A Prognosis-Centered Intelligent Maintenance Optimization Framework Under Uncertain Failure Threshold

Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse mechatronic systems, such as railway vehicles, wind power equipment, nuclear devices, etc. A common phenomenon observed in CBM is the existence o...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability Vol. 73; no. 1; pp. 115 - 130
Main Authors Yang, Li, Chen, Yi, Ma, Xiaobing, Qiu, Qingan, Peng, Rui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9529
1558-1721
DOI10.1109/TR.2023.3273082

Cover

Abstract Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse mechatronic systems, such as railway vehicles, wind power equipment, nuclear devices, etc. A common phenomenon observed in CBM is the existence of dispersibility regarding degradation-induced failure threshold, which affects the precision of maintenance decisions. This article addresses such challenges by scheduling a prognosis-centered intelligent CBM policy, which harnesses dynamic lifetime information to support both scheduled and opportunistic maintenance decision-making. The degradation is characterized by a generalized-form stochastic process, and the lifetime distribution is assessed through the fusion of multiple uncertainties. A dynamic reliability criterion is set to determine whether and when to postpone maintenance, whose interval is controlled by the remaining lifetime as well as an optimizable safety coefficient. The postponement interval, in turn, enables the planning of opportunistic maintenance to mitigate system downtime. The operational cost rate is minimized through the joint optimization of the inspection interval, conditional reliability threshold, and safety coefficient. The superiorities of the proposed policy over some conventional/heuristic maintenance policies are demonstrated by a case study on filed maintenance planning of high-speed train bearing.
AbstractList Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse mechatronic systems, such as railway vehicles, wind power equipment, nuclear devices, etc. A common phenomenon observed in CBM is the existence of dispersibility regarding degradation-induced failure threshold, which affects the precision of maintenance decisions. This article addresses such challenges by scheduling a prognosis-centered intelligent CBM policy, which harnesses dynamic lifetime information to support both scheduled and opportunistic maintenance decision-making. The degradation is characterized by a generalized-form stochastic process, and the lifetime distribution is assessed through the fusion of multiple uncertainties. A dynamic reliability criterion is set to determine whether and when to postpone maintenance, whose interval is controlled by the remaining lifetime as well as an optimizable safety coefficient. The postponement interval, in turn, enables the planning of opportunistic maintenance to mitigate system downtime. The operational cost rate is minimized through the joint optimization of the inspection interval, conditional reliability threshold, and safety coefficient. The superiorities of the proposed policy over some conventional/heuristic maintenance policies are demonstrated by a case study on filed maintenance planning of high-speed train bearing.
Author Chen, Yi
Yang, Li
Peng, Rui
Ma, Xiaobing
Qiu, Qingan
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0002-4738-0210
  surname: Yang
  fullname: Yang, Li
  email: yanglirass@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Yi
  orcidid: 0000-0002-0934-0787
  surname: Chen
  fullname: Chen, Yi
  email: chenyi1118@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Xiaobing
  orcidid: 0000-0002-0913-9012
  surname: Ma
  fullname: Ma, Xiaobing
  email: maxiaobing@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing, China
– sequence: 4
  givenname: Qingan
  orcidid: 0000-0001-8741-0536
  surname: Qiu
  fullname: Qiu, Qingan
  email: qiu_qingan@163.com
  organization: School of Management and Economics, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Rui
  orcidid: 0000-0001-6596-0334
  surname: Peng
  fullname: Peng, Rui
  email: pengrui1988@ustb.edu.cn
  organization: School of Economics and Management, Beijing University of Technology, Beijing, China
BookMark eNp9UE1PAjEUbAwmAnr24mETzwv92LLtkRBREoyGLOemu_uA4tJiu8Tor7cIB-PBy5tMMvMmMz3Usc4CQrcEDwjBclgsBhRTNmA0Z1jQC9QlnIuU5JR0UBdjIlLJqbxCvRC2kWaZFF0E4-TVu7V1wYR0ArYFD3Uyi9g0Zh158qxNZFbbCpKXfWt25ku3xtlk6vUOPpx_S5a2Bh9vBb6N6mSqTXPwkBQbD2HjmvoaXa50E-DmjH20nD4Uk6d0_vI4m4znaUUlblNeZoJojnWJmdA1lnUstioFUA1lJWg2ylidSQoVCFqNCGFYal1roLTMM8ZZH92f_u69ez9AaNXWHbyNkYpKlkspGMdRNTypKu9C8LBSe2922n8qgtVxS1Us1HFLdd4yOvgfR2XanxVaH7v-47s7-QwA_EqhmGFG2TcO2oPQ
CODEN IERQAD
CitedBy_id crossref_primary_10_1002_qre_3613
crossref_primary_10_1002_qre_3734
crossref_primary_10_1016_j_ymssp_2024_112171
crossref_primary_10_1016_j_cie_2024_110532
crossref_primary_10_3390_math13010070
crossref_primary_10_1016_j_ress_2024_110144
crossref_primary_10_1016_j_ress_2024_110420
crossref_primary_10_1111_risa_16709
crossref_primary_10_1177_1748006X251317570
crossref_primary_10_3390_math11153322
crossref_primary_10_1080_03081079_2024_2402308
crossref_primary_10_1080_00949655_2024_2381515
crossref_primary_10_1016_j_cja_2024_08_050
crossref_primary_10_1016_j_cie_2024_110819
crossref_primary_10_1007_s11219_024_09685_1
crossref_primary_10_1016_j_ress_2024_110302
crossref_primary_10_1016_j_ress_2024_110447
crossref_primary_10_1016_j_ress_2024_110426
crossref_primary_10_1016_j_ress_2024_110271
crossref_primary_10_1016_j_ress_2024_110233
crossref_primary_10_3390_math11153330
crossref_primary_10_3390_math12182845
crossref_primary_10_1109_JSYST_2024_3422284
crossref_primary_10_1093_imaman_dpae020
crossref_primary_10_1109_ACCESS_2024_3474737
crossref_primary_10_1109_JIOT_2024_3435917
crossref_primary_10_1002_nav_22225
crossref_primary_10_1111_risa_17696
crossref_primary_10_1002_nav_22245
crossref_primary_10_1111_risa_14187
crossref_primary_10_3390_math12162461
crossref_primary_10_3390_app14062354
crossref_primary_10_1080_08982112_2023_2300814
Cites_doi 10.1109/tr.2021.3111031
10.1016/j.ress.2022.108854
10.1016/j.engfracmech.2007.01.017
10.1016/j.cie.2022.108193
10.1016/j.ress.2016.03.020
10.1016/j.ymssp.2020.107050
10.1109/TR.2017.2738447
10.1016/j.ress.2021.107828
10.1109/tr.2021.3125963
10.1109/TIE.2020.3009593
10.1109/TR.2015.2419220
10.1109/TR.2020.2995277
10.1016/j.jmsy.2018.02.003
10.1109/TII.2022.3141416
10.1016/j.ejor.2018.02.033
10.1109/TR.2018.2829771
10.1016/j.isatra.2022.06.027
10.1016/j.ymssp.2020.107378
10.1109/JAS.2021.1003859
10.1016/j.ress.2020.107065
10.1016/j.rser.2020.109888
10.1016/j.ejor.2020.05.050
10.1109/TSTE.2021.3104982
10.1002/nav.21922
10.2307/2984875
10.1080/00401706.2013.830074
10.1109/tii.2023.3240727
10.1109/TR.2015.2454507
10.1016/j.ejor.2018.10.049
10.1109/TSTE.2020.2986586
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TR.2023.3273082
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 130
ExternalDocumentID 10_1109_TR_2023_3273082
10203032
Genre orig-research
GrantInformation_xml – fundername: Basic Technical Research Project of China
  grantid: JSZL2018601B004
– fundername: National Natural Science Foundation of China
  grantid: 72101010; 72001026
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
8WZ
97E
A6W
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
VH1
VJK
AAYXX
CITATION
RIG
7SP
8FD
L7M
ID FETCH-LOGICAL-c290t-5b481a50ab038ad09d109fb8e2aebc824643d492ece82c611309aadae22b74353
IEDL.DBID RIE
ISSN 0018-9529
IngestDate Mon Jun 30 08:42:11 EDT 2025
Thu Apr 24 23:03:57 EDT 2025
Tue Jul 01 00:49:11 EDT 2025
Wed Aug 27 02:33:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c290t-5b481a50ab038ad09d109fb8e2aebc824643d492ece82c611309aadae22b74353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6596-0334
0000-0002-4738-0210
0000-0002-0934-0787
0000-0002-0913-9012
0000-0001-8741-0536
PQID 2937998350
PQPubID 85456
PageCount 16
ParticipantIDs proquest_journals_2937998350
crossref_citationtrail_10_1109_TR_2023_3273082
ieee_primary_10203032
crossref_primary_10_1109_TR_2023_3273082
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-March
2024-3-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Friedman (ref2) 1998
References_xml – ident: ref16
  doi: 10.1109/tr.2021.3111031
– ident: ref9
  doi: 10.1016/j.ress.2022.108854
– ident: ref12
  doi: 10.1016/j.engfracmech.2007.01.017
– ident: ref14
  doi: 10.1016/j.cie.2022.108193
– ident: ref31
  doi: 10.1016/j.ress.2016.03.020
– ident: ref18
  doi: 10.1016/j.ymssp.2020.107050
– ident: ref3
  doi: 10.1109/TR.2017.2738447
– ident: ref30
  doi: 10.1016/j.ress.2021.107828
– ident: ref15
  doi: 10.1109/tr.2021.3125963
– ident: ref6
  doi: 10.1109/TIE.2020.3009593
– ident: ref26
  doi: 10.1109/TR.2015.2419220
– ident: ref28
  doi: 10.1109/TR.2020.2995277
– ident: ref25
  doi: 10.1016/j.jmsy.2018.02.003
– ident: ref22
  doi: 10.1109/TII.2022.3141416
– ident: ref27
  doi: 10.1016/j.ejor.2018.02.033
– start-page: 129
  year: 1998
  ident: ref2
  article-title: The Bayesian structural EM algorithm
  publication-title: Proc. Conf. Uncertainty Artif. Intell.
– ident: ref5
  doi: 10.1109/TR.2018.2829771
– ident: ref8
  doi: 10.1016/j.isatra.2022.06.027
– ident: ref20
  doi: 10.1016/j.ymssp.2020.107378
– ident: ref10
  doi: 10.1109/JAS.2021.1003859
– ident: ref29
  doi: 10.1016/j.ress.2020.107065
– ident: ref4
  doi: 10.1016/j.rser.2020.109888
– ident: ref13
  doi: 10.1016/j.ejor.2020.05.050
– ident: ref11
  doi: 10.1109/TSTE.2021.3104982
– ident: ref17
  doi: 10.1002/nav.21922
– ident: ref1
  doi: 10.2307/2984875
– ident: ref19
  doi: 10.1080/00401706.2013.830074
– ident: ref21
  doi: 10.1109/tii.2023.3240727
– ident: ref7
  doi: 10.1109/TR.2015.2454507
– ident: ref24
  doi: 10.1016/j.ejor.2018.10.049
– ident: ref23
  doi: 10.1109/TSTE.2020.2986586
SSID ssj0014498
Score 2.5981493
Snippet Condition-based maintenance (CBM), as a key component of asset health management, is crucial to enhance the operational safety and availability of diverse...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115
SubjectTerms Asset management
Condition monitoring
Costs
Decision making
Degradation
Downtime
Equipment failure
Harnesses
High speed rail
Inspection
inspection optimization
intelligent maintenance
Intelligent systems
Lifetime estimation
lifetime prognosis
Maintenance
Maintenance engineering
Nuclear devices
Nuclear safety
Optimization
Prognosis
Prognostics and health management
Reliability
Reliability engineering
reliability evaluation
Stochastic processes
Wind power
Title A Prognosis-Centered Intelligent Maintenance Optimization Framework Under Uncertain Failure Threshold
URI https://ieeexplore.ieee.org/document/10203032
https://www.proquest.com/docview/2937998350
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELWgEwx8FlEoyAMDS4LjOMUeK0RVkFpQ1UrdItu5ShXQojZd-PWcE6cqoEosUQY7snLnu7Pv3TtCbtBJShs5PjzZmgSCZybQADpIhLGZypyPdIXCvX6rOxLP42Tsi9WLWhgAKMBnELrXIpefze3KXZXhDueokzFa3F3Us7JYa50yEEJ5s4s7OOHK8_hETN0NB6HrEh7G6KuZ5D9cUNFT5Y8hLrxL55D0q3WVoJK3cJWb0H79omz898KPyIGPM2m7VIxjsgOzE7K_wT54SqBNXxdzB7SbLgN3y-vadtKnNUdnTnvasUk4Sg6gL2hbPnzRJu1UkC5a9E3Cpy2hBbSjpw7oToeoI0uX2qqTUedx-NANfNeFwHLF8iAxQkY6YdqwWOqMqQx_4cRI4BqMlVxgDJMJxcGC5LYVoRNUWmcaODcYjiTxGanN5jM4J9QqZicWIyQDE_R7kVE4DifxBJSVgjdIWAkitZ6S3HXGeE-LowlT6XCQOsmlXnINcrue8FmycWwfWndy2BhWiqBBmpWoU79dlynGPPd47owTdrFl2iXZw6-LEn3WJLV8sYIrDEdyc12o4TfjTtyQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1Eo4IGBJcFx7GKPCFG1QAtCQWKLbOcqVUCLaLrw6zknbsVDSCxRBluxcuf7zr677wg5QZBULvF8eKo1iAQvbGQATCSFdYUuPEb6QuFev9V5FNdP8ikUq1e1MABQJZ9B7F-rWH4xdlN_VYY7nKNOpmhxlxD4hazLteZBAyF0MLy4hyXXgcknYfose4h9n_A4RbRmin8Doaqryi9TXOFLe530Zyur00qe42lpY_fxg7Tx30vfIGvB06QXtWpskgUYbZHVL_yD2wQu6P372KfaDSeRv-f1jTtpd87SWdKe8XwSnpQD6B1al9dQtknbs6QuWnVOwqerkwto2wx9qjvNUEsmPri1Qx7bV9llJwp9FyLHNSsjaYVKjGTGslSZgukCf-HAKuAGrFNcoBdTCM3BgeKulSAMamMKA5xbdEhkuksWR-MR7BHqNHMDhz6ShQEiX2I1jsNJXIJ2SvAGiWeCyF0gJfe9MV7y6nDCdJ495F5yeZBcg5zOJ7zVfBx_D93xcvgyrBZBgzRnos7Dhp3k6PWc48kzlWz_j2nHZLmT9W7z227_5oCs4JdEnYvWJIvl-xQO0Tkp7VGlkp-XWN_d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Prognosis-Centered+Intelligent+Maintenance+Optimization+Framework+Under+Uncertain+Failure+Threshold&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Yang%2C+Li&rft.au=Chen%2C+Yi&rft.au=Ma%2C+Xiaobing&rft.au=Qiu%2C+Qingan&rft.date=2024-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=73&rft.issue=1&rft.spage=115&rft_id=info:doi/10.1109%2FTR.2023.3273082&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon