Supramolecular Chemistry in Metal–Organic Framework Materials
Far from being simply rigid, benign architectures, metal–organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident....
Saved in:
Published in | Advanced materials (Weinheim) p. e2414509 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
02.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202414509 |
Cover
Abstract | Far from being simply rigid, benign architectures, metal–organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically‐interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal–organic frameworks emerge as important directions for the field. |
---|---|
AbstractList | Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field.Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field. Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field. |
Author | Champness, Neil R. Orton, Georgia R. F. Schier, Danielle E. Miguel‐Casañ, Eugenia |
Author_xml | – sequence: 1 givenname: Eugenia orcidid: 0000-0001-9047-4143 surname: Miguel‐Casañ fullname: Miguel‐Casañ, Eugenia organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK – sequence: 2 givenname: Georgia R. F. orcidid: 0000-0002-7566-0092 surname: Orton fullname: Orton, Georgia R. F. organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK – sequence: 3 givenname: Danielle E. surname: Schier fullname: Schier, Danielle E. organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK – sequence: 4 givenname: Neil R. orcidid: 0000-0003-2970-1487 surname: Champness fullname: Champness, Neil R. organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39895182$$D View this record in MEDLINE/PubMed |
BookMark | eNo90LtOwzAUBmALFdELrIwoI0uK77UnhCoKSK06AHPk2McQyKXYiVA33oE35EkIaun0L5-O_vOP0aBuakDonOApwZheGVeZKcWUEy6wPkIjIihJOdZigEZYM5FqydUQjWN8wxhrieUJGjKttCCKjtD1Y7cJpmpKsF1pQjJ_haqIbdgmRZ2soDXlz9f3OryYurDJopfw2YT3ZGVaCIUp4yk69n3A2T4n6Hlx-zS_T5fru4f5zTK1VOM2FZLkXokcOHVMOJA295Z5o3zOqJ9ZJ42iFJzvIZ1x6fIZAz6TzDvBqc7ZBF3u7m5C89FBbLO-poWyNDU0XcwYkVRxrajq6cWednkFLtuEojJhm_0_3YPpDtjQxBjAHwjB2d-q2d-q2WFV9gvyw2tM |
Cites_doi | 10.1039/B818330A 10.1002/anie.202106265 10.1039/C9SC03916C 10.1021/jacs.7b12913 10.1039/D3NA00627A 10.1002/ejic.201600311 10.1021/acsami.2c19321 10.1126/sciadv.aat3198 10.1021/jacs.5b05327 10.1038/s41570-020-0209-9 10.1038/natrevmats.2017.45 10.1038/s44160-022-00224-z 10.1007/128_2009_21 10.1021/jacs.5b04674 10.1039/D0CS01556C 10.1039/D2CC06330A 10.1021/jacs.6b09880 10.1002/anie.201311128 10.1038/s44221-023-00070-z 10.1016/j.chempr.2022.10.016 10.1038/s41578-022-00482-5 10.1126/science.abj0890 10.1038/nchem.1354 10.1021/acs.chemrev.9b00685 10.1002/anie.201502155 10.1039/C6CC04790D 10.1039/D4CC02065K 10.1039/C8SC01959B 10.1039/D2SC05192C 10.1021/acs.inorgchem.8b00910 10.1038/nchem.2045 10.1039/C7CS00187H 10.1039/C4EE02853H 10.1021/jacs.8b02896 10.1039/b102714j 10.1126/science.aam8743 10.1021/jacs.7b00280 10.1021/acs.cgd.3c00446 10.1016/j.matt.2022.07.028 10.1038/s41563-019-0495-0 10.1021/jacs.3c13381 10.1038/s41467-023-44401-w 10.1039/9781788019705-00340 10.1039/C7CS00090A 10.1016/j.jece.2022.108300 10.1021/acs.langmuir.0c02839 10.1002/anie.201607281 10.1002/anie.201503835 10.1039/D4RA00865K 10.1021/cm052191g 10.1039/D2CS00167E 10.1039/D2NA00061J 10.1039/D0SC00485E 10.1002/anie.202101644 10.1038/s43246-024-00691-1 10.1016/j.ccr.2015.06.012 10.1039/C7CE00022G 10.1002/anie.200601991 10.1021/jacs.3c08017 10.1038/s41586-021-03880-x 10.1002/anie.198800891 10.1002/anie.202315075 10.1016/j.ccr.2020.213295 10.1021/jacs.6b11821 10.1002/adma.201704303 10.1002/chem.201300762 10.1016/j.chempr.2019.10.012 10.26434/chemrxiv‐2024‐nsv3r 10.1021/ja502996h 10.1002/anie.202111228 10.1126/science.aad4011 10.1126/science.ade5239 10.1021/acs.jpcc.4c01733 10.1016/j.cej.2021.133208 10.1039/D3SC03553K 10.1002/anie.201003221 10.1021/ic402955e 10.1038/s41560-018-0261-6 10.1039/c0cc00997k 10.1016/j.scitotenv.2021.148211 10.1021/acs.accounts.9b00018 10.1002/anie.202106259 10.1002/anie.201710091 10.1021/acscentsci.6b00168 10.1021/acs.cgd.9b00955 10.1021/ja312120x 10.1007/s12274-020-3123-z 10.1021/jacs.7b07457 10.1021/acscentsci.9b00750 10.1016/j.ccr.2024.216004 10.1126/science.aaf9135 10.1039/b819333a 10.1021/acsomega.2c07517 10.1016/S0040-4039(00)94050-4 10.1021/jacs.7b10922 10.1021/ja500330a 10.1002/anie.200461707 10.1038/nchem.654 10.1039/D0FD00012D 10.1039/D0CS01236J 10.1002/anie.201805004 10.1021/ja502238a 10.1038/nature11990 10.1021/cr2003272 10.1021/acs.organomet.9b00401 10.1002/cphc.202200098 10.1038/s41586-022-05409-2 10.1039/C5SC03494A 10.1021/ja961551l 10.1038/s41557-024-01460-w 10.1038/s41563-023-01749-0 10.1039/D3CC04320G 10.1002/anie.201107873 10.1021/acs.organomet.9b00735 10.1039/C5DT03522H 10.1002/anie.201108565 10.1039/b704980c 10.1002/anie.201501545 10.1038/nchem.2258 10.1126/sciadv.abn4426 10.1002/anie.200390057 10.1021/ja402577s 10.1002/ijch.201800114 10.1021/ja4064475 10.1039/D2CC01198K 10.1073/pnas.1514485112 10.1038/nchem.681 10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z 10.1021/ja0104352 10.1021/acscatal.8b04515 10.1039/D3QM00484H 10.1126/science.1190672 10.1021/jacs.5b05434 10.1021/ja800669j 10.1002/anie.201902171 10.1126/science.1230444 10.1021/jacs.9b07891 10.1002/anie.202006438 10.1126/science.abi7281 10.1021/acscentsci.9b01185 10.1021/jacs.7b13330 10.1002/anie.202208305 10.1021/jacs.6b08417 10.1021/jacs.0c04477 10.1021/ja077122c |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. |
Copyright_xml | – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1002/adma.202414509 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
ExternalDocumentID | 39895182 10_1002_adma_202414509 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Leverhulme Trust grantid: ECF-2023-056 – fundername: Engineering and Physical Sciences Research Council grantid: EP/S002995/2 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY |
ID | FETCH-LOGICAL-c290t-561bf85be42d35de6cbfc3fa8fb32f7cd6a822edf5612746db73e4763fd5429b3 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 01:58:56 EDT 2025 Thu Apr 03 07:00:30 EDT 2025 Tue Jul 01 00:55:04 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | metal–organic frameworks reticular chemistry supramolecular chemistry |
Language | English |
License | 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c290t-561bf85be42d35de6cbfc3fa8fb32f7cd6a822edf5612746db73e4763fd5429b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9047-4143 0000-0003-2970-1487 0000-0002-7566-0092 |
OpenAccessLink | https://doi.org/10.1002/adma.202414509 |
PMID | 39895182 |
PQID | 3162849828 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3162849828 pubmed_primary_39895182 crossref_primary_10_1002_adma_202414509 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-02 |
PublicationDateYYYYMMDD | 2025-02-02 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2025 |
References | Saura‐Sanmartin A. (e_1_2_8_107_1) 2022; 51 Lehn J.‐M. (e_1_2_8_9_1) 1988; 27 Tu T. N. (e_1_2_8_42_1) 2023; 9 Grigoropoulos A. (e_1_2_8_80_1) 2016; 7 Majewski M. B. (e_1_2_8_81_1) 2017; 19 Saura‐Sanmartin A. (e_1_2_8_117_1) 2020; 142 Jia T. (e_1_2_8_22_1) 2022; 10 Heard A. W. (e_1_2_8_105_1) 2020; 6 Jiang C. (e_1_2_8_21_1) 2022; 4 Fathieh F. (e_1_2_8_28_1) 2018; 4 Gholami G. (e_1_2_8_121_1) 2016 Horike S. (e_1_2_8_54_1) 2008; 130 Sutton A. L. (e_1_2_8_34_1) 2022; 61 Moon S.‐Y. (e_1_2_8_72_1) 2015; 54 Mizutani N. (e_1_2_8_146_1) 2023; 59 Letwaba J. (e_1_2_8_14_1) 2024; 14 Krause S. (e_1_2_8_108_1) 2020; 4 Yaghi O. M. (e_1_2_8_1_1) 2016; 138 Li L. (e_1_2_8_95_1) 2019; 10 Freund R. (e_1_2_8_6_1) 2021; 60 Furukawa H. (e_1_2_8_5_1) 2013; 341 Griffin S. L. (e_1_2_8_52_1) 2021 Cheng L. (e_1_2_8_26_1) 2024; 8 Canivet J. (e_1_2_8_92_1) 2013; 135 Freund R. (e_1_2_8_3_1) 2021; 60 Easun T. L. (e_1_2_8_143_1) 2014; 53 Bratsos I. (e_1_2_8_85_1) 2018; 57 Li B. (e_1_2_8_87_1) 2019; 58 Bavykina A. (e_1_2_8_51_1) 2020; 120 Blake A. J. (e_1_2_8_142_1) 2010; 2 McKinnon J. J. (e_1_2_8_47_1) 2007 Lin X. (e_1_2_8_119_1) 2006; 45 e_1_2_8_99_1 Griffin S. L. (e_1_2_8_4_1) 2020; 414 Yang D. (e_1_2_8_73_1) 2018; 140 Damron J. T. (e_1_2_8_136_1) 2018; 57 Eddaoudi M. (e_1_2_8_11_1) 2001; 123 Xiao D. J. (e_1_2_8_57_1) 2016; 138 Sumida K. (e_1_2_8_16_1) 2012; 112 Kozachuk O. (e_1_2_8_79_1) 2014; 53 McGonigal P. R. (e_1_2_8_139_1) 2015; 112 Snyder B. E. R. (e_1_2_8_32_1) 2023; 613 Lee S. (e_1_2_8_44_1) 2016; 353 Deng H. (e_1_2_8_126_1) 2010; 2 Han S. (e_1_2_8_18_1) 2023; 8 Martínez‐Ahumada E. (e_1_2_8_33_1) 2020; 39 Brozek C. K. (e_1_2_8_77_1) 2013; 135 Hoffart D. J. (e_1_2_8_113_1) 2005; 44 Khan M. S. (e_1_2_8_36_1) 2023; 5 Lin X. (e_1_2_8_13_1) 2010; 293 Huxley M. T. (e_1_2_8_91_1) 2019; 38 Rissanen K. (e_1_2_8_49_1) 2017; 46 Bloch W. M. (e_1_2_8_88_1) 2014; 6 Huxley M. T. (e_1_2_8_89_1) 2018; 140 Valente C. (e_1_2_8_124_1) 2010; 46 Dietrich‐Buchecker C. O. (e_1_2_8_132_1) 1983; 24 León‐Alcaide L. (e_1_2_8_76_1) 2023; 145 Zhao Y. (e_1_2_8_131_1) 2017; 139 Canossa S. (e_1_2_8_97_1) 2023; 8 Chen Q. (e_1_2_8_127_1) 2016; 138 Spanopoulos I. (e_1_2_8_84_1) 2016; 52 Díaz J. C. (e_1_2_8_82_1) 2024; 60 Davidson G. J. E. (e_1_2_8_112_1) 2003; 42 Carney J. (e_1_2_8_140_1) 2020; 36 Wang S. (e_1_2_8_30_1) 2018; 3 Wada Y. (e_1_2_8_43_1) 2024; 15 Spackman M. A. (e_1_2_8_48_1) 2009; 11 Hastings J. (e_1_2_8_144_1) 2024; 128 Whang D. (e_1_2_8_110_1) 1996; 118 Orton G. R. F. (e_1_2_8_53_1) 2021; 50 Cao D. (e_1_2_8_125_1) 2013; 19 Smith G. L. (e_1_2_8_10_1) 2019; 18 Bloch W. M. (e_1_2_8_38_1) 2015; 54 Zhu K. (e_1_2_8_116_1) 2015; 7 Ezugwu C. I. (e_1_2_8_65_1) 2016; 307 Fracaroli A. M. (e_1_2_8_109_1) 2018; 58 Moulton B. (e_1_2_8_12_1) 2001 Bonnefoy J. (e_1_2_8_59_1) 2015; 137 Lee E. (e_1_2_8_111_1) 2000; 39 Stirk A. J. (e_1_2_8_118_1) 2021; 14 Ursueguía D. (e_1_2_8_17_1) 2021; 790 Coskun A. (e_1_2_8_114_1) 2012; 51 Liu Y. (e_1_2_8_130_1) 2016; 351 Prestipino C. (e_1_2_8_70_1) 2006; 18 Zhu Z. (e_1_2_8_25_1) 2024; 146 Baggi G. (e_1_2_8_137_1) 2016; 55 Rabone J. (e_1_2_8_104_1) 2010; 329 Peralta R. A. (e_1_2_8_62_1) 2021; 225 Li X. (e_1_2_8_120_1) 2022; 58 Hanikel N. (e_1_2_8_31_1) 2021; 374 Grigoropoulos A. (e_1_2_8_58_1) 2018; 57 Portillo‐Vélez N. S. (e_1_2_8_100_1) 2024; 5 Su Y. (e_1_2_8_74_1) 2016; 62 Ji P. (e_1_2_8_75_1) 2019; 141 Young R. J. (e_1_2_8_90_1) 2023; 14 Ernst M. (e_1_2_8_145_1) 2022; 23 Yaghi O. M. (e_1_2_8_2_1) 2019; 5 Zaworotko M. J. (e_1_2_8_8_1) 2024; 23 Genna D. T. (e_1_2_8_60_1) 2013; 135 Vermoortele F. (e_1_2_8_71_1) 2012; 51 Yang D. (e_1_2_8_63_1) 2019; 9 Winarta J. (e_1_2_8_66_1) 2020; 20 Canivet J. (e_1_2_8_69_1) 2016; 45 Meekel E. G. (e_1_2_8_98_1) 2023; 379 Vukotic V. N. (e_1_2_8_115_1) 2012; 4 Zigon N. (e_1_2_8_39_1) 2021; 60 Miguel‐Casan E. (e_1_2_8_86_1) 2023; 14 Ma T. (e_1_2_8_129_1) 2023; 2 Zhu K. (e_1_2_8_138_1) 2014; 136 Lin R.‐B. (e_1_2_8_20_1) 2020; 6 Hatcher L. E. (e_1_2_8_133_1) 2019; 52 Kolodzeiski E. (e_1_2_8_141_1) 2022; 8 Kitagawa S. (e_1_2_8_7_1) 2015; 54 Gould S. L. (e_1_2_8_102_1) 2008; 130 Vukotic V. N. (e_1_2_8_135_1) 2015; 137 Inokuma Y. (e_1_2_8_40_1) 2013; 495 Chen W. (e_1_2_8_64_1) 2024; 63 Yuan S. (e_1_2_8_67_1) 2018; 30 Meng W. (e_1_2_8_128_1) 2021; 598 Deng C. (e_1_2_8_45_1) 2023; 23 Lin J.‐B. (e_1_2_8_24_1) 2021; 374 Liu J. (e_1_2_8_41_1) 2021; 50 An B. (e_1_2_8_55_1) 2017; 139 Razavi S. A. A. (e_1_2_8_78_1) 2024; 517 Trickett C. A. (e_1_2_8_15_1) 2017; 2 Jiang X. (e_1_2_8_103_1) 2016; 2 Raithby P. R. (e_1_2_8_147_1) 2020 Grape E. S. (e_1_2_8_35_1) 2023; 1 Ding M. (e_1_2_8_68_1) 2019; 10 Kang J. (e_1_2_8_134_1) 2024; 16 Ma L.‐N. (e_1_2_8_23_1) 2023; 15 Marshall R. J. (e_1_2_8_93_1) 2015; 137 Kim H. (e_1_2_8_27_1) 2017; 356 Zhang S.‐Y. (e_1_2_8_46_1) 2020; 59 Ikemoto K. (e_1_2_8_83_1) 2014; 136 Li Q. (e_1_2_8_123_1) 2010; 49 Stoddart J. F. (e_1_2_8_106_1) 2009; 38 Saura‐Sanmartin A. (e_1_2_8_122_1) 2024; 60 Lv D. (e_1_2_8_19_1) 2022; 431 Young R. J. (e_1_2_8_61_1) 2020; 11 Yang Y. (e_1_2_8_96_1) 2022; 61 Navarro‐Sánchez J. (e_1_2_8_50_1) 2017; 139 Li R. (e_1_2_8_37_1) 2022; 5 Furukawa H. (e_1_2_8_29_1) 2014; 136 Albalad J. (e_1_2_8_94_1) 2018; 140 Nasalevich M. A. (e_1_2_8_56_1) 2015; 8 Morris R. E. (e_1_2_8_101_1) 2017; 46 |
References_xml | – volume: 11 start-page: 19 year: 2009 ident: e_1_2_8_48_1 publication-title: CrystEngComm doi: 10.1039/B818330A – volume: 60 year: 2021 ident: e_1_2_8_39_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106265 – volume: 10 year: 2019 ident: e_1_2_8_68_1 publication-title: Chem. Sci. doi: 10.1039/C9SC03916C – volume: 140 start-page: 2028 year: 2018 ident: e_1_2_8_94_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12913 – volume: 5 start-page: 6318 year: 2023 ident: e_1_2_8_36_1 publication-title: Nanoscale Adv. doi: 10.1039/D3NA00627A – start-page: 4524 year: 2016 ident: e_1_2_8_121_1 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201600311 – volume: 15 start-page: 2971 year: 2023 ident: e_1_2_8_23_1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c19321 – volume: 4 year: 2018 ident: e_1_2_8_28_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat3198 – volume: 137 start-page: 9409 year: 2015 ident: e_1_2_8_59_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05327 – volume: 4 start-page: 550 year: 2020 ident: e_1_2_8_108_1 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-0209-9 – volume: 2 year: 2017 ident: e_1_2_8_15_1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.45 – volume: 2 start-page: 286 year: 2023 ident: e_1_2_8_129_1 publication-title: Nat. Synth. doi: 10.1038/s44160-022-00224-z – volume: 293 start-page: 35 year: 2010 ident: e_1_2_8_13_1 publication-title: Top. Curr. Chem. doi: 10.1007/128_2009_21 – volume: 137 start-page: 9643 year: 2015 ident: e_1_2_8_135_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04674 – volume: 50 start-page: 4411 year: 2021 ident: e_1_2_8_53_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01556C – volume: 59 start-page: 1293 year: 2023 ident: e_1_2_8_146_1 publication-title: Chem. Commun. doi: 10.1039/D2CC06330A – volume: 138 year: 2016 ident: e_1_2_8_127_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09880 – volume: 53 start-page: 7058 year: 2014 ident: e_1_2_8_79_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201311128 – volume: 1 start-page: 433 year: 2023 ident: e_1_2_8_35_1 publication-title: Nat. Water doi: 10.1038/s44221-023-00070-z – volume: 9 start-page: 227 year: 2023 ident: e_1_2_8_42_1 publication-title: Chem doi: 10.1016/j.chempr.2022.10.016 – volume: 8 start-page: 331 year: 2023 ident: e_1_2_8_97_1 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-022-00482-5 – volume: 374 start-page: 454 year: 2021 ident: e_1_2_8_31_1 publication-title: Science doi: 10.1126/science.abj0890 – volume: 4 start-page: 456 year: 2012 ident: e_1_2_8_115_1 publication-title: Nat. Chem. doi: 10.1038/nchem.1354 – volume: 120 start-page: 8468 year: 2020 ident: e_1_2_8_51_1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00685 – volume: 54 start-page: 6795 year: 2015 ident: e_1_2_8_72_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201502155 – volume: 52 year: 2016 ident: e_1_2_8_84_1 publication-title: Chem. Commun. doi: 10.1039/C6CC04790D – volume: 60 start-page: 6431 year: 2024 ident: e_1_2_8_122_1 publication-title: Chem. Commun. doi: 10.1039/D4CC02065K – volume: 10 start-page: 1472 year: 2019 ident: e_1_2_8_95_1 publication-title: Chem. Sci. doi: 10.1039/C8SC01959B – volume: 14 start-page: 179 year: 2023 ident: e_1_2_8_86_1 publication-title: Chem. Sci. doi: 10.1039/D2SC05192C – volume: 57 start-page: 7244 year: 2018 ident: e_1_2_8_85_1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b00910 – volume: 6 start-page: 906 year: 2014 ident: e_1_2_8_88_1 publication-title: Nat. Chem. doi: 10.1038/nchem.2045 – volume: 46 start-page: 5444 year: 2017 ident: e_1_2_8_101_1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00187H – volume: 8 start-page: 364 year: 2015 ident: e_1_2_8_56_1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02853H – volume: 140 start-page: 6416 year: 2018 ident: e_1_2_8_89_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b02896 – start-page: 863 year: 2001 ident: e_1_2_8_12_1 publication-title: Chem. Commun. doi: 10.1039/b102714j – volume: 356 start-page: 430 year: 2017 ident: e_1_2_8_27_1 publication-title: Science doi: 10.1126/science.aam8743 – volume: 139 start-page: 4294 year: 2017 ident: e_1_2_8_50_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00280 – volume: 23 start-page: 5211 year: 2023 ident: e_1_2_8_45_1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.3c00446 – volume: 5 start-page: 3161 year: 2022 ident: e_1_2_8_37_1 publication-title: Matter doi: 10.1016/j.matt.2022.07.028 – volume: 18 start-page: 1358 year: 2019 ident: e_1_2_8_10_1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0495-0 – volume: 146 start-page: 6072 year: 2024 ident: e_1_2_8_25_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c13381 – volume: 15 start-page: 81 year: 2024 ident: e_1_2_8_43_1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-44401-w – start-page: 340 volume-title: Reactivity in Confined Spaces year: 2021 ident: e_1_2_8_52_1 doi: 10.1039/9781788019705-00340 – volume: 46 start-page: 2638 year: 2017 ident: e_1_2_8_49_1 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00090A – volume: 10 year: 2022 ident: e_1_2_8_22_1 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2022.108300 – volume: 36 year: 2020 ident: e_1_2_8_140_1 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c02839 – volume: 55 year: 2016 ident: e_1_2_8_137_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201607281 – volume: 54 year: 2015 ident: e_1_2_8_7_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503835 – volume: 14 year: 2024 ident: e_1_2_8_14_1 publication-title: RSC Adv. doi: 10.1039/D4RA00865K – volume: 18 start-page: 1337 year: 2006 ident: e_1_2_8_70_1 publication-title: Chem. Mater. doi: 10.1021/cm052191g – volume: 51 start-page: 4949 year: 2022 ident: e_1_2_8_107_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D2CS00167E – volume: 4 start-page: 2077 year: 2022 ident: e_1_2_8_21_1 publication-title: Nanoscale Adv. doi: 10.1039/D2NA00061J – volume: 11 start-page: 4031 year: 2020 ident: e_1_2_8_61_1 publication-title: Chem. Sci. doi: 10.1039/D0SC00485E – volume: 60 year: 2021 ident: e_1_2_8_3_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202101644 – volume: 5 start-page: 247 year: 2024 ident: e_1_2_8_100_1 publication-title: Commun. Mater. doi: 10.1038/s43246-024-00691-1 – volume: 307 start-page: 188 year: 2016 ident: e_1_2_8_65_1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.06.012 – volume: 19 start-page: 4082 year: 2017 ident: e_1_2_8_81_1 publication-title: CrystEngComm doi: 10.1039/C7CE00022G – volume: 45 start-page: 7358 year: 2006 ident: e_1_2_8_119_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200601991 – volume: 145 year: 2023 ident: e_1_2_8_76_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08017 – volume: 598 start-page: 298 year: 2021 ident: e_1_2_8_128_1 publication-title: Nature doi: 10.1038/s41586-021-03880-x – volume: 27 start-page: 89 year: 1988 ident: e_1_2_8_9_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.198800891 – volume: 63 year: 2024 ident: e_1_2_8_64_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202315075 – volume: 414 year: 2020 ident: e_1_2_8_4_1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2020.213295 – volume: 138 year: 2016 ident: e_1_2_8_1_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11821 – volume: 30 year: 2018 ident: e_1_2_8_67_1 publication-title: Adv. Mater. doi: 10.1002/adma.201704303 – volume: 19 start-page: 8457 year: 2013 ident: e_1_2_8_125_1 publication-title: Chem. Eur. J. doi: 10.1002/chem.201300762 – volume: 6 start-page: 337 year: 2020 ident: e_1_2_8_20_1 publication-title: Chem doi: 10.1016/j.chempr.2019.10.012 – ident: e_1_2_8_99_1 doi: 10.26434/chemrxiv‐2024‐nsv3r – volume: 136 start-page: 6892 year: 2014 ident: e_1_2_8_83_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502996h – volume: 61 year: 2022 ident: e_1_2_8_96_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202111228 – volume: 351 start-page: 365 year: 2016 ident: e_1_2_8_130_1 publication-title: Science doi: 10.1126/science.aad4011 – volume: 379 start-page: 357 year: 2023 ident: e_1_2_8_98_1 publication-title: Science doi: 10.1126/science.ade5239 – volume: 128 year: 2024 ident: e_1_2_8_144_1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.4c01733 – volume: 431 year: 2022 ident: e_1_2_8_19_1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133208 – volume: 14 start-page: 9409 year: 2023 ident: e_1_2_8_90_1 publication-title: Chem. Sci. doi: 10.1039/D3SC03553K – volume: 49 start-page: 6751 year: 2010 ident: e_1_2_8_123_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201003221 – volume: 53 start-page: 2606 year: 2014 ident: e_1_2_8_143_1 publication-title: Inorg. Chem. doi: 10.1021/ic402955e – volume: 3 start-page: 985 year: 2018 ident: e_1_2_8_30_1 publication-title: Nat. Energy doi: 10.1038/s41560-018-0261-6 – volume: 46 start-page: 4911 year: 2010 ident: e_1_2_8_124_1 publication-title: Chem. Commun. doi: 10.1039/c0cc00997k – volume: 790 year: 2021 ident: e_1_2_8_17_1 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2021.148211 – volume: 52 start-page: 1079 year: 2019 ident: e_1_2_8_133_1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00018 – volume: 62 start-page: 4403 year: 2016 ident: e_1_2_8_74_1 publication-title: Angew. Chem., Int. Ed. – volume: 60 year: 2021 ident: e_1_2_8_6_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202106259 – volume: 57 start-page: 4532 year: 2018 ident: e_1_2_8_58_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710091 – volume: 2 start-page: 608 year: 2016 ident: e_1_2_8_103_1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00168 – volume: 20 start-page: 1347 year: 2020 ident: e_1_2_8_66_1 publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.9b00955 – volume: 135 start-page: 4195 year: 2013 ident: e_1_2_8_92_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312120x – volume: 14 start-page: 417 year: 2021 ident: e_1_2_8_118_1 publication-title: Nano Res. doi: 10.1007/s12274-020-3123-z – volume: 139 year: 2017 ident: e_1_2_8_131_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07457 – volume: 5 start-page: 1295 year: 2019 ident: e_1_2_8_2_1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b00750 – volume: 517 year: 2024 ident: e_1_2_8_78_1 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.216004 – volume: 353 start-page: 808 year: 2016 ident: e_1_2_8_44_1 publication-title: Science doi: 10.1126/science.aaf9135 – volume: 38 start-page: 1802 year: 2009 ident: e_1_2_8_106_1 publication-title: Chem. Soc. Rev. doi: 10.1039/b819333a – volume: 8 start-page: 4278 year: 2023 ident: e_1_2_8_18_1 publication-title: ACS Omega doi: 10.1021/acsomega.2c07517 – volume: 24 start-page: 5095 year: 1983 ident: e_1_2_8_132_1 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(00)94050-4 – volume: 139 year: 2017 ident: e_1_2_8_55_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10922 – volume: 136 start-page: 4369 year: 2014 ident: e_1_2_8_29_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500330a – volume: 44 start-page: 901 year: 2005 ident: e_1_2_8_113_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200461707 – volume: 2 start-page: 439 year: 2010 ident: e_1_2_8_126_1 publication-title: Nat. Chem. doi: 10.1038/nchem.654 – volume: 225 start-page: 84 year: 2021 ident: e_1_2_8_62_1 publication-title: Faraday Discuss. doi: 10.1039/D0FD00012D – volume: 50 start-page: 5706 year: 2021 ident: e_1_2_8_41_1 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01236J – volume: 57 start-page: 8678 year: 2018 ident: e_1_2_8_136_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201805004 – volume: 136 start-page: 7403 year: 2014 ident: e_1_2_8_138_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502238a – volume: 495 start-page: 461 year: 2013 ident: e_1_2_8_40_1 publication-title: Nature doi: 10.1038/nature11990 – volume: 112 start-page: 724 year: 2012 ident: e_1_2_8_16_1 publication-title: Chem. Rev. doi: 10.1021/cr2003272 – start-page: 239 volume-title: Structure and Bonding: 21st Century Challenges in Chemical Crystallography I year: 2020 ident: e_1_2_8_147_1 – volume: 38 start-page: 3412 year: 2019 ident: e_1_2_8_91_1 publication-title: Organometallics doi: 10.1021/acs.organomet.9b00401 – volume: 23 year: 2022 ident: e_1_2_8_145_1 publication-title: ChemPhysChem doi: 10.1002/cphc.202200098 – volume: 613 start-page: 287 year: 2023 ident: e_1_2_8_32_1 publication-title: Nature doi: 10.1038/s41586-022-05409-2 – volume: 7 start-page: 2037 year: 2016 ident: e_1_2_8_80_1 publication-title: Chem. Sci. doi: 10.1039/C5SC03494A – volume: 118 year: 1996 ident: e_1_2_8_110_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja961551l – volume: 16 start-page: 693 year: 2024 ident: e_1_2_8_134_1 publication-title: Nat. Chem. doi: 10.1038/s41557-024-01460-w – volume: 23 start-page: 39 year: 2024 ident: e_1_2_8_8_1 publication-title: Nat. Mater. doi: 10.1038/s41563-023-01749-0 – volume: 60 start-page: 51 year: 2024 ident: e_1_2_8_82_1 publication-title: Chem. Commun. doi: 10.1039/D3CC04320G – volume: 51 start-page: 2160 year: 2012 ident: e_1_2_8_114_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107873 – volume: 39 start-page: 883 year: 2020 ident: e_1_2_8_33_1 publication-title: Organometallics doi: 10.1021/acs.organomet.9b00735 – volume: 45 start-page: 4090 year: 2016 ident: e_1_2_8_69_1 publication-title: Dalton Trans. doi: 10.1039/C5DT03522H – volume: 51 start-page: 4887 year: 2012 ident: e_1_2_8_71_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201108565 – start-page: 3814 year: 2007 ident: e_1_2_8_47_1 publication-title: Chem. Commun. doi: 10.1039/b704980c – volume: 54 year: 2015 ident: e_1_2_8_38_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201501545 – volume: 7 start-page: 514 year: 2015 ident: e_1_2_8_116_1 publication-title: Nat. Chem. doi: 10.1038/nchem.2258 – volume: 8 year: 2022 ident: e_1_2_8_141_1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abn4426 – volume: 42 start-page: 74 year: 2003 ident: e_1_2_8_112_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200390057 – volume: 135 year: 2013 ident: e_1_2_8_60_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402577s – volume: 58 start-page: 1102 year: 2018 ident: e_1_2_8_109_1 publication-title: Isr. J. Chem. doi: 10.1002/ijch.201800114 – volume: 135 year: 2013 ident: e_1_2_8_77_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4064475 – volume: 58 start-page: 5829 year: 2022 ident: e_1_2_8_120_1 publication-title: Chem. Commun. doi: 10.1039/D2CC01198K – volume: 112 year: 2015 ident: e_1_2_8_139_1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1514485112 – volume: 2 start-page: 688 year: 2010 ident: e_1_2_8_142_1 publication-title: Nat. Chem. doi: 10.1038/nchem.681 – volume: 39 start-page: 2699 year: 2000 ident: e_1_2_8_111_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z – volume: 123 start-page: 4368 year: 2001 ident: e_1_2_8_11_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0104352 – volume: 9 start-page: 1779 year: 2019 ident: e_1_2_8_63_1 publication-title: ACS Catal. doi: 10.1021/acscatal.8b04515 – volume: 8 start-page: 1171 year: 2024 ident: e_1_2_8_26_1 publication-title: Mater. Chem. Front. doi: 10.1039/D3QM00484H – volume: 329 start-page: 1053 year: 2010 ident: e_1_2_8_104_1 publication-title: Science doi: 10.1126/science.1190672 – volume: 137 start-page: 9527 year: 2015 ident: e_1_2_8_93_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05434 – volume: 130 start-page: 5854 year: 2008 ident: e_1_2_8_54_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800669j – volume: 58 start-page: 7687 year: 2019 ident: e_1_2_8_87_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201902171 – volume: 341 year: 2013 ident: e_1_2_8_5_1 publication-title: Science doi: 10.1126/science.1230444 – volume: 141 year: 2019 ident: e_1_2_8_75_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07891 – volume: 59 year: 2020 ident: e_1_2_8_46_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006438 – volume: 374 start-page: 1464 year: 2021 ident: e_1_2_8_24_1 publication-title: Science doi: 10.1126/science.abi7281 – volume: 6 start-page: 117 year: 2020 ident: e_1_2_8_105_1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01185 – volume: 140 start-page: 3751 year: 2018 ident: e_1_2_8_73_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13330 – volume: 61 year: 2022 ident: e_1_2_8_34_1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202208305 – volume: 138 year: 2016 ident: e_1_2_8_57_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b08417 – volume: 142 year: 2020 ident: e_1_2_8_117_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c04477 – volume: 130 start-page: 3246 year: 2008 ident: e_1_2_8_102_1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja077122c |
SSID | ssj0009606 |
Score | 2.518701 |
SecondaryResourceType | review_article |
Snippet | Far from being simply rigid, benign architectures, metal–organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From... Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | e2414509 |
Title | Supramolecular Chemistry in Metal–Organic Framework Materials |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39895182 https://www.proquest.com/docview/3162849828 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeLO8FCQkDlGWxHYS-1hWrSqk5VBa0Vvk-NFG6qarbfbCqf-h_5BfwthOnF0oUuESRYnsJJ6J_c145huEPjBCVZarOsGamoSKQiVM8CzBhqW5AiXhjqdg_rU4OKZfTvKT0aHvsku6eip_3JhX8j9ShWsgV5sl-w-SDZ3CBTgH-cIRJAzHW8n423q5EouhwG08G4q3WSfGXAOsHkIZiE-5lBan-liseC46_4qb8HR3iAhYDHctAv2um_ZM27LLwWswb07XOnSfzsSlsFvunzOfPHNqQ_iC_3bVh-g7_3sj4sNpvD8dd4BsNe4x2_1cx3vh5uxMLJZ2MnZKq5tzaLvpp8Au7zvddF1ykie88LyaU91Pt9hasL7M5h-TuSeHFcrxQwHSoHnKx2Vr2Kr_bTULMYaejxlXtn0V2t9F93AJKMvC58ORaMzacY6VsX_Hgd4zxZ-2n78NX_5ikzhscvQIPeyNimjXa8hjdEe3T9CDDarJp2CUbelKFHQlatrI6crPq-teS6KgJVHQkmfoeH_vaHaQ9MUzEol52iWAi2vD8lpTrEiudCFrI4kRzNQEm1KqQgA21MrY8qglLVRdEk1htTHKljCryXO00160-iWKOMzpDH52xaikTGOmaClwzjKTiVwSOUEfhzGplp4jpbp59Cfo_TBkFXyk3ZsSrb5YX1YkKwAocbD_J-iFH8vQF-EM7ACGX936Oa_R_VEF36CdbrXWbwE8dvU7J_dfWppqUA |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Chemistry+in+Metal%E2%80%93Organic+Framework+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Miguel%E2%80%90Casa%C3%B1%2C+Eugenia&rft.au=Orton%2C+Georgia+R.+F.&rft.au=Schier%2C+Danielle+E.&rft.au=Champness%2C+Neil+R.&rft.date=2025-02-02&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002%2Fadma.202414509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202414509 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |