AN OPEN-SOURCE CANOPY CLASSIFICATION SYSTEM USING MACHINE-LEARNING TECHNIQUES WITHIN A PYTHON FRAMEWORK
Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and resolution of satellite imagery have signi...
        Saved in:
      
    
          | Published in | International archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVI-4/W2-2021; pp. 175 - 182 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article Conference Proceeding | 
| Language | English | 
| Published | 
        Gottingen
          Copernicus GmbH
    
        19.08.2021
     Copernicus Publications  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2194-9034 1682-1750 1682-1777 2194-9034  | 
| DOI | 10.5194/isprs-archives-XLVI-4-W2-2021-175-2021 | 
Cover
| Abstract | Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and resolution of satellite imagery have significantly improved. Oftentimes, leveraging high-resolution imagery such as the National Agriculture Imagery Program (NAIP) imagery requires proprietary software. However, the lack of insight into the inner workings of such software and the inability of modifying its code lead many researchers towards open-source solutions. In this research, we introduce CanoClass, an open-source cross-platform canopy classification system written in Python. CanoClass utilizes the Random Forest and Extra Trees algorithms provided by scikit-learn to classify canopy using remote sensing imagery. Based on our benchmark tests, this new canopy classification system was 283 % to 464 % faster than commercial Feature Analyst, but it produced comparable results with a similarity of 87.56 % to 87.62 %. | 
    
|---|---|
| AbstractList | Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and resolution of satellite imagery have significantly improved. Oftentimes, leveraging high-resolution imagery such as the National Agriculture Imagery Program (NAIP) imagery requires proprietary software. However, the lack of insight into the inner workings of such software and the inability of modifying its code lead many researchers towards open-source solutions. In this research, we introduce CanoClass, an open-source cross-platform canopy classification system written in Python. CanoClass utilizes the Random Forest and Extra Trees algorithms provided by scikit-learn to classify canopy using remote sensing imagery. Based on our benchmark tests, this new canopy classification system was 283 % to 464 % faster than commercial Feature Analyst, but it produced comparable results with a similarity of 87.56 % to 87.62 %. | 
    
| Author | Smith, O. Cho, H.  | 
    
| Author_xml | – sequence: 1 givenname: O. surname: Smith fullname: Smith, O. – sequence: 2 givenname: H. surname: Cho fullname: Cho, H.  | 
    
| BookMark | eNqFkV9v0zAUxSM0JMbYd4jEs4f_xsljFKWtRZp0TUrpk-W4zkgVmmKvG_v2uC1DiBckS76699zfkX3eB1f7cW-C4A7BO4YS-ql3B-uAsvpb_2Qc-Fp8EYCCNQYYYgQQZ-fiTXCNvRokkNCrv-p3wa1zOwgholHEILsOHtIyrBZ5CepqtczyMEvLarEJsyKtazERWdqIqgzrTd3k83BVi3IaztNsJsocFHm6LE-NJs9mpbhf5XW4Fo2fhWm42DQzvzhZpvN8XS0_fwjedmpw5vb3fROsJnmTzUBRTb1LATROkH9Ap1SXwI5TzLkiuEOa4Y6zGLIt7DRVGnJEtCEaIR5RyFqT-BNt45hwv0puAnHhbke1kwfbf1f2RY6ql-fGaB-kso-9HoxsW80IZi3UvKVki1sUE4Mxx4b7QUw8a3phHfcH9fKshuEPEEF5ikOe45Cvccifw1MvqXzG8pSC9HGcC0_6eCEd7PjjaNyj3I1Hu_cfITGLGUFxxLlXTS4qbUfnrOn-Z3dK39ut_7X7BVlFojo | 
    
| ContentType | Journal Article Conference Proceeding  | 
    
| Copyright | 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ L.G L6V M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.5194/isprs-archives-XLVI-4-W2-2021-175-2021 | 
    
| DatabaseName | CrossRef Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database (Proquest) Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Visual Arts | 
    
| EISSN | 2194-9034 | 
    
| EndPage | 182 | 
    
| ExternalDocumentID | oai_doaj_org_article_bbc5325b0c7b43d2b183e2272e7c5383 10.5194/isprs-archives-xlvi-4-w2-2021-175-2021 10_5194_isprs_archives_XLVI_4_W2_2021_175_2021  | 
    
| GroupedDBID | 8FE 8FG 8FH AAFWJ AAYXX ABJCF ACIWK ADBBV AEUYN AFKRA AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ L6V LK5 M7R M7S OK1 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO TUS 7TN ABUWG AZQEC DWQXO F1W H96 L.G PKEHL PQEST PQQKQ PQUKI PRINS ADTOC H13 UNPAY  | 
    
| ID | FETCH-LOGICAL-c2911-1faaf90f74277a32f1c52f75805d0fc4ac0713ce3c1176405be9be96d8837aaf3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2194-9034 1682-1750 1682-1777  | 
    
| IngestDate | Fri Oct 03 12:52:14 EDT 2025 Tue Aug 19 17:34:31 EDT 2025 Fri Jul 25 11:58:20 EDT 2025 Wed Oct 01 03:35:09 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2911-1faaf90f74277a32f1c52f75805d0fc4ac0713ce3c1176405be9be96d8837aaf3 | 
    
| Notes | ObjectType-Article-1 ObjectType-Feature-2 SourceType-Conference Papers & Proceedings-1 content type line 22  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/175/2021/isprs-archives-XLVI-4-W2-2021-175-2021.pdf | 
    
| PQID | 2585318677 | 
    
| PQPubID | 2037674 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_bbc5325b0c7b43d2b183e2272e7c5383 unpaywall_primary_10_5194_isprs_archives_xlvi_4_w2_2021_175_2021 proquest_journals_2585318677 crossref_primary_10_5194_isprs_archives_XLVI_4_W2_2021_175_2021  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-08-19 | 
    
| PublicationDateYYYYMMDD | 2021-08-19 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-19 day: 19  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Gottingen | 
    
| PublicationPlace_xml | – name: Gottingen | 
    
| PublicationTitle | International archives of the photogrammetry, remote sensing and spatial information sciences. | 
    
| PublicationYear | 2021 | 
    
| Publisher | Copernicus GmbH Copernicus Publications  | 
    
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications  | 
    
| SSID | ssj0001466505 | 
    
| Score | 2.2125394 | 
    
| Snippet | Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 175 | 
    
| SubjectTerms | Algorithms Canopies Canopy Classification Deforestation Forestry research Image resolution Imagery Machine learning Plant cover Remote sensing Resolution Satellite imagery Software Source code Spaceborne remote sensing  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb5swFLemHvZxmLovLWs3-bArKxhjwqmlyBnZEpIlpElOlm1gihRlUWnW7r_fsyFVuksvk0CybCw93nvY72c9fg-hz6EKlfKDwiEFcx1adU0SADNEyNqj5jRe2tqAw4ylM_ptESwOSn2ZnLCGHrhR3JlSOvBJoFwdKuoXRIEPloSEpAxhoGt5Pt1udACm7OkKZRB6mPxFj0EICXuk-xQBUv0CAQs9W9Xb69qRLbWrsxhc9R3qzAm4DPHMw7bxYKeyhP4PotBnu81W_rmV6_XBhtQ7Ri_bSBLHzRu8Qk_KzWv04mpV75re-g36GWd4NOawaI5mk4TjJM5G4yVOBjGsob32H2I8XU5zPsSmAMdXPIyTtJ9xZ8DjSWY6cp6kWf_HjE_xvJ_DGI7xeJmnMLE3iYd8Ppp8f4tmPZ4nqdNWVnA0iUwOWyVlFbkV4OIwlD6pPB2QCqCDGxRupanUBrzq0teeFzKI6VQZwcWKLuBZmOq_Q0ebX5vyPcJMKlBW4WlYrmhYeVIGVGu3iHym4fY76HyvRbFtCDQEAA9jB2HtIPZ2EMYOgoo5EUb9AuxgGx10aZR_P9sQYtsOcBPRuol4zE066HRvOtF-pbUggJV8y-jXQRf35nxMzLv17xWIefuPmB_-h5gn6Ln1QcO5G52io5vrXfkRop4b9ck6-F97GvLm priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db5swELe6VNrH0z46NVs3-WGvXsEYCA9TRxEZ2RLCSNIkT5ZtoIoUJVlI1u2_35lBsu5hk0BCNhYn_-zznTn_DqF3rnSltOyM0MwxCCs6OgjA0UTIymR6N15UuQEHsRNN2OeZPTtBcXMWRodVNjqxUtTZWuk98ksKdq1Vsa9dbb4RnTVK_11tUmiIOrVC9qGiGHuATqlmxmqh0-swTtLjrgtzwCTRcY2mA6YlrJ3GQwQe7HswZNjlotxsSyJqylcy69_0CCNTCkOJmvrl6uHeClYR_d-zTh_tVxvx804sl38sVN2n6Ox4hA8nh8XpGTrJV8_Rk5tFuRdL7G935Qt068d4mISgUoeTNAhx4MfDZI6Dvg8atlufMMaj-WgcDrBOz_EJD_wg6sUh6Yd-GuuCcRhEce_rJBzhaW8MddjHyXwcQcNu6g_C6TD9coYm3XAcRKTOu0AU9XSEWyFE4RkFeM2uKyxamMqmBTgWhp0ZhWJCaddW5ZYyTdcBi0_mHlxO1gFvF5paL1FrtV7l5wg7QkKXZaYCZcbcwhTCZkoZmWc5Cm6rja6avuSb3_QaHNwSjQav0OANGlyjwRmfUq5B4IBG9dBG1xqCQ2tNl10VrLe3vJ59XEplW9SWhnIlszIqQZHllLo0d6GiA2JcNADyeg6X_Dji2ujjAdT_iflj-X0BYt79Jearf3_hNXpcjTHNtetdoNZuu8_fgLWzk2_rIfwLb67zwA priority: 102 providerName: ProQuest  | 
    
| Title | AN OPEN-SOURCE CANOPY CLASSIFICATION SYSTEM USING MACHINE-LEARNING TECHNIQUES WITHIN A PYTHON FRAMEWORK | 
    
| URI | https://www.proquest.com/docview/2585318677 https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/175/2021/isprs-archives-XLVI-4-W2-2021-175-2021.pdf https://doaj.org/article/bbc5325b0c7b43d2b183e2272e7c5383  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | XLVI-4/W2-2021 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2194-9034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2194-9034 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001466505 issn: 2194-9034 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lj9owELZ2Qerj0OdWpd2iHHo1mzhOAqc2G4WFFgLlscDJsp1ki0oBEShtj_0r_aMdm7AtXHrooVIiWY4dj8cTz3zReAah157whLCdGJPYNTFNq8oJwFWBkKVF1d94rnMDtiO3MaTvxs74BP3Yn4VRbpXT-RqrVcbLj4u1dlL6jFcJUJ7gDLAdzpSvMZ9hWAIMekJj-HHruokpHhFYdmJdgFK80IVptlxl-m0qiis-bIahmS5UlnF6ioquA_Z8ARWHUdefKKTmgvkJbczfZZ3KEb5yClOy6R0E6LcCRhA9Hujr7MsUBtoeDXSg_XSSgAPL9u5mvuTftnw2-0PJ1R-in3v27HxbPlU2a1GR348iR_5f_j1CD3Ib2vB3Qv8YnSTzJ-j-9TTb7Gqzp-jGj4xONwR10Rn2gtAI_KjTnRhBywftUc9PTxv9SX8Qtg2VeuTKaPtBoxmFuBX6vUhVDMKgETU_DMO-MWoO4JnhG93JoAEd6z2_HY46vfdnaFgPB0ED5zklsCQ15b2Xcp7WzNSjxPO4TVJLOiQF0GQ6sZlKyqWC7TKxpWV5LlizIqnB5cZVQPLQ1X6GCvPFPHmODJcLmHtsSdioqZdanDtUSjOu2a6E2y6hN_u1Zstd6BAGkEtJC9NsZXu2MsVWRtmIMMVNBmzVhRK6VCJy21uFAtcVi9UNy3cWJoR0bOIIU3qC2jERsEknhHgk8eBBFcg43wsYy_enjBFAibaOZVhCb2-F7m9kKqEGMrdHZL7491e8RPe0QKlYw7VzVFivNskrsPbWooxOq_WrMipehlG3V9b_TMr5J_oLH_JIAg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJjE48TFEYYAPcAxLHCdpDtPIQkpC07S06dqejOMkU6WqLU1L2T_H38ZzSFrGAU6TEsmy4-TJP_t9OM_vIfTWSqwk0Y1UIampKjRvSicAUwZCFhqVu_G8zA3YiUx_SD-PjfEB-lmfhZFulTVPLBl1uhByj_yMgF6rl9HXLpbfFJk1Sv5drVNo8Cq1QnpehhirDna0s5stmHDFefAR8H5HSMuLXV-psgwogtjSnyvnPLfVHGxEy-I6yTVhkBzUaNVI1VxQLqQhJzJdaJplgn6TZDZcZtoE2w666vDee-iI6tQG4-_o0ot6_f0uDzVBBZJ-lJoJqizIavU-Aov5PShO9GxaLFeFwqsQs8o4vAoUqowITF2iyYfLwi2JWSYWuKUNH2_mS36z5bPZH4Kx9Qid7I8M4t5OGD5GB9n8CXp4NS02fIad1bp4iq6dCHd7HrDw7rDveth1om5vgt3QAY7eqk4048FkEHsdLNOBfMIdx_WDyFNCz-lHsiL2XD8Kvgy9AR4FMbRhB_cmsQ8dW32n4426_fYJGt4JAs_Q4Xwxz54jbPIEhizVBDBPauUa5wYVQk1t3RRw6w10UY8lW_4O58HADJJosBINVqPBJBqMshFhEgQGaJSFBrqUEOx6y_DcZcVidc2q1c6SRBg6MRJVWAnVU5IA48wIsUhmQUMTyDitAWQVzyjYfoY30IcdqP8j88fs-xTI3P5F5ot_f-ENOvbjTsjCIGq_RA_K-Sbj_Nqn6HC92mSvQNNaJ6-r6YzR17teQb8AHSkwXw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lj9MwELaWrsTjwHMRhQX5wNXdxHGS9gQhSmmhTUsf2_Zk2U6yVJS2aloKHPkr_FHGbrrQXjhwQEoky8_JeOKZL5rMIPTSl76UjpsQmngWYVlVOwF4OhCyspn-Gi9MbsB27DWG7N3YHZ-gH_t_YbRb5XS-JnqXyfLjYm2clD6TVQqUpyQHbEdy7WssZgS2gICeMBh-3LpsEkZGFLad2hegFC9MYZovV7mZTUdxJYfdCHQzhcoyyW6gU88Fe76ETodxN5hopOaB-Ql9rN9lk8oR3nIGj-SwmwjQbwWMIHa80NfZlykstD1a6ED7mSQBB5btrc18Kb5txWz2h5Kr30M_9-zZ-bZ8qmzWsqK-H0WO_L_8u4_uFjY0DnZC_wCdpPOH6M7lNN_savNH6CqIcacbgbroDHthhMMg7nQnOGwFoD3qxd_TuD_pD6I21qlH3uJ2EDaacURaUdCLdcUgChtx88Mw6uNRcwBtOMDdyaABA-u9oB2NOr33Z2hYjwZhgxQ5JYiiNe29lwmR1azMZ9T3hUMzW7k0A9BkuYmVKSaUhu0qdZRt-x5YszKtweUlVUDyMNR5jErzxTx9grAnJDx7Yis4qJmf2UK4TCkrqTmegtspo1f7vebLXegQDpBLSws3bOV7tnLNVs74iHLNTQ5sNYUyeqNF5Hq0DgVuKharK16cLFxK5TrUlZbyJXMSKuGQTin1aepDQxXION8LGC_Op5xTQImOiWVYRq-vhe5vZGqhBjK3R2Q-_fcpnqHbRqB0rOHaOSqtV5v0OVh7a_mieB1_AaqORI0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=AN+OPEN-SOURCE+CANOPY+CLASSIFICATION+SYSTEM+USING+MACHINE-LEARNING+TECHNIQUES+WITHIN+A+PYTHON+FRAMEWORK&rft.au=Smith%2C+O&rft.au=Cho%2C+H&rft.date=2021-08-19&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVI-4%2FW2-2021&rft.spage=175&rft.epage=182&rft_id=info:doi/10.5194%2Fisprs-archives-XLVI-4-W2-2021-175-2021 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon |