AN OPEN-SOURCE CANOPY CLASSIFICATION SYSTEM USING MACHINE-LEARNING TECHNIQUES WITHIN A PYTHON FRAMEWORK

Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and resolution of satellite imagery have signi...

Full description

Saved in:
Bibliographic Details
Published inInternational archives of the photogrammetry, remote sensing and spatial information sciences. Vol. XLVI-4/W2-2021; pp. 175 - 182
Main Authors Smith, O., Cho, H.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Gottingen Copernicus GmbH 19.08.2021
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2194-9034
1682-1750
1682-1777
2194-9034
DOI10.5194/isprs-archives-XLVI-4-W2-2021-175-2021

Cover

Abstract Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and resolution of satellite imagery have significantly improved. Oftentimes, leveraging high-resolution imagery such as the National Agriculture Imagery Program (NAIP) imagery requires proprietary software. However, the lack of insight into the inner workings of such software and the inability of modifying its code lead many researchers towards open-source solutions. In this research, we introduce CanoClass, an open-source cross-platform canopy classification system written in Python. CanoClass utilizes the Random Forest and Extra Trees algorithms provided by scikit-learn to classify canopy using remote sensing imagery. Based on our benchmark tests, this new canopy classification system was 283 % to 464 % faster than commercial Feature Analyst, but it produced comparable results with a similarity of 87.56 % to 87.62 %.
AbstractList Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role in monitoring tree canopy on a large scale. As remote sensing technologies advance, the quality and resolution of satellite imagery have significantly improved. Oftentimes, leveraging high-resolution imagery such as the National Agriculture Imagery Program (NAIP) imagery requires proprietary software. However, the lack of insight into the inner workings of such software and the inability of modifying its code lead many researchers towards open-source solutions. In this research, we introduce CanoClass, an open-source cross-platform canopy classification system written in Python. CanoClass utilizes the Random Forest and Extra Trees algorithms provided by scikit-learn to classify canopy using remote sensing imagery. Based on our benchmark tests, this new canopy classification system was 283 % to 464 % faster than commercial Feature Analyst, but it produced comparable results with a similarity of 87.56 % to 87.62 %.
Author Smith, O.
Cho, H.
Author_xml – sequence: 1
  givenname: O.
  surname: Smith
  fullname: Smith, O.
– sequence: 2
  givenname: H.
  surname: Cho
  fullname: Cho, H.
BookMark eNqFkV9v0zAUxSM0JMbYd4jEs4f_xsljFKWtRZp0TUrpk-W4zkgVmmKvG_v2uC1DiBckS76699zfkX3eB1f7cW-C4A7BO4YS-ql3B-uAsvpb_2Qc-Fp8EYCCNQYYYgQQZ-fiTXCNvRokkNCrv-p3wa1zOwgholHEILsOHtIyrBZ5CepqtczyMEvLarEJsyKtazERWdqIqgzrTd3k83BVi3IaztNsJsocFHm6LE-NJs9mpbhf5XW4Fo2fhWm42DQzvzhZpvN8XS0_fwjedmpw5vb3fROsJnmTzUBRTb1LATROkH9Ap1SXwI5TzLkiuEOa4Y6zGLIt7DRVGnJEtCEaIR5RyFqT-BNt45hwv0puAnHhbke1kwfbf1f2RY6ql-fGaB-kso-9HoxsW80IZi3UvKVki1sUE4Mxx4b7QUw8a3phHfcH9fKshuEPEEF5ikOe45Cvccifw1MvqXzG8pSC9HGcC0_6eCEd7PjjaNyj3I1Hu_cfITGLGUFxxLlXTS4qbUfnrOn-Z3dK39ut_7X7BVlFojo
ContentType Journal Article
Conference Proceeding
Copyright 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
L.G
L6V
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.5194/isprs-archives-XLVI-4-W2-2021-175-2021
DatabaseName CrossRef
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database (Proquest)
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 2194-9034
EndPage 182
ExternalDocumentID oai_doaj_org_article_bbc5325b0c7b43d2b183e2272e7c5383
10.5194/isprs-archives-xlvi-4-w2-2021-175-2021
10_5194_isprs_archives_XLVI_4_W2_2021_175_2021
GroupedDBID 8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ACIWK
ADBBV
AEUYN
AFKRA
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
L6V
LK5
M7R
M7S
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PUEGO
TUS
7TN
ABUWG
AZQEC
DWQXO
F1W
H96
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
H13
UNPAY
ID FETCH-LOGICAL-c2911-1faaf90f74277a32f1c52f75805d0fc4ac0713ce3c1176405be9be96d8837aaf3
IEDL.DBID UNPAY
ISSN 2194-9034
1682-1750
1682-1777
IngestDate Fri Oct 03 12:52:14 EDT 2025
Tue Aug 19 17:34:31 EDT 2025
Fri Jul 25 11:58:20 EDT 2025
Wed Oct 01 03:35:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2911-1faaf90f74277a32f1c52f75805d0fc4ac0713ce3c1176405be9be96d8837aaf3
Notes ObjectType-Article-1
ObjectType-Feature-2
SourceType-Conference Papers & Proceedings-1
content type line 22
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/175/2021/isprs-archives-XLVI-4-W2-2021-175-2021.pdf
PQID 2585318677
PQPubID 2037674
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_bbc5325b0c7b43d2b183e2272e7c5383
unpaywall_primary_10_5194_isprs_archives_xlvi_4_w2_2021_175_2021
proquest_journals_2585318677
crossref_primary_10_5194_isprs_archives_XLVI_4_W2_2021_175_2021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-19
PublicationDateYYYYMMDD 2021-08-19
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-19
  day: 19
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle International archives of the photogrammetry, remote sensing and spatial information sciences.
PublicationYear 2021
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
SSID ssj0001466505
Score 2.2125394
Snippet Studying deforestation has been an important topic in forestry research. Especially, canopy classification using remotely sensed data plays an essential role...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 175
SubjectTerms Algorithms
Canopies
Canopy
Classification
Deforestation
Forestry research
Image resolution
Imagery
Machine learning
Plant cover
Remote sensing
Resolution
Satellite imagery
Software
Source code
Spaceborne remote sensing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb5swFLemHvZxmLovLWs3-bArKxhjwqmlyBnZEpIlpElOlm1gihRlUWnW7r_fsyFVuksvk0CybCw93nvY72c9fg-hz6EKlfKDwiEFcx1adU0SADNEyNqj5jRe2tqAw4ylM_ptESwOSn2ZnLCGHrhR3JlSOvBJoFwdKuoXRIEPloSEpAxhoGt5Pt1udACm7OkKZRB6mPxFj0EICXuk-xQBUv0CAQs9W9Xb69qRLbWrsxhc9R3qzAm4DPHMw7bxYKeyhP4PotBnu81W_rmV6_XBhtQ7Ri_bSBLHzRu8Qk_KzWv04mpV75re-g36GWd4NOawaI5mk4TjJM5G4yVOBjGsob32H2I8XU5zPsSmAMdXPIyTtJ9xZ8DjSWY6cp6kWf_HjE_xvJ_DGI7xeJmnMLE3iYd8Ppp8f4tmPZ4nqdNWVnA0iUwOWyVlFbkV4OIwlD6pPB2QCqCDGxRupanUBrzq0teeFzKI6VQZwcWKLuBZmOq_Q0ebX5vyPcJMKlBW4WlYrmhYeVIGVGu3iHym4fY76HyvRbFtCDQEAA9jB2HtIPZ2EMYOgoo5EUb9AuxgGx10aZR_P9sQYtsOcBPRuol4zE066HRvOtF-pbUggJV8y-jXQRf35nxMzLv17xWIefuPmB_-h5gn6Ln1QcO5G52io5vrXfkRop4b9ck6-F97GvLm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db5swELe6VNrH0z46NVs3-WGvXsEYCA9TRxEZ2RLCSNIkT5ZtoIoUJVlI1u2_35lBsu5hk0BCNhYn_-zznTn_DqF3rnSltOyM0MwxCCs6OgjA0UTIymR6N15UuQEHsRNN2OeZPTtBcXMWRodVNjqxUtTZWuk98ksKdq1Vsa9dbb4RnTVK_11tUmiIOrVC9qGiGHuATqlmxmqh0-swTtLjrgtzwCTRcY2mA6YlrJ3GQwQe7HswZNjlotxsSyJqylcy69_0CCNTCkOJmvrl6uHeClYR_d-zTh_tVxvx804sl38sVN2n6Ox4hA8nh8XpGTrJV8_Rk5tFuRdL7G935Qt068d4mISgUoeTNAhx4MfDZI6Dvg8atlufMMaj-WgcDrBOz_EJD_wg6sUh6Yd-GuuCcRhEce_rJBzhaW8MddjHyXwcQcNu6g_C6TD9coYm3XAcRKTOu0AU9XSEWyFE4RkFeM2uKyxamMqmBTgWhp0ZhWJCaddW5ZYyTdcBi0_mHlxO1gFvF5paL1FrtV7l5wg7QkKXZaYCZcbcwhTCZkoZmWc5Cm6rja6avuSb3_QaHNwSjQav0OANGlyjwRmfUq5B4IBG9dBG1xqCQ2tNl10VrLe3vJ59XEplW9SWhnIlszIqQZHllLo0d6GiA2JcNADyeg6X_Dji2ujjAdT_iflj-X0BYt79Jearf3_hNXpcjTHNtetdoNZuu8_fgLWzk2_rIfwLb67zwA
  priority: 102
  providerName: ProQuest
Title AN OPEN-SOURCE CANOPY CLASSIFICATION SYSTEM USING MACHINE-LEARNING TECHNIQUES WITHIN A PYTHON FRAMEWORK
URI https://www.proquest.com/docview/2585318677
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/175/2021/isprs-archives-XLVI-4-W2-2021-175-2021.pdf
https://doaj.org/article/bbc5325b0c7b43d2b183e2272e7c5383
UnpaywallVersion publishedVersion
Volume XLVI-4/W2-2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2194-9034
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001466505
  issn: 2194-9034
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lj9owELZ2Qerj0OdWpd2iHHo1mzhOAqc2G4WFFgLlscDJsp1ki0oBEShtj_0r_aMdm7AtXHrooVIiWY4dj8cTz3zReAah157whLCdGJPYNTFNq8oJwFWBkKVF1d94rnMDtiO3MaTvxs74BP3Yn4VRbpXT-RqrVcbLj4u1dlL6jFcJUJ7gDLAdzpSvMZ9hWAIMekJj-HHruokpHhFYdmJdgFK80IVptlxl-m0qiis-bIahmS5UlnF6ioquA_Z8ARWHUdefKKTmgvkJbczfZZ3KEb5yClOy6R0E6LcCRhA9Hujr7MsUBtoeDXSg_XSSgAPL9u5mvuTftnw2-0PJ1R-in3v27HxbPlU2a1GR348iR_5f_j1CD3Ib2vB3Qv8YnSTzJ-j-9TTb7Gqzp-jGj4xONwR10Rn2gtAI_KjTnRhBywftUc9PTxv9SX8Qtg2VeuTKaPtBoxmFuBX6vUhVDMKgETU_DMO-MWoO4JnhG93JoAEd6z2_HY46vfdnaFgPB0ED5zklsCQ15b2Xcp7WzNSjxPO4TVJLOiQF0GQ6sZlKyqWC7TKxpWV5LlizIqnB5cZVQPLQ1X6GCvPFPHmODJcLmHtsSdioqZdanDtUSjOu2a6E2y6hN_u1Zstd6BAGkEtJC9NsZXu2MsVWRtmIMMVNBmzVhRK6VCJy21uFAtcVi9UNy3cWJoR0bOIIU3qC2jERsEknhHgk8eBBFcg43wsYy_enjBFAibaOZVhCb2-F7m9kKqEGMrdHZL7491e8RPe0QKlYw7VzVFivNskrsPbWooxOq_WrMipehlG3V9b_TMr5J_oLH_JIAg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfGJjE48TFEYYAPcAxLHCdpDtPIQkpC07S06dqejOMkU6WqLU1L2T_H38ZzSFrGAU6TEsmy4-TJP_t9OM_vIfTWSqwk0Y1UIampKjRvSicAUwZCFhqVu_G8zA3YiUx_SD-PjfEB-lmfhZFulTVPLBl1uhByj_yMgF6rl9HXLpbfFJk1Sv5drVNo8Cq1QnpehhirDna0s5stmHDFefAR8H5HSMuLXV-psgwogtjSnyvnPLfVHGxEy-I6yTVhkBzUaNVI1VxQLqQhJzJdaJplgn6TZDZcZtoE2w666vDee-iI6tQG4-_o0ot6_f0uDzVBBZJ-lJoJqizIavU-Aov5PShO9GxaLFeFwqsQs8o4vAoUqowITF2iyYfLwi2JWSYWuKUNH2_mS36z5bPZH4Kx9Qid7I8M4t5OGD5GB9n8CXp4NS02fIad1bp4iq6dCHd7HrDw7rDveth1om5vgt3QAY7eqk4048FkEHsdLNOBfMIdx_WDyFNCz-lHsiL2XD8Kvgy9AR4FMbRhB_cmsQ8dW32n4426_fYJGt4JAs_Q4Xwxz54jbPIEhizVBDBPauUa5wYVQk1t3RRw6w10UY8lW_4O58HADJJosBINVqPBJBqMshFhEgQGaJSFBrqUEOx6y_DcZcVidc2q1c6SRBg6MRJVWAnVU5IA48wIsUhmQUMTyDitAWQVzyjYfoY30IcdqP8j88fs-xTI3P5F5ot_f-ENOvbjTsjCIGq_RA_K-Sbj_Nqn6HC92mSvQNNaJ6-r6YzR17teQb8AHSkwXw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lj9MwELaWrsTjwHMRhQX5wNXdxHGS9gQhSmmhTUsf2_Zk2U6yVJS2aloKHPkr_FHGbrrQXjhwQEoky8_JeOKZL5rMIPTSl76UjpsQmngWYVlVOwF4OhCyspn-Gi9MbsB27DWG7N3YHZ-gH_t_YbRb5XS-JnqXyfLjYm2clD6TVQqUpyQHbEdy7WssZgS2gICeMBh-3LpsEkZGFLad2hegFC9MYZovV7mZTUdxJYfdCHQzhcoyyW6gU88Fe76ETodxN5hopOaB-Ql9rN9lk8oR3nIGj-SwmwjQbwWMIHa80NfZlykstD1a6ED7mSQBB5btrc18Kb5txWz2h5Kr30M_9-zZ-bZ8qmzWsqK-H0WO_L_8u4_uFjY0DnZC_wCdpPOH6M7lNN_savNH6CqIcacbgbroDHthhMMg7nQnOGwFoD3qxd_TuD_pD6I21qlH3uJ2EDaacURaUdCLdcUgChtx88Mw6uNRcwBtOMDdyaABA-u9oB2NOr33Z2hYjwZhgxQ5JYiiNe29lwmR1azMZ9T3hUMzW7k0A9BkuYmVKSaUhu0qdZRt-x5YszKtweUlVUDyMNR5jErzxTx9grAnJDx7Yis4qJmf2UK4TCkrqTmegtspo1f7vebLXegQDpBLSws3bOV7tnLNVs74iHLNTQ5sNYUyeqNF5Hq0DgVuKharK16cLFxK5TrUlZbyJXMSKuGQTin1aepDQxXION8LGC_Op5xTQImOiWVYRq-vhe5vZGqhBjK3R2Q-_fcpnqHbRqB0rOHaOSqtV5v0OVh7a_mieB1_AaqORI0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+archives+of+the+photogrammetry%2C+remote+sensing+and+spatial+information+sciences.&rft.atitle=AN+OPEN-SOURCE+CANOPY+CLASSIFICATION+SYSTEM+USING+MACHINE-LEARNING+TECHNIQUES+WITHIN+A+PYTHON+FRAMEWORK&rft.au=Smith%2C+O&rft.au=Cho%2C+H&rft.date=2021-08-19&rft.pub=Copernicus+GmbH&rft.issn=1682-1750&rft.eissn=2194-9034&rft.volume=XLVI-4%2FW2-2021&rft.spage=175&rft.epage=182&rft_id=info:doi/10.5194%2Fisprs-archives-XLVI-4-W2-2021-175-2021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-9034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-9034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-9034&client=summon