Smart Multi-RAT Access Based on Multiagent Reinforcement Learning
The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access t...
Saved in:
| Published in | IEEE transactions on vehicular technology Vol. 67; no. 5; pp. 4539 - 4551 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.05.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9545 1939-9359 |
| DOI | 10.1109/TVT.2018.2793186 |
Cover
| Abstract | The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access technologies (RATs) of licensed or unlicensed bands has been widely deemed as a cost-efficient way to greatly increase the network capacity. In this paper, we propose a smart aggregated RAT access (SARA) strategy with aim of maximizing the long-term network throughput while meeting diverse traffic quality of service (QoS) requirements. We consider the scenario that users with different QoS requirements access to a heterogeneous network with coexisting cellular-WiFi. In order to maximize system throughput while meeting diverse traffic QoS requirements in such a complex and dynamic environment, we exploit multiagent reinforcement learning to perform RAT selection in conjunction with resource allocation for individual user access requests, through sensing dynamic channel states and traffic QoS requirements. In SARA, we first use Nash Q-learning to provide a set of feasible RAT selection strategies while decreasing the strategy space in learning process, and then employ Monte Carlo tree search (MCTS) based Q-learning to perform resource allocation. Numerical results reveal that the network throughput can be maximized while meeting various traffic QoS requirements with limited number of searches by using our proposed SARA algorithm. For bulk arrival access requests, a suboptimal solution can be obtained as high computational complexity is incurred for achieving global optimality. Another attractive feature of SARA is that a tradeoff between the solution optimality and learning time can be readily made by terminating the search of MCTS according to the time constraint. Compared with traditional WiFi offloading schemes, SARA can significantly improve network throughput while guaranteeing traffic QoS requirements. |
|---|---|
| AbstractList | The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access technologies (RATs) of licensed or unlicensed bands has been widely deemed as a cost-efficient way to greatly increase the network capacity. In this paper, we propose a smart aggregated RAT access (SARA) strategy with aim of maximizing the long-term network throughput while meeting diverse traffic quality of service (QoS) requirements. We consider the scenario that users with different QoS requirements access to a heterogeneous network with coexisting cellular-WiFi. In order to maximize system throughput while meeting diverse traffic QoS requirements in such a complex and dynamic environment, we exploit multiagent reinforcement learning to perform RAT selection in conjunction with resource allocation for individual user access requests, through sensing dynamic channel states and traffic QoS requirements. In SARA, we first use Nash Q-learning to provide a set of feasible RAT selection strategies while decreasing the strategy space in learning process, and then employ Monte Carlo tree search (MCTS) based Q-learning to perform resource allocation. Numerical results reveal that the network throughput can be maximized while meeting various traffic QoS requirements with limited number of searches by using our proposed SARA algorithm. For bulk arrival access requests, a suboptimal solution can be obtained as high computational complexity is incurred for achieving global optimality. Another attractive feature of SARA is that a tradeoff between the solution optimality and learning time can be readily made by terminating the search of MCTS according to the time constraint. Compared with traditional WiFi offloading schemes, SARA can significantly improve network throughput while guaranteeing traffic QoS requirements. |
