Supramolecular Chemistry in Metal–Organic Framework Materials

Far from being simply rigid, benign architectures, metal–organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident....

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) p. e2414509
Main Authors Miguel‐Casañ, Eugenia, Orton, Georgia R. F., Schier, Danielle E., Champness, Neil R.
Format Journal Article
LanguageEnglish
Published Germany 02.02.2025
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202414509

Cover

Abstract Far from being simply rigid, benign architectures, metal–organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically‐interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal–organic frameworks emerge as important directions for the field.
AbstractList Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field.Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field.
Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From developing crystal sponges to studying reactions in framework materials, the role of both supramolecular chemistry and framework structure is evident. We explore the role of supramolecular chemistry in determining framework…guest interactions and attempts to understand the dynamic behavior in MOFs, including attempts to control pore behavior through the incorporation of mechanically-interlocked molecules. Appreciating and understanding the role of supramolecular interactions and dynamic behavior in metal-organic frameworks emerge as important directions for the field.
Author Champness, Neil R.
Orton, Georgia R. F.
Schier, Danielle E.
Miguel‐Casañ, Eugenia
Author_xml – sequence: 1
  givenname: Eugenia
  orcidid: 0000-0001-9047-4143
  surname: Miguel‐Casañ
  fullname: Miguel‐Casañ, Eugenia
  organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
– sequence: 2
  givenname: Georgia R. F.
  orcidid: 0000-0002-7566-0092
  surname: Orton
  fullname: Orton, Georgia R. F.
  organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
– sequence: 3
  givenname: Danielle E.
  surname: Schier
  fullname: Schier, Danielle E.
  organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
– sequence: 4
  givenname: Neil R.
  orcidid: 0000-0003-2970-1487
  surname: Champness
  fullname: Champness, Neil R.
  organization: School of Chemistry University of Birmingham Edgbaston Birmingham B15 2TT UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39895182$$D View this record in MEDLINE/PubMed
BookMark eNo90LtOwzAUBmALFdELrIwoI0uK77UnhCoKSK06AHPk2McQyKXYiVA33oE35EkIaun0L5-O_vOP0aBuakDonOApwZheGVeZKcWUEy6wPkIjIihJOdZigEZYM5FqydUQjWN8wxhrieUJGjKttCCKjtD1Y7cJpmpKsF1pQjJ_haqIbdgmRZ2soDXlz9f3OryYurDJopfw2YT3ZGVaCIUp4yk69n3A2T4n6Hlx-zS_T5fru4f5zTK1VOM2FZLkXokcOHVMOJA295Z5o3zOqJ9ZJ42iFJzvIZ1x6fIZAz6TzDvBqc7ZBF3u7m5C89FBbLO-poWyNDU0XcwYkVRxrajq6cWednkFLtuEojJhm_0_3YPpDtjQxBjAHwjB2d-q2d-q2WFV9gvyw2tM
