HiBid: A Cross-Channel Constrained Bidding System With Budget Allocation by Hierarchical Offline Deep Reinforcement Learning

Online display advertising platforms service numerous advertisers by providing real-time bidding (RTB) for the scale of billions of ad requests every day. The bidding strategy handles ad requests cross multiple channels to maximize the number of clicks under the set financial constraints, i.e., tota...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 73; no. 3; pp. 815 - 828
Main Authors Wang, Hao, Tang, Bo, Liu, Chi Harold, Mao, Shangqin, Zhou, Jiahong, Dai, Zipeng, Sun, Yaqi, Xie, Qianlong, Wang, Xingxing, Wang, Dong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9340
1557-9956
DOI10.1109/TC.2023.3343111

Cover

More Information
Summary:Online display advertising platforms service numerous advertisers by providing real-time bidding (RTB) for the scale of billions of ad requests every day. The bidding strategy handles ad requests cross multiple channels to maximize the number of clicks under the set financial constraints, i.e., total budget and cost-per-click (CPC), etc. Different from existing works mainly focusing on single channel bidding, we explicitly consider cross-channel constrained bidding with budget allocation. Specifically, we propose a hierarchical offline deep reinforcement learning (DRL) framework called "HiBid", consisted of a high-level planner equipped with auxiliary loss for non-competitive budget allocation, and a data augmentation enhanced low-level executor for adaptive bidding strategy in response to allocated budgets. Additionally, a CPC-guided action selection mechanism is introduced to satisfy the cross-channel CPC constraint. Through extensive experiments on both the large-scale log data and online A/B testing, we confirm that HiBid outperforms six baselines in terms of the number of clicks, CPC satisfactory ratio, and return-on-investment (ROI). We also deploy HiBid on Meituan advertising platform to already service tens of thousands of advertisers every day.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2023.3343111