| Author | Yan, Mu Zhou, Jianhong Qin, Shuang Feng, Gang |
| Author_xml | – sequence: 1 givenname: Mu orcidid: 0000-0001-9883-1862 surname: Yan fullname: Yan, Mu email: 826103068@qq.com organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Gang surname: Feng fullname: Feng, Gang email: fenggang@uestc.edu.cn organization: National Key Laboratory of Science and Technology and the Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Jianhong orcidid: 0000-0002-3422-9327 surname: Zhou fullname: Zhou, Jianhong email: zhoujh@uestc.edu.cn organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Shuang surname: Qin fullname: Qin, Shuang email: blueqs@uestc.edu.cn organization: National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China |
| BookMark | eNp9kE1LAzEQhoNUsFbvgpcFz1uTzSa7c6zFL6gIdfUaYnZSUtpsTdKD_94tWzx48DS8zPvMwHNORr7zSMgVo1PGKNw2H820oKyeFhVwVssTMmbAIQcuYETGtF_lIEpxRs5jXPexLIGNyextq0PKXvab5PLlrMlmxmCM2Z2O2GadHzZ6hT5lS3TedsHg9pAWqIN3fnVBTq3eRLw8zgl5f7hv5k_54vXxeT5b5KYAlnJGJf2soQVT8xasKS2UVkorDEWhdcFQ6hYqqDRKaGnNLJdUcwCNrBLS8Am5Ge7uQve1x5jUutsH379UBatKQRmXrG_JoWVCF2NAq4xLOrnOp6DdRjGqDrpUr0sddKmjrh6kf8BdcL2b7_-Q6wFxiPhbrwtRQ8X5D_AbdlA |
| CODEN | ITVTAB |
| CitedBy_id | crossref_primary_10_1002_dac_4844 crossref_primary_10_1109_COMST_2021_3073036 crossref_primary_10_1109_COMST_2023_3338153 crossref_primary_10_1109_ACCESS_2019_2938084 crossref_primary_10_1007_s11235_021_00877_9 crossref_primary_10_1109_ACCESS_2021_3121622 crossref_primary_10_1109_ACCESS_2023_3330872 crossref_primary_10_1016_j_comcom_2020_01_043 crossref_primary_10_1109_JIOT_2022_3175733 crossref_primary_10_1109_TVT_2021_3128513 crossref_primary_10_1109_ACCESS_2021_3110255 crossref_primary_10_1109_TSIPN_2022_3150911 crossref_primary_10_1109_TVT_2019_2922668 crossref_primary_10_1109_ACCESS_2020_3003012 crossref_primary_10_1109_ACCESS_2020_3004861 crossref_primary_10_1109_TVT_2021_3055490 crossref_primary_10_1109_TNSE_2022_3171600 crossref_primary_10_1186_s13638_019_1433_1 crossref_primary_10_1109_ACCESS_2019_2946848 crossref_primary_10_1109_MNET_2019_1800386 crossref_primary_10_1109_TGCN_2020_2966449 crossref_primary_10_1109_TMC_2019_2901471 crossref_primary_10_1109_TVT_2021_3062634 crossref_primary_10_1109_ACCESS_2020_2979323 crossref_primary_10_1016_j_comnet_2022_109358 crossref_primary_10_1109_ACCESS_2021_3087410 crossref_primary_10_1109_ACCESS_2022_3196657 crossref_primary_10_1109_TCOMM_2019_2939316 crossref_primary_10_1109_TNSM_2021_3088837 crossref_primary_10_1109_ACCESS_2020_3002252 crossref_primary_10_1109_TITS_2021_3115155 crossref_primary_10_1109_TMC_2024_3473908 crossref_primary_10_3390_s23104821 crossref_primary_10_1109_ACCESS_2022_3141789 crossref_primary_10_1109_ACCESS_2022_3210254 crossref_primary_10_1109_JIOT_2023_3288050 crossref_primary_10_3390_s22166179 crossref_primary_10_1109_TVT_2020_3012311 crossref_primary_10_3390_app132212505 crossref_primary_10_1007_s11042_024_18799_4 crossref_primary_10_1109_TNSM_2021_3096673 crossref_primary_10_1109_OJCOMS_2022_3215731 crossref_primary_10_1109_ACCESS_2019_2948935 crossref_primary_10_1007_s10489_023_05240_w crossref_primary_10_1109_TCCN_2022_3155727 crossref_primary_10_1109_TVT_2021_3135885 crossref_primary_10_1016_j_adhoc_2025_103838 |
| Cites_doi | 10.1109/ICC.2015.7248634 10.1038/nature16961 10.1016/j.comnet.2006.05.001 10.1109/MWC.2011.5876497 10.1109/JSAC.2015.2417016 10.1109/JSAC.2015.2416987 10.1007/978-3-540-75538-8_7 10.1109/ICC.2013.6655621 10.1109/VETECS.2005.1543653 10.1016/j.ipl.2010.05.031 10.1109/TVT.2014.2387798 10.1109/ICC.2012.6364194 10.1038/nature14540 10.1007/s10472-011-9258-6 10.1109/MCOM.2013.6525591 10.1109/TCOMM.2009.09.080067 10.1109/MWC.2013.6704480 10.1162/jmlr.2003.4.6.1039 10.1109/TMC.2016.2597851 10.1109/MNET.2015.7166185 10.1017/CBO9781139061407 10.1109/VETECS.2008.554 10.1145/1143844.1143955 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1109/TVT.2018.2793186 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-9359 |
| EndPage | 4551 |
| ExternalDocumentID | 10_1109_TVT_2018_2793186 8258973 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 61631005; 61471089 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: ZYGX2015Z005 funderid: 10.13039/501100012226 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SP 8FD FR3 KR7 L7M RIG |
| ID | FETCH-LOGICAL-c291t-1060b89d9c83d9fc4f94f66f5c0e5aa21e6ad9797ae69d081f360a399ae1756c3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9545 |
| IngestDate | Mon Jun 30 10:14:39 EDT 2025 Wed Oct 01 01:47:47 EDT 2025 Thu Apr 24 22:50:55 EDT 2025 Wed Aug 27 02:29:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c291t-1060b89d9c83d9fc4f94f66f5c0e5aa21e6ad9797ae69d081f360a399ae1756c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9883-1862 0000-0002-3422-9327 |
| PQID | 2174501361 |
| PQPubID | 85454 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TVT_2018_2793186 crossref_primary_10_1109_TVT_2018_2793186 proquest_journals_2174501361 ieee_primary_8258973 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-01 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on vehicular technology |
| PublicationTitleAbbrev | TVT |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref14 ref33 ref11 ref32 ref10 barnett (ref1) 2015 ref2 ref17 simon (ref9) 2013 ref16 ref19 ref18 kim (ref30) 2004; 1 watkins (ref27) 1992; 8 nelson (ref22) 2015 ref24 paper (ref29) 2013 ref23 dayan (ref26) 1992; 292 ref25 (ref15) 2015 ref20 kong (ref21) 2012; 1 ref28 ref8 ref7 ref4 ref3 ref6 zhu (ref31) 2009; 57 li (ref5) 0 |
| References_xml | – volume: 1 start-page: 409 year: 2004 ident: ref30 article-title: A proportional fair scheduling for multicarrier transmission systems publication-title: Proc IEEE 60th Veh Technol Conf – ident: ref20 doi: 10.1109/ICC.2015.7248634 – ident: ref11 doi: 10.1038/nature16961 – year: 2015 ident: ref1 article-title: Cisco visual networking index (VNI) update global mobile data traffic forecast – ident: ref7 doi: 10.1016/j.comnet.2006.05.001 – ident: ref2 doi: 10.1109/MWC.2011.5876497 – volume: 1 year: 2012 ident: ref21 publication-title: Progress in Electromagnetics Research – ident: ref6 doi: 10.1109/JSAC.2015.2417016 – ident: ref18 doi: 10.1109/JSAC.2015.2416987 – ident: ref14 doi: 10.1007/978-3-540-75538-8_7 – ident: ref17 doi: 10.1109/ICC.2013.6655621 – year: 2015 ident: ref15 article-title: Coexistence Study for LTE-U SDL – ident: ref33 doi: 10.1109/VETECS.2005.1543653 – ident: ref24 doi: 10.1016/j.ipl.2010.05.031 – start-page: 2764 year: 0 ident: ref5 article-title: Analytical study on network spectrum efficiency of ultra dense networks publication-title: Proc IEEE 24th Annu Int Symp Personal Indoor Mobile Radio Commun – ident: ref16 doi: 10.1109/TVT.2014.2387798 – ident: ref19 doi: 10.1109/ICC.2012.6364194 – year: 2013 ident: ref9 publication-title: Too Big to Ignore The Business Case for Big Data – ident: ref10 doi: 10.1038/nature14540 – ident: ref28 doi: 10.1007/s10472-011-9258-6 – ident: ref3 doi: 10.1109/MCOM.2013.6525591 – volume: 292 start-page: 279 year: 1992 ident: ref26 article-title: Technical note Q,-learning publication-title: Mach Learn – volume: 57 start-page: 2734 year: 2009 ident: ref31 article-title: Chunk-based resource allocation in OFDMA systems-Part I: Chunk allocation publication-title: IEEE Trans Commun doi: 10.1109/TCOMM.2009.09.080067 – ident: ref4 doi: 10.1109/MWC.2013.6704480 – year: 2015 ident: ref22 article-title: 4G americas LTE aggregation unlicensed spectrum white paper – volume: 8 year: 1992 ident: ref27 publication-title: Q-learning – ident: ref13 doi: 10.1162/jmlr.2003.4.6.1039 – year: 2013 ident: ref29 article-title: Quality of service (QoS) and policy management in mobile data networks – ident: ref25 doi: 10.1109/TMC.2016.2597851 – ident: ref8 doi: 10.1109/MNET.2015.7166185 – ident: ref23 doi: 10.1017/CBO9781139061407 – ident: ref32 doi: 10.1109/VETECS.2008.554 – ident: ref12 doi: 10.1145/1143844.1143955 |
| SSID | ssj0014491 |
| Score | 2.48102 |
| Snippet | The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4539 |
| SubjectTerms | access control Cellular communication Complexity Data management Learning (artificial intelligence) Licensed band Long Term Evolution Machine learning Markov analysis Monte-Carlo tree search Multiagent systems Optimization Quality of service Quality of service architectures Radio access technologies reinforcement learning Resource allocation Resource management Throughput unlicensed band Wireless communications Wireless fidelity Wireless networks |
| Title | Smart Multi-RAT Access Based on Multiagent Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/8258973 https://www.proquest.com/docview/2174501361 |
| Volume | 67 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA8sSKSNE8eOx4KoKqQyVCnqFjl-MAApgnTh12M7TlQBQmyRYluW7-z77Lv7DoBLhJRWcaQCySMZ4ITKgCWaBEhijSLBtHQUG7MHMl3g-2Wy7IDrNhdGKeWCz9TQfjpfvlyJtX0qG5nbTMpovAW2aErqXK3WY4Cxr46HzAY2sKBxSYZslD1mNoYrHUZGGZHNmt4wQa6myo-D2FmXyR6YNfOqg0qeh-uqGIrPb5SN_534Ptj1MBOOa704AB1VHoKdDfLBnjlQX43aQJeBG8zHGRy72onwxtg1CVdl_Yfb1Cs4V45gVbi3ROg5WZ-OwGJyl91OA19QIRARQ5U5cklYpEwykcaSaYE1w5oQnYhQJZxHSBEuGWWUK8KkAQs6JiE3EIYrgzKIiI9Bt1yV6gRAXRjzRxGinBIsuIE9XKdC2KwfKQvN-mDUrHEuPNu4LXrxkrtbR8hyI5XcSiX3UumDq7bHW8208Ufbnl3ktp1f3z4YNGLM_Vb8yO2dK7HMdOj0915nYNuOXUcxDkC3el-rc4M0quLCqdgXkVPOxg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IoFMjAgkTaOHGceCyIqkDboUpRt8jxgwFoEbQLvx7beagChNgixZYt39n32Xf3HcAFQlLJwJeuYL5wcRgJl4aKuEhghXxOlbAUG8MR6U_w_TSc1uCqyoWRUtrgM9k2n9aXL-Z8aZ7KOvo2E9MoWIP1EGMc5tlalc8A46I-HtJbWAOD0inp0U7ymJgorrjta3VEJm96xQjZqio_jmJrX3o7MCxnloeVPLeXi6zNP7-RNv536ruwXQBNp5trxh7U5GwftlboBxv6SH3ViuPYHFx33E2crq2e6Fxryyac-Sz_w0zylTOWlmKV29dEp2BlfTqASe82uem7RUkFl_sULfShS7wspoLyOBBUcawoVoSokHsyZMxHkjBBIxoxSajQcEEFxGMaxDCpcQbhwSHUZ_OZPAJHZdoARghFLCKYMw18mIo5N3k_QmSKNqFTrnHKC75xU_biJbX3Do-mWiqpkUpaSKUJl1WPt5xr44-2DbPIVbtifZvQKsWYFpvxIzW3rtBw06Hj33udw0Y_GQ7Swd3o4QQ2zTh5TGML6ov3pTzVuGORnVl1-wKR5NIT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Smart+Multi-RAT+Access+Based+on+Multiagent+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Yan%2C+Mu&rft.au=Feng%2C+Gang&rft.au=Zhou%2C+Jianhong&rft.au=Qin%2C+Shuang&rft.date=2018-05-01&rft.issn=0018-9545&rft.eissn=1939-9359&rft.volume=67&rft.issue=5&rft.spage=4539&rft.epage=4551&rft_id=info:doi/10.1109%2FTVT.2018.2793186&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVT_2018_2793186 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |