A Prognosis-Centered Intelligent Maintenance Optimization Framework Under Uncertain Failure Threshold
Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse mechatronic systems, such as railway vehicles, wind power equipment, nuclear devices, etc. A common phenomenon observed in CBM is the existence o...
Saved in:
Published in | IEEE transactions on reliability Vol. 73; no. 1; pp. 115 - 130 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2023.3273082 |
Cover
Abstract | Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse mechatronic systems, such as railway vehicles, wind power equipment, nuclear devices, etc. A common phenomenon observed in CBM is the existence of dispersibility regarding degradation-induced failure threshold, which affects the precision of maintenance decisions. This article addresses such challenges by scheduling a prognosis-centered intelligent CBM policy, which harnesses dynamic lifetime information to support both scheduled and opportunistic maintenance decision-making. The degradation is characterized by a generalized-form stochastic process, and the lifetime distribution is assessed through the fusion of multiple uncertainties. A dynamic reliability criterion is set to determine whether and when to postpone maintenance, whose interval is controlled by the remaining lifetime as well as an optimizable safety coefficient. The postponement interval, in turn, enables the planning of opportunistic maintenance to mitigate system downtime. The operational cost rate is minimized through the joint optimization of the inspection interval, conditional reliability threshold, and safety coefficient. The superiorities of the proposed policy over some conventional/heuristic maintenance policies are demonstrated by a case study on filed maintenance planning of high-speed train bearing. |
---|---|
AbstractList | Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse mechatronic systems, such as railway vehicles, wind power equipment, nuclear devices, etc. A common phenomenon observed in CBM is the existence of dispersibility regarding degradation-induced failure threshold, which affects the precision of maintenance decisions. This article addresses such challenges by scheduling a prognosis-centered intelligent CBM policy, which harnesses dynamic lifetime information to support both scheduled and opportunistic maintenance decision-making. The degradation is characterized by a generalized-form stochastic process, and the lifetime distribution is assessed through the fusion of multiple uncertainties. A dynamic reliability criterion is set to determine whether and when to postpone maintenance, whose interval is controlled by the remaining lifetime as well as an optimizable safety coefficient. The postponement interval, in turn, enables the planning of opportunistic maintenance to mitigate system downtime. The operational cost rate is minimized through the joint optimization of the inspection interval, conditional reliability threshold, and safety coefficient. The superiorities of the proposed policy over some conventional/heuristic maintenance policies are demonstrated by a case study on filed maintenance planning of high-speed train bearing. |
Author | Chen, Yi Yang, Li Peng, Rui Ma, Xiaobing Qiu, Qingan |
Author_xml | – sequence: 1 givenname: Li orcidid: 0000-0002-4738-0210 surname: Yang fullname: Yang, Li email: yanglirass@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Yi orcidid: 0000-0002-0934-0787 surname: Chen fullname: Chen, Yi email: chenyi1118@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Xiaobing orcidid: 0000-0002-0913-9012 surname: Ma fullname: Ma, Xiaobing email: maxiaobing@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China – sequence: 4 givenname: Qingan orcidid: 0000-0001-8741-0536 surname: Qiu fullname: Qiu, Qingan email: qiu_qingan@163.com organization: School of Management and Economics, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Rui orcidid: 0000-0001-6596-0334 surname: Peng fullname: Peng, Rui email: pengrui1988@ustb.edu.cn organization: School of Economics and Management, Beijing University of Technology, Beijing, China |
BookMark | eNp9UE1PAjEUbAwmAnr24mETzwv92LLtkRBREoyGLOemu_uA4tJiu8Tor7cIB-PBy5tMMvMmMz3Usc4CQrcEDwjBclgsBhRTNmA0Z1jQC9QlnIuU5JR0UBdjIlLJqbxCvRC2kWaZFF0E4-TVu7V1wYR0ArYFD3Uyi9g0Zh158qxNZFbbCpKXfWt25ku3xtlk6vUOPpx_S5a2Bh9vBb6N6mSqTXPwkBQbD2HjmvoaXa50E-DmjH20nD4Uk6d0_vI4m4znaUUlblNeZoJojnWJmdA1lnUstioFUA1lJWg2ylidSQoVCFqNCGFYal1roLTMM8ZZH92f_u69ez9AaNXWHbyNkYpKlkspGMdRNTypKu9C8LBSe2922n8qgtVxS1Us1HFLdd4yOvgfR2XanxVaH7v-47s7-QwA_EqhmGFG2TcO2oPQ |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_1002_qre_3613 crossref_primary_10_1002_qre_3734 crossref_primary_10_1016_j_ymssp_2024_112171 crossref_primary_10_1016_j_cie_2024_110532 crossref_primary_10_3390_math13010070 crossref_primary_10_1016_j_ress_2024_110144 crossref_primary_10_1016_j_ress_2024_110420 crossref_primary_10_1111_risa_16709 crossref_primary_10_1177_1748006X251317570 crossref_primary_10_3390_math11153322 crossref_primary_10_1080_03081079_2024_2402308 crossref_primary_10_1080_00949655_2024_2381515 crossref_primary_10_1016_j_cja_2024_08_050 crossref_primary_10_1016_j_cie_2024_110819 crossref_primary_10_1007_s11219_024_09685_1 crossref_primary_10_1016_j_ress_2024_110302 crossref_primary_10_1016_j_ress_2024_110447 crossref_primary_10_1016_j_ress_2024_110426 crossref_primary_10_1016_j_ress_2024_110271 crossref_primary_10_1016_j_ress_2024_110233 crossref_primary_10_3390_math11153330 crossref_primary_10_3390_math12182845 crossref_primary_10_1109_JSYST_2024_3422284 crossref_primary_10_1093_imaman_dpae020 crossref_primary_10_1109_ACCESS_2024_3474737 crossref_primary_10_1109_JIOT_2024_3435917 crossref_primary_10_1002_nav_22225 crossref_primary_10_1111_risa_17696 crossref_primary_10_1002_nav_22245 crossref_primary_10_1111_risa_14187 crossref_primary_10_3390_math12162461 crossref_primary_10_3390_app14062354 crossref_primary_10_1080_08982112_2023_2300814 |
Cites_doi | 10.1109/tr.2021.3111031 10.1016/j.ress.2022.108854 10.1016/j.engfracmech.2007.01.017 10.1016/j.cie.2022.108193 10.1016/j.ress.2016.03.020 10.1016/j.ymssp.2020.107050 10.1109/TR.2017.2738447 10.1016/j.ress.2021.107828 10.1109/tr.2021.3125963 10.1109/TIE.2020.3009593 10.1109/TR.2015.2419220 10.1109/TR.2020.2995277 10.1016/j.jmsy.2018.02.003 10.1109/TII.2022.3141416 10.1016/j.ejor.2018.02.033 10.1109/TR.2018.2829771 10.1016/j.isatra.2022.06.027 10.1016/j.ymssp.2020.107378 10.1109/JAS.2021.1003859 10.1016/j.ress.2020.107065 10.1016/j.rser.2020.109888 10.1016/j.ejor.2020.05.050 10.1109/TSTE.2021.3104982 10.1002/nav.21922 10.2307/2984875 10.1080/00401706.2013.830074 10.1109/tii.2023.3240727 10.1109/TR.2015.2454507 10.1016/j.ejor.2018.10.049 10.1109/TSTE.2020.2986586 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2023.3273082 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 130 |
ExternalDocumentID | 10_1109_TR_2023_3273082 10203032 |
Genre | orig-research |
GrantInformation_xml | – fundername: Basic Technical Research Project of China grantid: JSZL2018601B004 – fundername: National Natural Science Foundation of China grantid: 72101010; 72001026 funderid: 10.13039/501100001809 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c290t-5b481a50ab038ad09d109fb8e2aebc824643d492ece82c611309aadae22b74353 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Mon Jun 30 08:42:11 EDT 2025 Thu Apr 24 23:03:57 EDT 2025 Tue Jul 01 00:49:11 EDT 2025 Wed Aug 27 02:33:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c290t-5b481a50ab038ad09d109fb8e2aebc824643d492ece82c611309aadae22b74353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6596-0334 0000-0002-4738-0210 0000-0002-0934-0787 0000-0002-0913-9012 0000-0001-8741-0536 |
PQID | 2937998350 |
PQPubID | 85456 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2937998350 crossref_citationtrail_10_1109_TR_2023_3273082 ieee_primary_10203032 crossref_primary_10_1109_TR_2023_3273082 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-March 2024-3-00 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-March |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Friedman (ref2) 1998 |
References_xml | – ident: ref16 doi: 10.1109/tr.2021.3111031 – ident: ref9 doi: 10.1016/j.ress.2022.108854 – ident: ref12 doi: 10.1016/j.engfracmech.2007.01.017 – ident: ref14 doi: 10.1016/j.cie.2022.108193 – ident: ref31 doi: 10.1016/j.ress.2016.03.020 – ident: ref18 doi: 10.1016/j.ymssp.2020.107050 – ident: ref3 doi: 10.1109/TR.2017.2738447 – ident: ref30 doi: 10.1016/j.ress.2021.107828 – ident: ref15 doi: 10.1109/tr.2021.3125963 – ident: ref6 doi: 10.1109/TIE.2020.3009593 – ident: ref26 doi: 10.1109/TR.2015.2419220 – ident: ref28 doi: 10.1109/TR.2020.2995277 – ident: ref25 doi: 10.1016/j.jmsy.2018.02.003 – ident: ref22 doi: 10.1109/TII.2022.3141416 – ident: ref27 doi: 10.1016/j.ejor.2018.02.033 – start-page: 129 year: 1998 ident: ref2 article-title: The Bayesian structural EM algorithm publication-title: Proc. Conf. Uncertainty Artif. Intell. – ident: ref5 doi: 10.1109/TR.2018.2829771 – ident: ref8 doi: 10.1016/j.isatra.2022.06.027 – ident: ref20 doi: 10.1016/j.ymssp.2020.107378 – ident: ref10 doi: 10.1109/JAS.2021.1003859 – ident: ref29 doi: 10.1016/j.ress.2020.107065 – ident: ref4 doi: 10.1016/j.rser.2020.109888 – ident: ref13 doi: 10.1016/j.ejor.2020.05.050 – ident: ref11 doi: 10.1109/TSTE.2021.3104982 – ident: ref17 doi: 10.1002/nav.21922 – ident: ref1 doi: 10.2307/2984875 – ident: ref19 doi: 10.1080/00401706.2013.830074 – ident: ref21 doi: 10.1109/tii.2023.3240727 – ident: ref7 doi: 10.1109/TR.2015.2454507 – ident: ref24 doi: 10.1016/j.ejor.2018.10.049 – ident: ref23 doi: 10.1109/TSTE.2020.2986586 |
SSID | ssj0014498 |
Score | 2.5981493 |
Snippet | Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115 |
SubjectTerms | Asset management Condition monitoring Costs Decision making Degradation Downtime Equipment failure Harnesses High speed rail Inspection inspection optimization intelligent maintenance Intelligent systems Lifetime estimation lifetime prognosis Maintenance Maintenance engineering Nuclear devices Nuclear safety Optimization Prognosis Prognostics and health management Reliability Reliability engineering reliability evaluation Stochastic processes Wind power |
Title | A Prognosis-Centered Intelligent Maintenance Optimization Framework Under Uncertain Failure Threshold |
URI | https://ieeexplore.ieee.org/document/10203032 https://www.proquest.com/docview/2937998350 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwx8FlEoyAMDS4LjOMUeK0RVkFpQ1UrdItu5ShXQojZd-PWcE6cqoEosUQY7snLnu7Pv3TtCbtBJShs5PjzZmgSCZybQADpIhLGZypyPdIXCvX6rOxLP42Tsi9WLWhgAKMBnELrXIpefze3KXZXhDueokzFa3F3Us7JYa50yEEJ5s4s7OOHK8_hETN0NB6HrEh7G6KuZ5D9cUNFT5Y8hLrxL55D0q3WVoJK3cJWb0H79omz898KPyIGPM2m7VIxjsgOzE7K_wT54SqBNXxdzB7SbLgN3y-vadtKnNUdnTnvasUk4Sg6gL2hbPnzRJu1UkC5a9E3Cpy2hBbSjpw7oToeoI0uX2qqTUedx-NANfNeFwHLF8iAxQkY6YdqwWOqMqQx_4cRI4BqMlVxgDJMJxcGC5LYVoRNUWmcaODcYjiTxGanN5jM4J9QqZicWIyQDE_R7kVE4DifxBJSVgjdIWAkitZ6S3HXGeE-LowlT6XCQOsmlXnINcrue8FmycWwfWndy2BhWiqBBmpWoU79dlynGPPd47owTdrFl2iXZw6-LEn3WJLV8sYIrDEdyc12o4TfjTtyQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1Eo4IGBJcFx7GKPCFG1QAtCQWKLbOcqVUCLaLrw6zknbsVDSCxRBluxcuf7zr677wg5QZBULvF8eKo1iAQvbGQATCSFdYUuPEb6QuFev9V5FNdP8ikUq1e1MABQJZ9B7F-rWH4xdlN_VYY7nKNOpmhxlxD4hazLteZBAyF0MLy4hyXXgcknYfose4h9n_A4RbRmin8Doaqryi9TXOFLe530Zyur00qe42lpY_fxg7Tx30vfIGvB06QXtWpskgUYbZHVL_yD2wQu6P372KfaDSeRv-f1jTtpd87SWdKe8XwSnpQD6B1al9dQtknbs6QuWnVOwqerkwto2wx9qjvNUEsmPri1Qx7bV9llJwp9FyLHNSsjaYVKjGTGslSZgukCf-HAKuAGrFNcoBdTCM3BgeKulSAMamMKA5xbdEhkuksWR-MR7BHqNHMDhz6ShQEiX2I1jsNJXIJ2SvAGiWeCyF0gJfe9MV7y6nDCdJ495F5yeZBcg5zOJ7zVfBx_D93xcvgyrBZBgzRnos7Dhp3k6PWc48kzlWz_j2nHZLmT9W7z227_5oCs4JdEnYvWJIvl-xQO0Tkp7VGlkp-XWN_d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prognosis-Centered+Intelligent+Maintenance+Optimization+Framework+Under+Uncertain+Failure+Threshold&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Yang%2C+Li&rft.au=Chen%2C+Yi&rft.au=Ma%2C+Xiaobing&rft.au=Qiu%2C+Qingan&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=73&rft.issue=1&rft.spage=115&rft_id=info:doi/10.1109%2FTR.2023.3273082&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |