Vessel Segmentation in Medical Imaging Using a Tight-Frame--Based Algorithm

Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a fe...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on imaging sciences Vol. 6; no. 1; pp. 464 - 486
Main Authors Cai, Xiaohao, Chan, Raymond, Morigi, Serena, Sgallari, Fiorella
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Subjects
Online AccessGet full text
ISSN1936-4954
1936-4954
DOI10.1137/110843472

Cover

Abstract Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation such as model-based approaches, pattern recognition techniques, tracking-based approaches, and artificial intelligence--based approaches. In this paper, we propose applying the tight-frame approach to automatically identify tube-like structures in medical imaging, with the primary application of segmenting blood vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth the potential boundary and sharpen the region. The cost per iteration is proportional to the number of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments on synthetic and real two-dimensional (2D) and three-dimensional (3D) images demonstrate that our method is more accurate when compared with some representative segmentation methods, and it usually converges within a few iterations. [PUBLICATION ABSTRACT]
AbstractList Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation such as model-based approaches, pattern recognition techniques, tracking-based approaches, and artificial intelligence--based approaches. In this paper, we propose applying the tight-frame approach to automatically identify tube-like structures in medical imaging, with the primary application of segmenting blood vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth the potential boundary and sharpen the region. The cost per iteration is proportional to the number of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments on synthetic and real two-dimensional (2D) and three-dimensional (3D) images demonstrate that our method is more accurate when compared with some representative segmentation methods, and it usually converges within a few iterations. [PUBLICATION ABSTRACT]
Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise removal, and superresolution image restoration. Segmentation is the process of identifying object outlines within images. There are quite a few efficient algorithms for segmentation such as model-based approaches, pattern recognition techniques, tracking-based approaches, and artificial intelligence--based approaches. In this paper, we propose applying the tight-frame approach to automatically identify tube-like structures in medical imaging, with the primary application of segmenting blood vessels in magnetic resonance angiography images. Our method iteratively refines a region that encloses the potential boundary of the vessels. At each iteration, we apply the tight-frame algorithm to denoise and smooth the potential boundary and sharpen the region. The cost per iteration is proportional to the number of pixels in the image. We prove that the iteration converges in a finite number of steps to a binary image whereby the segmentation of the vessels can be done straightforwardly. Numerical experiments on synthetic and real two-dimensional (2D) and three-dimensional (3D) images demonstrate that our method is more accurate when compared with some representative segmentation methods, and it usually converges within a few iterations.
Author Morigi, Serena
Cai, Xiaohao
Chan, Raymond
Sgallari, Fiorella
Author_xml – sequence: 1
  givenname: Xiaohao
  surname: Cai
  fullname: Cai, Xiaohao
– sequence: 2
  givenname: Raymond
  surname: Chan
  fullname: Chan, Raymond
– sequence: 3
  givenname: Serena
  surname: Morigi
  fullname: Morigi, Serena
– sequence: 4
