deemed as a cost-efficient way to greatly increase the network capacity. In this paper, we propose a smart aggregated RAT access (SARA) strategy with aim of maximizing the long-term network throughput while meeting diverse traffic quality of service (QoS) requirements. We consider the scenario that users with different QoS requirements access to a heterogeneous network with coexisting cellular-WiFi. In order to maximize system throughput while meeting diverse traffic QoS requirements in such a complex and dynamic environment, we exploit multiagent reinforcement learning to perform RAT selection in conjunction with resource allocation for individual user access requests, through sensing dynamic channel states and traffic QoS requirements. In SARA, we first use Nash Q-learning to provide a set of feasible RAT selection strategies while decreasing the strategy space in learning process, and then employ Monte Carlo tree search (MCTS) based Q-learning to perform resource allocation. Numerical results reveal that the network throughput can be maximized while meeting various traffic QoS requirements with limited number of searches by using our proposed SARA algorithm. For bulk arrival access requests, a suboptimal solution can be obtained as high computational complexity is incurred for achieving global optimality. Another attractive feature of SARA is that a tradeoff between the solution optimality and learning time can be readily made by terminating the search of MCTS according to the time constraint. Compared with traditional WiFi offloading schemes, SARA can significantly improve network throughput while guaranteeing traffic QoS requirements.
AbstractList The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access technologies (RATs) of licensed or unlicensed bands has been widely deemed as a cost-efficient way to greatly increase the network capacity. In this paper, we propose a smart aggregated RAT access (SARA) strategy with aim of maximizing the long-term network throughput while meeting diverse traffic quality of service (QoS) requirements. We consider the scenario that users with different QoS requirements access to a heterogeneous network with coexisting cellular-WiFi. In order to maximize system throughput while meeting diverse traffic QoS requirements in such a complex and dynamic environment, we exploit multiagent reinforcement learning to perform RAT selection in conjunction with resource allocation for individual user access requests, through sensing dynamic channel states and traffic QoS requirements. In SARA, we first use Nash Q-learning to provide a set of feasible RAT selection strategies while decreasing the strategy space in learning process, and then employ Monte Carlo tree search (MCTS) based Q-learning to perform resource allocation. Numerical results reveal that the network throughput can be maximized while meeting various traffic QoS requirements with limited number of searches by using our proposed SARA algorithm. For bulk arrival access requests, a suboptimal solution can be obtained as high computational complexity is incurred for achieving global optimality. Another attractive feature of SARA is that a tradeoff between the solution optimality and learning time can be readily made by terminating the search of MCTS according to the time constraint. Compared with traditional WiFi offloading schemes, SARA can significantly improve network throughput while guaranteeing traffic QoS requirements.
Author Yan, Mu
Zhou, Jianhong
Qin, Shuang
Feng, Gang
Author_xml – sequence: 1
  givenname: Mu
  orcidid: 0000-0001-9883-1862
  surname: Yan
  fullname: Yan, Mu
  email: 826103068@qq.com
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Gang
  surname: Feng
  fullname: Feng, Gang
  email: fenggang@uestc.edu.cn
  organization: National Key Laboratory of Science and Technology and the Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Jianhong
  orcidid: 0000-0002-3422-9327
  surname: Zhou
  fullname: Zhou, Jianhong
  email: zhoujh@uestc.edu.cn
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Shuang
  surname: Qin
  fullname: Qin, Shuang
  email: blueqs@uestc.edu.cn
  organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp9kE1LAzEQhoNUsFbvgpcFz1uTzSa7c6zFL6gIdfUaYnZSUtpsTdKD_94tWzx48DS8zPvMwHNORr7zSMgVo1PGKNw2H820oKyeFhVwVssTMmbAIQcuYETGtF_lIEpxRs5jXPexLIGNyextq0PKXvab5PLlrMlmxmCM2Z2O2GadHzZ6hT5lS3TedsHg9pAWqIN3fnVBTq3eRLw8zgl5f7hv5k_54vXxeT5b5KYAlnJGJf2soQVT8xasKS2UVkorDEWhdcFQ6hYqqDRKaGnNLJdUcwCNrBLS8Am5Ge7uQve1x5jUutsH379UBatKQRmXrG_JoWVCF2NAq4xLOrnOp6DdRjGqDrpUr0sddKmjrh6kf8BdcL2b7_-Q6wFxiPhbrwtRQ8X5D_AbdlA
CODEN ITVTAB
CitedBy_id crossref_primary_10_1002_dac_4844
crossref_primary_10_1109_COMST_2021_3073036
crossref_primary_10_1109_COMST_2023_3338153
crossref_primary_10_1109_ACCESS_2019_2938084
crossref_primary_10_1007_s11235_021_00877_9
crossref_primary_10_1109_ACCESS_2021_3121622
crossref_primary_10_1109_ACCESS_2023_3330872
crossref_primary_10_1016_j_comcom_2020_01_043
crossref_primary_10_1109_JIOT_2022_3175733
crossref_primary_10_1109_TVT_2021_3128513
crossref_primary_10_1109_ACCESS_2021_3110255
crossref_primary_10_1109_TSIPN_2022_3150911
crossref_primary_10_1109_TVT_2019_2922668
crossref_primary_10_1109_ACCESS_2020_3003012
crossref_primary_10_1109_ACCESS_2020_3004861
crossref_primary_10_1109_TVT_2021_3055490
crossref_primary_10_1109_TNSE_2022_3171600
crossref_primary_10_1186_s13638_019_1433_1
crossref_primary_10_1109_ACCESS_2019_2946848
crossref_primary_10_1109_MNET_2019_1800386
crossref_primary_10_1109_TGCN_2020_2966449
crossref_primary_10_1109_TMC_2019_2901471
crossref_primary_10_1109_TVT_2021_3062634
crossref_primary_10_1109_ACCESS_2020_2979323
crossref_primary_10_1016_j_comnet_2022_109358
crossref_primary_10_1109_ACCESS_2021_3087410
crossref_primary_10_1109_ACCESS_2022_3196657
crossref_primary_10_1109_TCOMM_2019_2939316
crossref_primary_10_1109_TNSM_2021_3088837
crossref_primary_10_1109_ACCESS_2020_3002252
crossref_primary_10_1109_TITS_2021_3115155
crossref_primary_10_1109_TMC_2024_3473908
crossref_primary_10_3390_s23104821
crossref_primary_10_1109_ACCESS_2022_3141789
crossref_primary_10_1109_ACCESS_2022_3210254
crossref_primary_10_1109_JIOT_2023_3288050
crossref_primary_10_3390_s22166179
crossref_primary_10_1109_TVT_2020_3012311
crossref_primary_10_3390_app132212505
crossref_primary_10_1007_s11042_024_18799_4
crossref_primary_10_1109_TNSM_2021_3096673
crossref_primary_10_1109_OJCOMS_2022_3215731
crossref_primary_10_1109_ACCESS_2019_2948935
crossref_primary_10_1007_s10489_023_05240_w
crossref_primary_10_1109_TCCN_2022_3155727
crossref_primary_10_1109_TVT_2021_3135885
crossref_primary_10_1016_j_adhoc_2025_103838
Cites_doi 10.1109/ICC.2015.7248634
10.1038/nature16961
10.1016/j.comnet.2006.05.001
10.1109/MWC.2011.5876497
10.1109/JSAC.2015.2417016
10.1109/JSAC.2015.2416987
10.1007/978-3-540-75538-8_7
10.1109/ICC.2013.6655621
10.1109/VETECS.2005.1543653
10.1016/j.ipl.2010.05.031
10.1109/TVT.2014.2387798
10.1109/ICC.2012.6364194
10.1038/nature14540
10.1007/s10472-011-9258-6
10.1109/MCOM.2013.6525591
10.1109/TCOMM.2009.09.080067
10.1109/MWC.2013.6704480
10.1162/jmlr.2003.4.6.1039
10.1109/TMC.2016.2597851
10.1109/MNET.2015.7166185
10.1017/CBO9781139061407
10.1109/VETECS.2008.554
10.1145/1143844.1143955
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2018.2793186
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 4551
ExternalDocumentID 10_1109_TVT_2018_2793186
8258973
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 61631005; 61471089
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: ZYGX2015Z005
  funderid: 10.13039/501100012226
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
RIG
ID FETCH-LOGICAL-c291t-1060b89d9c83d9fc4f94f66f5c0e5aa21e6ad9797ae69d081f360a399ae1756c3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Mon Jun 30 10:14:39 EDT 2025
Wed Oct 01 01:47:47 EDT 2025
Thu Apr 24 22:50:55 EDT 2025
Wed Aug 27 02:29:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c291t-1060b89d9c83d9fc4f94f66f5c0e5aa21e6ad9797ae69d081f360a399ae1756c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9883-1862
0000-0002-3422-9327
PQID 2174501361
PQPubID 85454
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TVT_2018_2793186
crossref_primary_10_1109_TVT_2018_2793186
proquest_journals_2174501361
ieee_primary_8258973
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref33
ref11
ref32
ref10
barnett (ref1) 2015
ref2
ref17
simon (ref9) 2013
ref16
ref19
ref18
kim (ref30) 2004; 1
watkins (ref27) 1992; 8
nelson (ref22) 2015
ref24
paper (ref29) 2013
ref23
dayan (ref26) 1992; 292
ref25
(ref15) 2015
ref20
kong (ref21) 2012; 1
ref28
ref8
ref7
ref4
ref3
ref6
zhu (ref31) 2009; 57
li (ref5) 0
References_xml – volume: 1
  start-page: 409
  year: 2004
  ident: ref30
  article-title: A proportional fair scheduling for multicarrier transmission systems
  publication-title: Proc IEEE 60th Veh Technol Conf
– ident: ref20
  doi: 10.1109/ICC.2015.7248634
– ident: ref11
  doi: 10.1038/nature16961
– year: 2015
  ident: ref1
  article-title: Cisco visual networking index (VNI) update global mobile data traffic forecast
– ident: ref7
  doi: 10.1016/j.comnet.2006.05.001
– ident: ref2
  doi: 10.1109/MWC.2011.5876497
– volume: 1
  year: 2012
  ident: ref21
  publication-title: Progress in Electromagnetics Research
– ident: ref6
  doi: 10.1109/JSAC.2015.2417016
– ident: ref18
  doi: 10.1109/JSAC.2015.2416987
– ident: ref14
  doi: 10.1007/978-3-540-75538-8_7
– ident: ref17
  doi: 10.1109/ICC.2013.6655621
– year: 2015
  ident: ref15
  article-title: Coexistence Study for LTE-U SDL
– ident: ref33
  doi: 10.1109/VETECS.2005.1543653
– ident: ref24
  doi: 10.1016/j.ipl.2010.05.031
– start-page: 2764
  year: 0
  ident: ref5
  article-title: Analytical study on network spectrum efficiency of ultra dense networks
  publication-title: Proc IEEE 24th Annu Int Symp Personal Indoor Mobile Radio Commun
– ident: ref16
  doi: 10.1109/TVT.2014.2387798
– ident: ref19
  doi: 10.1109/ICC.2012.6364194
– year: 2013
  ident: ref9
  publication-title: Too Big to Ignore The Business Case for Big Data
– ident: ref10
  doi: 10.1038/nature14540
– ident: ref28
  doi: 10.1007/s10472-011-9258-6
– ident: ref3
  doi: 10.1109/MCOM.2013.6525591
– volume: 292
  start-page: 279
  year: 1992
  ident: ref26
  article-title: Technical note Q,-learning
  publication-title: Mach Learn
– volume: 57
  start-page: 2734
  year: 2009
  ident: ref31
  article-title: Chunk-based resource allocation in OFDMA systems-Part I: Chunk allocation
  publication-title: IEEE Trans Commun
  doi: 10.1109/TCOMM.2009.09.080067
– ident: ref4
  doi: 10.1109/MWC.2013.6704480
– year: 2015
  ident: ref22
  article-title: 4G americas LTE aggregation unlicensed spectrum white paper
– volume: 8
  year: 1992
  ident: ref27
  publication-title: Q-learning
– ident: ref13
  doi: 10.1162/jmlr.2003.4.6.1039
– year: 2013
  ident: ref29
  article-title: Quality of service (QoS) and policy management in mobile data networks
– ident: ref25
  doi: 10.1109/TMC.2016.2597851
– ident: ref8
  doi: 10.1109/MNET.2015.7166185
– ident: ref23
  doi: 10.1017/CBO9781139061407
– ident: ref32
  doi: 10.1109/VETECS.2008.554
– ident: ref12
  doi: 10.1145/1143844.1143955
SSID ssj0014491
Score 2.48102
Snippet The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4539
SubjectTerms access control
Cellular communication
Complexity
Data management
Learning (artificial intelligence)
Licensed band
Long Term Evolution
Machine learning
Markov analysis
Monte-Carlo tree search
Multiagent systems
Optimization
Quality of service
Quality of service architectures
Radio access technologies
reinforcement learning
Resource allocation
Resource management
Throughput
unlicensed band
Wireless communications
Wireless fidelity
Wireless networks
Title Smart Multi-RAT Access Based on Multiagent Reinforcement Learning
URI https://ieeexplore.ieee.org/document/8258973
https://www.proquest.com/docview/2174501361
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA8sSKSNE8eOx4KoKqQyVCnqFjl-MAApgnTh12M7TlQBQmyRYluW7-z77Lv7DoBLhJRWcaQCySMZ4ITKgCWaBEhijSLBtHQUG7MHMl3g-2Wy7IDrNhdGKeWCz9TQfjpfvlyJtX0qG5nbTMpovAW2aErqXK3WY4Cxr46HzAY2sKBxSYZslD1mNoYrHUZGGZHNmt4wQa6myo-D2FmXyR6YNfOqg0qeh-uqGIrPb5SN_534Ptj1MBOOa704AB1VHoKdDfLBnjlQX43aQJeBG8zHGRy72onwxtg1CVdl_Yfb1Cs4V45gVbi3ROg5WZ-OwGJyl91OA19QIRARQ5U5cklYpEwykcaSaYE1w5oQnYhQJZxHSBEuGWWUK8KkAQs6JiE3EIYrgzKIiI9Bt1yV6gRAXRjzRxGinBIsuIE9XKdC2KwfKQvN-mDUrHEuPNu4LXrxkrtbR8hyI5XcSiX3UumDq7bHW8208Ufbnl3ktp1f3z4YNGLM_Vb8yO2dK7HMdOj0915nYNuOXUcxDkC3el-rc4M0quLCqdgXkVPOxg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFMjAgkTaOHGceCyIqkDboUpRt8jxgwFoEbQLvx7beagChNgixZYt39n32Xf3HcAFQlLJwJeuYL5wcRgJl4aKuEhghXxOlbAUG8MR6U_w_TSc1uCqyoWRUtrgM9k2n9aXL-Z8aZ7KOvo2E9MoWIP1EGMc5tlalc8A46I-HtJbWAOD0inp0U7ymJgorrjta3VEJm96xQjZqio_jmJrX3o7MCxnloeVPLeXi6zNP7-RNv536ruwXQBNp5trxh7U5GwftlboBxv6SH3ViuPYHFx33E2crq2e6Fxryyac-Sz_w0zylTOWlmKV29dEp2BlfTqASe82uem7RUkFl_sULfShS7wspoLyOBBUcawoVoSokHsyZMxHkjBBIxoxSajQcEEFxGMaxDCpcQbhwSHUZ_OZPAJHZdoARghFLCKYMw18mIo5N3k_QmSKNqFTrnHKC75xU_biJbX3Do-mWiqpkUpaSKUJl1WPt5xr44-2DbPIVbtifZvQKsWYFpvxIzW3rtBw06Hj33udw0Y_GQ7Swd3o4QQ2zTh5TGML6ov3pTzVuGORnVl1-wKR5NIT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Multi-RAT+Access+Based+on+Multiagent+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Yan%2C+Mu&rft.au=Feng%2C+Gang&rft.au=Zhou%2C+Jianhong&rft.au=Qin%2C+Shuang&rft.date=2018-05-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=67&rft.issue=5&rft.spage=4539&rft.epage=4551&rft_id=info:doi/10.1109%2FTVT.2018.2793186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2018_2793186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon