Vessel Segmentation in Medical Imaging Using a Tight-Frame--Based Algorithm
Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a fe...
        Saved in:
      
    
          | Published in | SIAM journal on imaging sciences Vol. 6; no. 1; pp. 464 - 486 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia
          Society for Industrial and Applied Mathematics
    
        01.01.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1936-4954 1936-4954  | 
| DOI | 10.1137/110843472 | 
Cover
| Abstract | Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation such as model-based approaches, pattern recognition techniques, tracking-based approaches, and artificial intelligence--based approaches. In this paper, we propose applying the tight-frame approach to automatically identify tube-like structures in medical imaging, with the primary application of segmenting blood vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth the potential boundary and sharpen the region. The cost per iteration is proportional to the number of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments on synthetic and real two-dimensional (2D) and three-dimensional (3D) images demonstrate that our method is more accurate when compared with some representative segmentation methods, and it usually converges within a few iterations. [PUBLICATION ABSTRACT] | 
    
|---|---|
| AbstractList | Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation such as model-based approaches, pattern recognition techniques, tracking-based approaches, and artificial intelligence--based approaches. In this paper, we propose applying the tight-frame approach to automatically identify tube-like structures in medical imaging, with the primary application of segmenting blood vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth the potential boundary and sharpen the region. The cost per iteration is proportional to the number of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments on synthetic and real two-dimensional (2D) and three-dimensional (3D) images demonstrate that our method is more accurate when compared with some representative segmentation methods, and it usually converges within a few iterations. [PUBLICATION ABSTRACT] Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation such as model-based approaches, pattern recognition techniques, tracking-based approaches, and artificial intelligence--based approaches. In this paper, we propose applying the tight-frame approach to automatically identify tube-like structures in medical imaging, with the primary application of segmenting blood vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth the potential boundary and sharpen the region. The cost per iteration is proportional to the number of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments on synthetic and real two-dimensional (2D) and three-dimensional (3D) images demonstrate that our method is more accurate when compared with some representative segmentation methods, and it usually converges within a few iterations.  | 
    
| Author | Morigi, Serena Cai, Xiaohao Chan, Raymond Sgallari, Fiorella  | 
    
| Author_xml | – sequence: 1 givenname: Xiaohao surname: Cai fullname: Cai, Xiaohao – sequence: 2 givenname: Raymond surname: Chan fullname: Chan, Raymond – sequence: 3 givenname: Serena surname: Morigi fullname: Morigi, Serena – sequence: 4 givenname: Fiorella surname: Sgallari fullname: Sgallari, Fiorella  | 
    
| BookMark | eNpt0LFOwzAQBmALFYm2MPAGkVhgCLVjp4nHUlGoKGKgZY0c-5y6SpxiOwNvT6oihCqWuxu-O53-ERrY1gJC1wTfE0KzCSE4Z5RlyRkaEk6nMeMpG_yZL9DI-x3GU8zybIhePsB7qKN3qBqwQQTT2sjY6BWUkaKOlo2ojK2ijT9UEa1NtQ3xwokG4vhBeFDRrK5aZ8K2uUTnWtQern76GG0Wj-v5c7x6e1rOZ6tYJhyHuASc85KCAsKUUhqnjPOy1CqnVEo-xakkOZaCpFhT4FgrqaSGXGRZxoTO6RjdHu_uXfvZgQ9FY7yEuhYW2s4XhCY0YZRz3tObE7prO2f773pFEsYznJBe3R2VdK33DnSxd6YR7qsguDjEWvzG2tvJiZXmGFtwwtT_bHwDF0N5sw | 
    
| CitedBy_id | crossref_primary_10_1007_s10915_024_02644_9 crossref_primary_10_1007_s10044_024_01212_z crossref_primary_10_12677_CSA_2019_92043 crossref_primary_10_2139_ssrn_4047898 crossref_primary_10_1016_j_compbiomed_2024_109079 crossref_primary_10_1007_s11760_015_0843_8 crossref_primary_10_1007_s11760_016_1028_9 crossref_primary_10_1016_j_sigpro_2022_108866 crossref_primary_10_15388_20_INFOR435 crossref_primary_10_3390_stats7010013 crossref_primary_10_1016_j_patcog_2019_107081 crossref_primary_10_1007_s00034_018_0753_4 crossref_primary_10_1007_s10915_021_01458_3 crossref_primary_10_1007_s10044_020_00915_3 crossref_primary_10_3389_fpubh_2025_1510456  | 
    
| Cites_doi | 10.1007/s10444-008-9084-5 10.1016/j.media.2005.12.002 10.1137/S1064827500383123 10.1137/070711499 10.1109/TBME.2007.896587 10.1145/1031120.1031121 10.1006/jfan.1996.3079 10.1109/TMI.2004.834612 10.1109/83.902291 10.1098/rsta.1999.0447 10.1007/s11263-006-8711-1 10.1016/j.media.2003.12.002 10.1137/040615286 10.1016/j.acha.2007.10.002 10.1109/TIP.2005.859376 10.1007/s11265-008-0216-4 10.1016/j.media.2006.09.004 10.1109/TIP.2002.1014998 10.1109/83.469936 10.1016/S1063-5203(02)00511-0 10.1109/MSP.2005.1550194 10.1007/s00211-009-0222-x 10.1109/78.917806 10.1090/S0894-0347-2012-00740-1 10.1016/j.patrec.2003.08.005 10.1137/05064182X 10.1109/18.382009 10.1109/34.93808 10.1002/cpa.10116 10.1109/TIP.2008.925378 10.1006/acha.2000.0343 10.1016/S1361-8415(01)00040-8 10.1137/040615298 10.1016/S1361-8415(96)80007-7  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2013, Society for Industrial and Applied Mathematics | 
    
| Copyright_xml | – notice: 2013, Society for Industrial and Applied Mathematics | 
    
| DBID | AAYXX CITATION 3V. 7X2 7XB 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- KB. L6V LK8 M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W 7SC 8FD L7M L~C L~D  | 
    
| DOI | 10.1137/110843472 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Materials Science Database ProQuest Engineering Collection Biological Sciences Agriculture Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Computer and Information Systems Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ProQuest Telecommunications ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Agricultural Science Database Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 1936-4954 | 
    
| EndPage | 486 | 
    
| ExternalDocumentID | 2901732511 10_1137_110843472  | 
    
| GroupedDBID | .4S .DC 123 4.4 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8G5 AALVN AASXH AAYXX ABJCF ABKAD ABMZU ABUWG ACGOD ACIWK ACPRK ADBBV ADIYS AENEX AEUYN AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ CCPQU CITATION CZ9 D1I D1J D1K DQ2 DU5 DWQXO EBS EDO EJD F5P GNUQQ GUQSH H13 HCIFZ I-F J9A K6- K6V K7- KB. KC. L6V LK5 LK8 M0K M1Q M2O M2P M7P M7R M7S P1Q P62 PATMY PDBOC PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCSY RJG RSI S0W SJN TUS 3V. 7XB 88A 88K 8AL 8FK JQ2 M0N M2T MBDVC PKEHL PQEST PQUKI PRINS Q9U 7SC 8FD L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c290t-be089b3ede14dddf05499bbfd833cc9605c180ca150f3e90fdcdcfe8a7774af83 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1936-4954 | 
    
| IngestDate | Fri Sep 05 12:07:21 EDT 2025 Fri Jul 25 11:12:51 EDT 2025 Wed Oct 01 05:08:00 EDT 2025 Thu Apr 24 22:56:11 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c290t-be089b3ede14dddf05499bbfd833cc9605c180ca150f3e90fdcdcfe8a7774af83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1312497021 | 
    
| PQPubID | 666309 | 
    
| PageCount | 23 | 
    
| ParticipantIDs | proquest_miscellaneous_1323243999 proquest_journals_1312497021 crossref_primary_10_1137_110843472 crossref_citationtrail_10_1137_110843472  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-01-01 | 
    
| PublicationDateYYYYMMDD | 2013-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Philadelphia | 
    
| PublicationPlace_xml | – name: Philadelphia | 
    
| PublicationTitle | SIAM journal on imaging sciences | 
    
| PublicationYear | 2013 | 
    
| Publisher | Society for Industrial and Applied Mathematics | 
    
| Publisher_xml | – name: Society for Industrial and Applied Mathematics | 
    
| References | atypb9 atypb19 Shi F. (atypb40) 2004 atypb26 atypb27 atypb29 atypb44 atypb23 atypb46 Krissian K. (atypb34) 2000; 80 atypb41 atypb20 atypb42 atypb43 Franchini E. (atypb25) 2009 Ye Z. (atypb45) 2003 Franchini E. (atypb24) 2010 Hassan H. (atypb30) 2003 Cai X. (atypb8) 2011 atypb15 atypb37 atypb16 atypb38 atypb17 atypb39 atypb11 atypb33 atypb12 atypb13 atypb35 atypb14 atypb36 atypb1 Dong B. (atypb21) 2010; 32 atypb3 atypb31 atypb2 atypb10 atypb32 atypb5 atypb4 atypb6  | 
    
| References_xml | – start-page: 224 year: 2010 ident: atypb24 publication-title: Heidelberg – ident: atypb4 doi: 10.1007/s10444-008-9084-5 – ident: atypb44 doi: 10.1016/j.media.2005.12.002 – ident: atypb11 doi: 10.1137/S1064827500383123 – ident: atypb12 doi: 10.1137/070711499 – ident: atypb42 doi: 10.1109/TBME.2007.896587 – start-page: 411 year: 2011 ident: atypb8 publication-title: Berlin – ident: atypb33 doi: 10.1145/1031120.1031121 – ident: atypb37 doi: 10.1006/jfan.1996.3079 – ident: atypb16 doi: 10.1109/TMI.2004.834612 – ident: atypb14 doi: 10.1109/83.902291 – ident: atypb31 doi: 10.1098/rsta.1999.0447 – ident: atypb17 doi: 10.1007/s11263-006-8711-1 – ident: atypb15 doi: 10.1016/j.media.2003.12.002 – ident: atypb13 doi: 10.1137/040615286 – ident: atypb5 doi: 10.1016/j.acha.2007.10.002 – ident: atypb20 doi: 10.1109/TIP.2005.859376 – start-page: 75 year: 2009 ident: atypb25 publication-title: Heidelberg – start-page: 246 year: 2003 ident: atypb30 publication-title: New York – start-page: 949 year: 2004 ident: atypb40 publication-title: Washington, DC – ident: atypb46 doi: 10.1007/s11265-008-0216-4 – volume: 80 start-page: 130 year: 2000 ident: atypb34 publication-title: CVIU – ident: atypb38 doi: 10.1016/j.media.2006.09.004 – ident: atypb41 doi: 10.1109/TIP.2002.1014998 – ident: atypb43 doi: 10.1109/83.469936 – ident: atypb19 doi: 10.1016/S1063-5203(02)00511-0 – volume: 32 start-page: 1724 year: 2010 ident: atypb21 publication-title: Commun. Math. Sci. – ident: atypb39 doi: 10.1109/MSP.2005.1550194 – ident: atypb2 doi: 10.1007/s00211-009-0222-x – ident: atypb27 doi: 10.1109/78.917806 – ident: atypb6 doi: 10.1090/S0894-0347-2012-00740-1 – ident: atypb1 doi: 10.1016/j.patrec.2003.08.005 – ident: atypb10 doi: 10.1137/05064182X – ident: atypb23 doi: 10.1109/18.382009 – ident: atypb26 doi: 10.1109/34.93808 – ident: atypb9 doi: 10.1002/cpa.10116 – ident: atypb29 doi: 10.1109/TIP.2008.925378 – ident: atypb32 doi: 10.1006/acha.2000.0343 – ident: atypb35 doi: 10.1016/S1361-8415(01)00040-8 – start-page: 365 year: 2003 ident: atypb45 publication-title: Spain – ident: atypb3 doi: 10.1137/040615298 – ident: atypb36 doi: 10.1016/S1361-8415(96)80007-7  | 
    
| SSID | ssj0060487 | 
    
| Score | 2.059668 | 
    
| Snippet | Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 464 | 
    
| SubjectTerms | Algorithms Artificial intelligence Boundaries Iterative methods Mathematical models Medical imaging Pattern recognition Segmentation Three dimensional  | 
    
| Title | Vessel Segmentation in Medical Imaging Using a Tight-Frame--Based Algorithm | 
    
| URI | https://www.proquest.com/docview/1312497021 https://www.proquest.com/docview/1323243999  | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1936-4954 dateEnd: 20140731 omitProxy: true ssIdentifier: ssj0060487 issn: 1936-4954 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1936-4954 dateEnd: 20140731 omitProxy: true ssIdentifier: ssj0060487 issn: 1936-4954 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2V9sKFHVGWyiAOXCySOKmTA0KAKAVEhaBF3KJ4A6Q2ZWn_n7FxiiohzrEiZWLPe2OP3wM4zNpII0QqqMxEQWMEGJoiMFBjojBWAilEYu8O3_Xa3UF885w816BX3YWxbZVVTnSJWo2l3SM_Dpm1SeYISafvH9S6RtnT1cpCo_DWCurESYwtQCOyylh1aJxf9u4fqtzcxvnKvb5QyPix7YGPWcyjeVSaT8oOaTorsOQpIjn7-aerUNPlGix7ukj8Yvxah9snq_s9JI_6ZeRvEJXkrST-7IVcj5wDEXFdAaQgfacZ0rHdWJSeI3opcjZ8wW-cvI42YNC57F90qfdGoDLKggkVOkgzwbTSGFKlTGDrPCGMShmTEsuSRIZpIAvke4bpLDBKKml0WnDke4VJ2SbUy3Gpt4DEPMYaJgpE2EY4zwKBlE8mCZcSyZJhrAlHVWxy6YXDrX_FMHcFBOP5LIxNOJgNff9Ry_hr0G4V4NwvmK_89_c2YX_2GKe6Pb8oSj2e2jGW_iGjyrb_f8UOLEbOtcLulOxCffI51XvIHSaiBQtp56rlp8U3WerDUw | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60HvTiW6xWXUXBy2KSTZrkIOKrtFaLaBVvMftSoU3Vtoh_zt_mbNxUBPHmOcOyTGZ2vtmdmQ9gO64ijOARpyLmKfUxwNAIAwPV2nN9yRFCBKZ3-KJVrd_4Z3fB3Rh8FL0wpqyyOBPzg1r2hLkj33OZoUkOMSQdPL9QwxplXlcLCo3UUivI_XzEmG3saKr3N0zh-vuNE_zfO55XO20f16llGaDCi50B5cqJYs6UVLg5KbVjMibOtYwYEwIBfiDcyBEpIifNVOxoKaTQKkpDRE6pjhiuOw4TPsPdlWDi6LR1eVXEgir6R2jnGbks3DM19ygYej-j4M8gkEe22ixMW0hKDr9saA7GVDYPMxaeEuv8_QVo3po54x1yrR66tmMpI08ZsW89pNHNGY9IXoVAUtLOZ5TUTPUXpUcYLSU57DygTgeP3UW4-RctLUEp62VqGYgf-pgzeQ53qwgfYocjxBRBEAqB4EwzVobdQjeJsIPKDV9GJ8kTFhYmIzWWYWsk-vw1neM3oUqh4MQ6aD_5NqcybI4-o2uZ95I0U72hkTFwExFcvPL3EhswWW9fnCfnjVZzFaa8nDHD3NJUoDR4Hao1xC0Dvm6Ng8D9f9vjJzhZAe4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vessel+Segmentation+in+Medical+Imaging+Using+a+Tight-Frame--Based+Algorithm&rft.jtitle=SIAM+journal+on+imaging+sciences&rft.au=Cai%2C+Xiaohao&rft.au=Chan%2C+Raymond&rft.au=Morigi%2C+Serena&rft.au=Sgallari%2C+Fiorella&rft.date=2013-01-01&rft.issn=1936-4954&rft.eissn=1936-4954&rft.volume=6&rft.issue=1&rft.spage=464&rft.epage=486&rft_id=info:doi/10.1137%2F110843472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_110843472 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-4954&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-4954&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-4954&client=summon |