  givenname: Fiorella
  surname: Sgallari
  fullname: Sgallari, Fiorella
BookMark eNpt0LFOwzAQBmALFYm2MPAGkVhgCLVjp4nHUlGoKGKgZY0c-5y6SpxiOwNvT6oihCqWuxu-O53-ERrY1gJC1wTfE0KzCSE4Z5RlyRkaEk6nMeMpG_yZL9DI-x3GU8zybIhePsB7qKN3qBqwQQTT2sjY6BWUkaKOlo2ojK2ijT9UEa1NtQ3xwokG4vhBeFDRrK5aZ8K2uUTnWtQern76GG0Wj-v5c7x6e1rOZ6tYJhyHuASc85KCAsKUUhqnjPOy1CqnVEo-xakkOZaCpFhT4FgrqaSGXGRZxoTO6RjdHu_uXfvZgQ9FY7yEuhYW2s4XhCY0YZRz3tObE7prO2f773pFEsYznJBe3R2VdK33DnSxd6YR7qsguDjEWvzG2tvJiZXmGFtwwtT_bHwDF0N5sw
CitedBy_id crossref_primary_10_1007_s10915_024_02644_9
crossref_primary_10_1007_s10044_024_01212_z
crossref_primary_10_12677_CSA_2019_92043
crossref_primary_10_2139_ssrn_4047898
crossref_primary_10_1016_j_compbiomed_2024_109079
crossref_primary_10_1007_s11760_015_0843_8
crossref_primary_10_1007_s11760_016_1028_9
crossref_primary_10_1016_j_sigpro_2022_108866
crossref_primary_10_15388_20_INFOR435
crossref_primary_10_3390_stats7010013
crossref_primary_10_1016_j_patcog_2019_107081
crossref_primary_10_1007_s00034_018_0753_4
crossref_primary_10_1007_s10915_021_01458_3
crossref_primary_10_1007_s10044_020_00915_3
crossref_primary_10_3389_fpubh_2025_1510456
Cites_doi 10.1007/s10444-008-9084-5
10.1016/j.media.2005.12.002
10.1137/S1064827500383123
10.1137/070711499
10.1109/TBME.2007.896587
10.1145/1031120.1031121
10.1006/jfan.1996.3079
10.1109/TMI.2004.834612
10.1109/83.902291
10.1098/rsta.1999.0447
10.1007/s11263-006-8711-1
10.1016/j.media.2003.12.002
10.1137/040615286
10.1016/j.acha.2007.10.002
10.1109/TIP.2005.859376
10.1007/s11265-008-0216-4
10.1016/j.media.2006.09.004
10.1109/TIP.2002.1014998
10.1109/83.469936
10.1016/S1063-5203(02)00511-0
10.1109/MSP.2005.1550194
10.1007/s00211-009-0222-x
10.1109/78.917806
10.1090/S0894-0347-2012-00740-1
10.1016/j.patrec.2003.08.005
10.1137/05064182X
10.1109/18.382009
10.1109/34.93808
10.1002/cpa.10116
10.1109/TIP.2008.925378
10.1006/acha.2000.0343
10.1016/S1361-8415(01)00040-8
10.1137/040615298
10.1016/S1361-8415(96)80007-7
ContentType Journal Article
Copyright 2013, Society for Industrial and Applied Mathematics
Copyright_xml – notice: 2013, Society for Industrial and Applied Mathematics
DBID AAYXX
CITATION
3V.
7X2
7XB
88A
88F
88I
88K
8AL
8FE
8FG
8FH
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
KB.
L6V
LK8
M0K
M0N
M1Q
M2O
M2P
M2T
M7P
M7S
MBDVC
P5Z
P62
PATMY
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
7SC
8FD
L7M
L~C
L~D
DOI 10.1137/110843472
DatabaseName CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Materials Science Database
ProQuest Engineering Collection
Biological Sciences
Agriculture Science Database
Computing Database
Military Database
Research Library
Science Database
Telecommunications Database
Biological Science Database
Engineering Database
Research Library (Corporate)
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Agricultural Science Database
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Military Collection
ProQuest Central China
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
Biological Science Database
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest Military Collection (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Agricultural Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1936-4954
EndPage 486
ExternalDocumentID 2901732511
10_1137_110843472
GroupedDBID .4S
.DC
123
4.4
7X2
7XC
88I
8CJ
8FE
8FG
8FH
8G5
AALVN
AASXH
AAYXX
ABJCF
ABKAD
ABMZU
ABUWG
ACGOD
ACIWK
ACPRK
ADBBV
ADIYS
AENEX
AEUYN
AFKRA
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ANXRF
ARAPS
ARCSS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
CCPQU
CITATION
CZ9
D1I
D1J
D1K
DQ2
DU5
DWQXO
EBS
EDO
EJD
F5P
GNUQQ
GUQSH
H13
HCIFZ
I-F
J9A
K6-
K6V
K7-
KB.
KC.
L6V
LK5
LK8
M0K
M1Q
M2O
M2P
M7P
M7R
M7S
P1Q
P62
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
PYCSY
RJG
RSI
S0W
SJN
TUS
3V.
7XB
88A
88K
8AL
8FK
JQ2
M0N
M2T
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7SC
8FD
L7M
L~C
L~D
ID FETCH-LOGICAL-c290t-be089b3ede14dddf05499bbfd833cc9605c180ca150f3e90fdcdcfe8a7774af83
IEDL.DBID BENPR
ISSN 1936-4954
IngestDate Fri Sep 05 12:07:21 EDT 2025
Fri Jul 25 11:12:51 EDT 2025
Wed Oct 01 05:08:00 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-be089b3ede14dddf05499bbfd833cc9605c180ca150f3e90fdcdcfe8a7774af83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1312497021
PQPubID 666309
PageCount 23
ParticipantIDs proquest_miscellaneous_1323243999
proquest_journals_1312497021
crossref_primary_10_1137_110843472
crossref_citationtrail_10_1137_110843472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle SIAM journal on imaging sciences
PublicationYear 2013
Publisher Society for Industrial and Applied Mathematics
Publisher_xml – name: Society for Industrial and Applied Mathematics
References atypb9
atypb19
Shi F. (atypb40) 2004
atypb26
atypb27
atypb29
atypb44
atypb23
atypb46
Krissian K. (atypb34) 2000; 80
atypb41
atypb20
atypb42
atypb43
Franchini E. (atypb25) 2009
Ye Z. (atypb45) 2003
Franchini E. (atypb24) 2010
Hassan H. (atypb30) 2003
Cai X. (atypb8) 2011
atypb15
atypb37
atypb16
atypb38
atypb17
atypb39
atypb11
atypb33
atypb12
atypb13
atypb35
atypb14
atypb36
atypb1
Dong B. (atypb21) 2010; 32
atypb3
atypb31
atypb2
atypb10
atypb32
atypb5
atypb4
atypb6
References_xml – start-page: 224
  year: 2010
  ident: atypb24
  publication-title: Heidelberg
– ident: atypb4
  doi: 10.1007/s10444-008-9084-5
– ident: atypb44
  doi: 10.1016/j.media.2005.12.002
– ident: atypb11
  doi: 10.1137/S1064827500383123
– ident: atypb12
  doi: 10.1137/070711499
– ident: atypb42
  doi: 10.1109/TBME.2007.896587
– start-page: 411
  year: 2011
  ident: atypb8
  publication-title: Berlin
– ident: atypb33
  doi: 10.1145/1031120.1031121
– ident: atypb37
  doi: 10.1006/jfan.1996.3079
– ident: atypb16
  doi: 10.1109/TMI.2004.834612
– ident: atypb14
  doi: 10.1109/83.902291
– ident: atypb31
  doi: 10.1098/rsta.1999.0447
– ident: atypb17
  doi: 10.1007/s11263-006-8711-1
– ident: atypb15
  doi: 10.1016/j.media.2003.12.002
– ident: atypb13
  doi: 10.1137/040615286
– ident: atypb5
  doi: 10.1016/j.acha.2007.10.002
– ident: atypb20
  doi: 10.1109/TIP.2005.859376
– start-page: 75
  year: 2009
  ident: atypb25
  publication-title: Heidelberg
– start-page: 246
  year: 2003
  ident: atypb30
  publication-title: New York
– start-page: 949
  year: 2004
  ident: atypb40
  publication-title: Washington, DC
– ident: atypb46
  doi: 10.1007/s11265-008-0216-4
– volume: 80
  start-page: 130
  year: 2000
  ident: atypb34
  publication-title: CVIU
– ident: atypb38
  doi: 10.1016/j.media.2006.09.004
– ident: atypb41
  doi: 10.1109/TIP.2002.1014998
– ident: atypb43
  doi: 10.1109/83.469936
– ident: atypb19
  doi: 10.1016/S1063-5203(02)00511-0
– volume: 32
  start-page: 1724
  year: 2010
  ident: atypb21
  publication-title: Commun. Math. Sci.
– ident: atypb39
  doi: 10.1109/MSP.2005.1550194
– ident: atypb2
  doi: 10.1007/s00211-009-0222-x
– ident: atypb27
  doi: 10.1109/78.917806
– ident: atypb6
  doi: 10.1090/S0894-0347-2012-00740-1
– ident: atypb1
  doi: 10.1016/j.patrec.2003.08.005
– ident: atypb10
  doi: 10.1137/05064182X
– ident: atypb23
  doi: 10.1109/18.382009
– ident: atypb26
  doi: 10.1109/34.93808
– ident: atypb9
  doi: 10.1002/cpa.10116
– ident: atypb29
  doi: 10.1109/TIP.2008.925378
– ident: atypb32
  doi: 10.1006/acha.2000.0343
– ident: atypb35
  doi: 10.1016/S1361-8415(01)00040-8
– start-page: 365
  year: 2003
  ident: atypb45
  publication-title: Spain
– ident: atypb3
  doi: 10.1137/040615298
– ident: atypb36
  doi: 10.1016/S1361-8415(96)80007-7
SSID ssj0060487
Score 2.059668
Snippet Tight-frame, a generalization of orthogonal wavelets, has been used successfully in various problems in image processing, including inpainting, impulse noise...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 464
SubjectTerms Algorithms
Artificial intelligence
Boundaries
Iterative methods
Mathematical models
Medical imaging
Pattern recognition
Segmentation
Three dimensional
Title Vessel Segmentation in Medical Imaging Using a Tight-Frame--Based Algorithm
URI https://www.proquest.com/docview/1312497021
https://www.proquest.com/docview/1323243999
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1936-4954
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0060487
  issn: 1936-4954
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1936-4954
  dateEnd: 20140731
  omitProxy: true
  ssIdentifier: ssj0060487
  issn: 1936-4954
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwEB2V9sKFHVGWyiAOXCySOKmTA0KAKAVEhaBF3KJ4A6Q2ZWn_n7FxiiohzrEiZWLPe2OP3wM4zNpII0QqqMxEQWMEGJoiMFBjojBWAilEYu8O3_Xa3UF885w816BX3YWxbZVVTnSJWo2l3SM_Dpm1SeYISafvH9S6RtnT1cpCo_DWCurESYwtQCOyylh1aJxf9u4fqtzcxvnKvb5QyPix7YGPWcyjeVSaT8oOaTorsOQpIjn7-aerUNPlGix7ukj8Yvxah9snq_s9JI_6ZeRvEJXkrST-7IVcj5wDEXFdAaQgfacZ0rHdWJSeI3opcjZ8wW-cvI42YNC57F90qfdGoDLKggkVOkgzwbTSGFKlTGDrPCGMShmTEsuSRIZpIAvke4bpLDBKKml0WnDke4VJ2SbUy3Gpt4DEPMYaJgpE2EY4zwKBlE8mCZcSyZJhrAlHVWxy6YXDrX_FMHcFBOP5LIxNOJgNff9Ry_hr0G4V4NwvmK_89_c2YX_2GKe6Pb8oSj2e2jGW_iGjyrb_f8UOLEbOtcLulOxCffI51XvIHSaiBQtp56rlp8U3WerDUw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60HvTiW6xWXUXBy2KSTZrkIOKrtFaLaBVvMftSoU3Vtoh_zt_mbNxUBPHmOcOyTGZ2vtmdmQ9gO64ijOARpyLmKfUxwNAIAwPV2nN9yRFCBKZ3-KJVrd_4Z3fB3Rh8FL0wpqyyOBPzg1r2hLkj33OZoUkOMSQdPL9QwxplXlcLCo3UUivI_XzEmG3saKr3N0zh-vuNE_zfO55XO20f16llGaDCi50B5cqJYs6UVLg5KbVjMibOtYwYEwIBfiDcyBEpIifNVOxoKaTQKkpDRE6pjhiuOw4TPsPdlWDi6LR1eVXEgir6R2jnGbks3DM19ygYej-j4M8gkEe22ixMW0hKDr9saA7GVDYPMxaeEuv8_QVo3po54x1yrR66tmMpI08ZsW89pNHNGY9IXoVAUtLOZ5TUTPUXpUcYLSU57DygTgeP3UW4-RctLUEp62VqGYgf-pgzeQ53qwgfYocjxBRBEAqB4EwzVobdQjeJsIPKDV9GJ8kTFhYmIzWWYWsk-vw1neM3oUqh4MQ6aD_5NqcybI4-o2uZ95I0U72hkTFwExFcvPL3EhswWW9fnCfnjVZzFaa8nDHD3NJUoDR4Hao1xC0Dvm6Ng8D9f9vjJzhZAe4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vessel+Segmentation+in+Medical+Imaging+Using+a+Tight-Frame--Based+Algorithm&rft.jtitle=SIAM+journal+on+imaging+sciences&rft.au=Cai%2C+Xiaohao&rft.au=Chan%2C+Raymond&rft.au=Morigi%2C+Serena&rft.au=Sgallari%2C+Fiorella&rft.date=2013-01-01&rft.issn=1936-4954&rft.eissn=1936-4954&rft.volume=6&rft.issue=1&rft.spage=464&rft.epage=486&rft_id=info:doi/10.1137%2F110843472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_110843472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-4954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-4954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-4954&client=summon