Cites_doi 10.1039/B818330A
10.1002/anie.202106265
10.1039/C9SC03916C
10.1021/jacs.7b12913
10.1039/D3NA00627A
10.1002/ejic.201600311
10.1021/acsami.2c19321
10.1126/sciadv.aat3198
10.1021/jacs.5b05327
10.1038/s41570-020-0209-9
10.1038/natrevmats.2017.45
10.1038/s44160-022-00224-z
10.1007/128_2009_21
10.1021/jacs.5b04674
10.1039/D0CS01556C
10.1039/D2CC06330A
10.1021/jacs.6b09880
10.1002/anie.201311128
10.1038/s44221-023-00070-z
10.1016/j.chempr.2022.10.016
10.1038/s41578-022-00482-5
10.1126/science.abj0890
10.1038/nchem.1354
10.1021/acs.chemrev.9b00685
10.1002/anie.201502155
10.1039/C6CC04790D
10.1039/D4CC02065K
10.1039/C8SC01959B
10.1039/D2SC05192C
10.1021/acs.inorgchem.8b00910
10.1038/nchem.2045
10.1039/C7CS00187H
10.1039/C4EE02853H
10.1021/jacs.8b02896
10.1039/b102714j
10.1126/science.aam8743
10.1021/jacs.7b00280
10.1021/acs.cgd.3c00446
10.1016/j.matt.2022.07.028
10.1038/s41563-019-0495-0
10.1021/jacs.3c13381
10.1038/s41467-023-44401-w
10.1039/9781788019705-00340
10.1039/C7CS00090A
10.1016/j.jece.2022.108300
10.1021/acs.langmuir.0c02839
10.1002/anie.201607281
10.1002/anie.201503835
10.1039/D4RA00865K
10.1021/cm052191g
10.1039/D2CS00167E
10.1039/D2NA00061J
10.1039/D0SC00485E
10.1002/anie.202101644
10.1038/s43246-024-00691-1
10.1016/j.ccr.2015.06.012
10.1039/C7CE00022G
10.1002/anie.200601991
10.1021/jacs.3c08017
10.1038/s41586-021-03880-x
10.1002/anie.198800891
10.1002/anie.202315075
10.1016/j.ccr.2020.213295
10.1021/jacs.6b11821
10.1002/adma.201704303
10.1002/chem.201300762
10.1016/j.chempr.2019.10.012
10.26434/chemrxiv‐2024‐nsv3r
10.1021/ja502996h
10.1002/anie.202111228
10.1126/science.aad4011
10.1126/science.ade5239
10.1021/acs.jpcc.4c01733
10.1016/j.cej.2021.133208
10.1039/D3SC03553K
10.1002/anie.201003221
10.1021/ic402955e
10.1038/s41560-018-0261-6
10.1039/c0cc00997k
10.1016/j.scitotenv.2021.148211
10.1021/acs.accounts.9b00018
10.1002/anie.202106259
10.1002/anie.201710091
10.1021/acscentsci.6b00168
10.1021/acs.cgd.9b00955
10.1021/ja312120x
10.1007/s12274-020-3123-z
10.1021/jacs.7b07457
10.1021/acscentsci.9b00750
10.1016/j.ccr.2024.216004
10.1126/science.aaf9135
10.1039/b819333a
10.1021/acsomega.2c07517
10.1016/S0040-4039(00)94050-4
10.1021/jacs.7b10922
10.1021/ja500330a
10.1002/anie.200461707
10.1038/nchem.654
10.1039/D0FD00012D
10.1039/D0CS01236J
10.1002/anie.201805004
10.1021/ja502238a
10.1038/nature11990
10.1021/cr2003272
10.1021/acs.organomet.9b00401
10.1002/cphc.202200098
10.1038/s41586-022-05409-2
10.1039/C5SC03494A
10.1021/ja961551l
10.1038/s41557-024-01460-w
10.1038/s41563-023-01749-0
10.1039/D3CC04320G
10.1002/anie.201107873
10.1021/acs.organomet.9b00735
10.1039/C5DT03522H
10.1002/anie.201108565
10.1039/b704980c
10.1002/anie.201501545
10.1038/nchem.2258
10.1126/sciadv.abn4426
10.1002/anie.200390057
10.1021/ja402577s
10.1002/ijch.201800114
10.1021/ja4064475
10.1039/D2CC01198K
10.1073/pnas.1514485112
10.1038/nchem.681
10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z
10.1021/ja0104352
10.1021/acscatal.8b04515
10.1039/D3QM00484H
10.1126/science.1190672
10.1021/jacs.5b05434
10.1021/ja800669j
10.1002/anie.201902171
10.1126/science.1230444
10.1021/jacs.9b07891
10.1002/anie.202006438
10.1126/science.abi7281
10.1021/acscentsci.9b01185
10.1021/jacs.7b13330
10.1002/anie.202208305
10.1021/jacs.6b08417
10.1021/jacs.0c04477
10.1021/ja077122c
ContentType Journal Article
Copyright 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1002/adma.202414509
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
ExternalDocumentID 39895182
10_1002_adma_202414509
Genre Journal Article
Review
GrantInformation_xml – fundername: Leverhulme Trust
  grantid: ECF-2023-056
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/S002995/2
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c290t-561bf85be42d35de6cbfc3fa8fb32f7cd6a822edf5612746db73e4763fd5429b3
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 01:58:56 EDT 2025
Thu Apr 03 07:00:30 EDT 2025
Tue Jul 01 00:55:04 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords metal–organic frameworks
reticular chemistry
supramolecular chemistry
Language English
License 2025 The Author(s). Advanced Materials published by Wiley‐VCH GmbH.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c290t-561bf85be42d35de6cbfc3fa8fb32f7cd6a822edf5612746db73e4763fd5429b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9047-4143
0000-0003-2970-1487
0000-0002-7566-0092
OpenAccessLink https://doi.org/10.1002/adma.202414509
PMID 39895182
PQID 3162849828
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3162849828
pubmed_primary_39895182
crossref_primary_10_1002_adma_202414509
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-02
PublicationDateYYYYMMDD 2025-02-02
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-02
  day: 02
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2025
References Saura‐Sanmartin A. (e_1_2_8_107_1) 2022; 51
Lehn J.‐M. (e_1_2_8_9_1) 1988; 27
Tu T. N. (e_1_2_8_42_1) 2023; 9
Grigoropoulos A. (e_1_2_8_80_1) 2016; 7
Majewski M. B. (e_1_2_8_81_1) 2017; 19
Saura‐Sanmartin A. (e_1_2_8_117_1) 2020; 142
Jia T. (e_1_2_8_22_1) 2022; 10
Heard A. W. (e_1_2_8_105_1) 2020; 6
Jiang C. (e_1_2_8_21_1) 2022; 4
Fathieh F. (e_1_2_8_28_1) 2018; 4
Gholami G. (e_1_2_8_121_1) 2016
Horike S. (e_1_2_8_54_1) 2008; 130
Sutton A. L. (e_1_2_8_34_1) 2022; 61
Moon S.‐Y. (e_1_2_8_72_1) 2015; 54
Mizutani N. (e_1_2_8_146_1) 2023; 59
Letwaba J. (e_1_2_8_14_1) 2024; 14
Krause S. (e_1_2_8_108_1) 2020; 4
Yaghi O. M. (e_1_2_8_1_1) 2016; 138
Li L. (e_1_2_8_95_1) 2019; 10
Freund R. (e_1_2_8_6_1) 2021; 60
Furukawa H. (e_1_2_8_5_1) 2013; 341
Griffin S. L. (e_1_2_8_52_1) 2021
Cheng L. (e_1_2_8_26_1) 2024; 8
Canivet J. (e_1_2_8_92_1) 2013; 135
Freund R. (e_1_2_8_3_1) 2021; 60
Easun T. L. (e_1_2_8_143_1) 2014; 53
Bratsos I. (e_1_2_8_85_1) 2018; 57
Li B. (e_1_2_8_87_1) 2019; 58
Bavykina A. (e_1_2_8_51_1) 2020; 120
Blake A. J. (e_1_2_8_142_1) 2010; 2
McKinnon J. J. (e_1_2_8_47_1) 2007
Lin X. (e_1_2_8_119_1) 2006; 45
e_1_2_8_99_1
Griffin S. L. (e_1_2_8_4_1) 2020; 414
Yang D. (e_1_2_8_73_1) 2018; 140
Damron J. T. (e_1_2_8_136_1) 2018; 57
Eddaoudi M. (e_1_2_8_11_1) 2001; 123
Xiao D. J. (e_1_2_8_57_1) 2016; 138
Sumida K. (e_1_2_8_16_1) 2012; 112
Kozachuk O. (e_1_2_8_79_1) 2014; 53
McGonigal P. R. (e_1_2_8_139_1) 2015; 112
Snyder B. E. R. (e_1_2_8_32_1) 2023; 613
Lee S. (e_1_2_8_44_1) 2016; 353
Deng H. (e_1_2_8_126_1) 2010; 2
Han S. (e_1_2_8_18_1) 2023; 8
Martínez‐Ahumada E. (e_1_2_8_33_1) 2020; 39
Brozek C. K. (e_1_2_8_77_1) 2013; 135
Hoffart D. J. (e_1_2_8_113_1) 2005; 44
Khan M. S. (e_1_2_8_36_1) 2023; 5
Lin X. (e_1_2_8_13_1) 2010; 293
Huxley M. T. (e_1_2_8_91_1) 2019; 38
Rissanen K. (e_1_2_8_49_1) 2017; 46
Bloch W. M. (e_1_2_8_88_1) 2014; 6
Huxley M. T. (e_1_2_8_89_1) 2018; 140
Valente C. (e_1_2_8_124_1) 2010; 46
Dietrich‐Buchecker C. O. (e_1_2_8_132_1) 1983; 24
León‐Alcaide L. (e_1_2_8_76_1) 2023; 145
Zhao Y. (e_1_2_8_131_1) 2017; 139
Canossa S. (e_1_2_8_97_1) 2023; 8
Chen Q. (e_1_2_8_127_1) 2016; 138
Spanopoulos I. (e_1_2_8_84_1) 2016; 52
Díaz J. C. (e_1_2_8_82_1) 2024; 60
Davidson G. J. E. (e_1_2_8_112_1) 2003; 42
Carney J. (e_1_2_8_140_1) 2020; 36
Wang S. (e_1_2_8_30_1) 2018; 3
Wada Y. (e_1_2_8_43_1) 2024; 15
Spackman M. A. (e_1_2_8_48_1) 2009; 11
Hastings J. (e_1_2_8_144_1) 2024; 128
Whang D. (e_1_2_8_110_1) 1996; 118
Orton G. R. F. (e_1_2_8_53_1) 2021; 50
Cao D. (e_1_2_8_125_1) 2013; 19
Smith G. L. (e_1_2_8_10_1) 2019; 18
Bloch W. M. (e_1_2_8_38_1) 2015; 54
Zhu K. (e_1_2_8_116_1) 2015; 7
Ezugwu C. I. (e_1_2_8_65_1) 2016; 307
Fracaroli A. M. (e_1_2_8_109_1) 2018; 58
Moulton B. (e_1_2_8_12_1) 2001
Bonnefoy J. (e_1_2_8_59_1) 2015; 137
Lee E. (e_1_2_8_111_1) 2000; 39
Stirk A. J. (e_1_2_8_118_1) 2021; 14
Ursueguía D. (e_1_2_8_17_1) 2021; 790
Coskun A. (e_1_2_8_114_1) 2012; 51
Liu Y. (e_1_2_8_130_1) 2016; 351
Prestipino C. (e_1_2_8_70_1) 2006; 18
Zhu Z. (e_1_2_8_25_1) 2024; 146
Baggi G. (e_1_2_8_137_1) 2016; 55
Rabone J. (e_1_2_8_104_1) 2010; 329
Peralta R. A. (e_1_2_8_62_1) 2021; 225
Li X. (e_1_2_8_120_1) 2022; 58
Hanikel N. (e_1_2_8_31_1) 2021; 374
Grigoropoulos A. (e_1_2_8_58_1) 2018; 57
Portillo‐Vélez N. S. (e_1_2_8_100_1) 2024; 5
Su Y. (e_1_2_8_74_1) 2016; 62
Ji P. (e_1_2_8_75_1) 2019; 141
Young R. J. (e_1_2_8_90_1) 2023; 14
Ernst M. (e_1_2_8_145_1) 2022; 23
Yaghi O. M. (e_1_2_8_2_1) 2019; 5
Zaworotko M. J. (e_1_2_8_8_1) 2024; 23
Genna D. T. (e_1_2_8_60_1) 2013; 135
Vermoortele F. (e_1_2_8_71_1) 2012; 51
Yang D. (e_1_2_8_63_1) 2019; 9
Winarta J. (e_1_2_8_66_1) 2020; 20
Canivet J. (e_1_2_8_69_1) 2016; 45
Meekel E. G. (e_1_2_8_98_1) 2023; 379
Vukotic V. N. (e_1_2_8_115_1) 2012; 4
Zigon N. (e_1_2_8_39_1) 2021; 60
Miguel‐Casan E. (e_1_2_8_86_1) 2023; 14
Ma T. (e_1_2_8_129_1) 2023; 2
Zhu K. (e_1_2_8_138_1) 2014; 136
Lin R.‐B. (e_1_2_8_20_1) 2020; 6
Hatcher L. E. (e_1_2_8_133_1) 2019; 52
Kolodzeiski E. (e_1_2_8_141_1) 2022; 8
Kitagawa S. (e_1_2_8_7_1) 2015; 54
Gould S. L. (e_1_2_8_102_1) 2008; 130
Vukotic V. N. (e_1_2_8_135_1) 2015; 137
Inokuma Y. (e_1_2_8_40_1) 2013; 495
Chen W. (e_1_2_8_64_1) 2024; 63
Yuan S. (e_1_2_8_67_1) 2018; 30
Meng W. (e_1_2_8_128_1) 2021; 598
Deng C. (e_1_2_8_45_1) 2023; 23
Lin J.‐B. (e_1_2_8_24_1) 2021; 374
Liu J. (e_1_2_8_41_1) 2021; 50
An B. (e_1_2_8_55_1) 2017; 139
Razavi S. A. A. (e_1_2_8_78_1) 2024; 517
Trickett C. A. (e_1_2_8_15_1) 2017; 2
Jiang X. (e_1_2_8_103_1) 2016; 2
Raithby P. R. (e_1_2_8_147_1) 2020
Grape E. S. (e_1_2_8_35_1) 2023; 1
Ding M. (e_1_2_8_68_1) 2019; 10
Kang J. (e_1_2_8_134_1) 2024; 16
Ma L.‐N. (e_1_2_8_23_1) 2023; 15
Marshall R. J. (e_1_2_8_93_1) 2015; 137
Kim H. (e_1_2_8_27_1) 2017; 356
Zhang S.‐Y. (e_1_2_8_46_1) 2020; 59
Ikemoto K. (e_1_2_8_83_1) 2014; 136
Li Q. (e_1_2_8_123_1) 2010; 49
Stoddart J. F. (e_1_2_8_106_1) 2009; 38
Saura‐Sanmartin A. (e_1_2_8_122_1) 2024; 60
Lv D. (e_1_2_8_19_1) 2022; 431
Young R. J. (e_1_2_8_61_1) 2020; 11
Yang Y. (e_1_2_8_96_1) 2022; 61
Navarro‐Sánchez J. (e_1_2_8_50_1) 2017; 139
Li R. (e_1_2_8_37_1) 2022; 5
Furukawa H. (e_1_2_8_29_1) 2014; 136
Albalad J. (e_1_2_8_94_1) 2018; 140
Nasalevich M. A. (e_1_2_8_56_1) 2015; 8
Morris R. E. (e_1_2_8_101_1) 2017; 46
References_xml – volume: 11
  start-page: 19
  year: 2009
  ident: e_1_2_8_48_1
  publication-title: CrystEngComm
  doi: 10.1039/B818330A
– volume: 60
  year: 2021
  ident: e_1_2_8_39_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106265
– volume: 10
  year: 2019
  ident: e_1_2_8_68_1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC03916C
– volume: 140
  start-page: 2028
  year: 2018
  ident: e_1_2_8_94_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12913
– volume: 5
  start-page: 6318
  year: 2023
  ident: e_1_2_8_36_1
  publication-title: Nanoscale Adv.
  doi: 10.1039/D3NA00627A
– start-page: 4524
  year: 2016
  ident: e_1_2_8_121_1
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201600311
– volume: 15
  start-page: 2971
  year: 2023
  ident: e_1_2_8_23_1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c19321
– volume: 4
  year: 2018
  ident: e_1_2_8_28_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat3198
– volume: 137
  start-page: 9409
  year: 2015
  ident: e_1_2_8_59_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05327
– volume: 4
  start-page: 550
  year: 2020
  ident: e_1_2_8_108_1
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-020-0209-9
– volume: 2
  year: 2017
  ident: e_1_2_8_15_1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.45
– volume: 2
  start-page: 286
  year: 2023
  ident: e_1_2_8_129_1
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-022-00224-z
– volume: 293
  start-page: 35
  year: 2010
  ident: e_1_2_8_13_1
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2009_21
– volume: 137
  start-page: 9643
  year: 2015
  ident: e_1_2_8_135_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04674
– volume: 50
  start-page: 4411
  year: 2021
  ident: e_1_2_8_53_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01556C
– volume: 59
  start-page: 1293
  year: 2023
  ident: e_1_2_8_146_1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC06330A
– volume: 138
  year: 2016
  ident: e_1_2_8_127_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09880
– volume: 53
  start-page: 7058
  year: 2014
  ident: e_1_2_8_79_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201311128
– volume: 1
  start-page: 433
  year: 2023
  ident: e_1_2_8_35_1
  publication-title: Nat. Water
  doi: 10.1038/s44221-023-00070-z
– volume: 9
  start-page: 227
  year: 2023
  ident: e_1_2_8_42_1
  publication-title: Chem
  doi: 10.1016/j.chempr.2022.10.016
– volume: 8
  start-page: 331
  year: 2023
  ident: e_1_2_8_97_1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-022-00482-5
– volume: 374
  start-page: 454
  year: 2021
  ident: e_1_2_8_31_1
  publication-title: Science
  doi: 10.1126/science.abj0890
– volume: 4
  start-page: 456
  year: 2012
  ident: e_1_2_8_115_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1354
– volume: 120
  start-page: 8468
  year: 2020
  ident: e_1_2_8_51_1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00685
– volume: 54
  start-page: 6795
  year: 2015
  ident: e_1_2_8_72_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201502155
– volume: 52
  year: 2016
  ident: e_1_2_8_84_1
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04790D
– volume: 60
  start-page: 6431
  year: 2024
  ident: e_1_2_8_122_1
  publication-title: Chem. Commun.
  doi: 10.1039/D4CC02065K
– volume: 10
  start-page: 1472
  year: 2019
  ident: e_1_2_8_95_1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC01959B
– volume: 14
  start-page: 179
  year: 2023
  ident: e_1_2_8_86_1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC05192C
– volume: 57
  start-page: 7244
  year: 2018
  ident: e_1_2_8_85_1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b00910
– volume: 6
  start-page: 906
  year: 2014
  ident: e_1_2_8_88_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2045
– volume: 46
  start-page: 5444
  year: 2017
  ident: e_1_2_8_101_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00187H
– volume: 8
  start-page: 364
  year: 2015
  ident: e_1_2_8_56_1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02853H
– volume: 140
  start-page: 6416
  year: 2018
  ident: e_1_2_8_89_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b02896
– start-page: 863
  year: 2001
  ident: e_1_2_8_12_1
  publication-title: Chem. Commun.
  doi: 10.1039/b102714j
– volume: 356
  start-page: 430
  year: 2017
  ident: e_1_2_8_27_1
  publication-title: Science
  doi: 10.1126/science.aam8743
– volume: 139
  start-page: 4294
  year: 2017
  ident: e_1_2_8_50_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00280
– volume: 23
  start-page: 5211
  year: 2023
  ident: e_1_2_8_45_1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.3c00446
– volume: 5
  start-page: 3161
  year: 2022
  ident: e_1_2_8_37_1
  publication-title: Matter
  doi: 10.1016/j.matt.2022.07.028
– volume: 18
  start-page: 1358
  year: 2019
  ident: e_1_2_8_10_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0495-0
– volume: 146
  start-page: 6072
  year: 2024
  ident: e_1_2_8_25_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c13381
– volume: 15
  start-page: 81
  year: 2024
  ident: e_1_2_8_43_1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44401-w
– start-page: 340
  volume-title: Reactivity in Confined Spaces
  year: 2021
  ident: e_1_2_8_52_1
  doi: 10.1039/9781788019705-00340
– volume: 46
  start-page: 2638
  year: 2017
  ident: e_1_2_8_49_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00090A
– volume: 10
  year: 2022
  ident: e_1_2_8_22_1
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2022.108300
– volume: 36
  year: 2020
  ident: e_1_2_8_140_1
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c02839
– volume: 55
  year: 2016
  ident: e_1_2_8_137_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201607281
– volume: 54
  year: 2015
  ident: e_1_2_8_7_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503835
– volume: 14
  year: 2024
  ident: e_1_2_8_14_1
  publication-title: RSC Adv.
  doi: 10.1039/D4RA00865K
– volume: 18
  start-page: 1337
  year: 2006
  ident: e_1_2_8_70_1
  publication-title: Chem. Mater.
  doi: 10.1021/cm052191g
– volume: 51
  start-page: 4949
  year: 2022
  ident: e_1_2_8_107_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D2CS00167E
– volume: 4
  start-page: 2077
  year: 2022
  ident: e_1_2_8_21_1
  publication-title: Nanoscale Adv.
  doi: 10.1039/D2NA00061J
– volume: 11
  start-page: 4031
  year: 2020
  ident: e_1_2_8_61_1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC00485E
– volume: 60
  year: 2021
  ident: e_1_2_8_3_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202101644
– volume: 5
  start-page: 247
  year: 2024
  ident: e_1_2_8_100_1
  publication-title: Commun. Mater.
  doi: 10.1038/s43246-024-00691-1
– volume: 307
  start-page: 188
  year: 2016
  ident: e_1_2_8_65_1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.06.012
– volume: 19
  start-page: 4082
  year: 2017
  ident: e_1_2_8_81_1
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00022G
– volume: 45
  start-page: 7358
  year: 2006
  ident: e_1_2_8_119_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200601991
– volume: 145
  year: 2023
  ident: e_1_2_8_76_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08017
– volume: 598
  start-page: 298
  year: 2021
  ident: e_1_2_8_128_1
  publication-title: Nature
  doi: 10.1038/s41586-021-03880-x
– volume: 27
  start-page: 89
  year: 1988
  ident: e_1_2_8_9_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.198800891
– volume: 63
  year: 2024
  ident: e_1_2_8_64_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202315075
– volume: 414
  year: 2020
  ident: e_1_2_8_4_1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2020.213295
– volume: 138
  year: 2016
  ident: e_1_2_8_1_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11821
– volume: 30
  year: 2018
  ident: e_1_2_8_67_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704303
– volume: 19
  start-page: 8457
  year: 2013
  ident: e_1_2_8_125_1
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201300762
– volume: 6
  start-page: 337
  year: 2020
  ident: e_1_2_8_20_1
  publication-title: Chem
  doi: 10.1016/j.chempr.2019.10.012
– ident: e_1_2_8_99_1
  doi: 10.26434/chemrxiv‐2024‐nsv3r
– volume: 136
  start-page: 6892
  year: 2014
  ident: e_1_2_8_83_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502996h
– volume: 61
  year: 2022
  ident: e_1_2_8_96_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202111228
– volume: 351
  start-page: 365
  year: 2016
  ident: e_1_2_8_130_1
  publication-title: Science
  doi: 10.1126/science.aad4011
– volume: 379
  start-page: 357
  year: 2023
  ident: e_1_2_8_98_1
  publication-title: Science
  doi: 10.1126/science.ade5239
– volume: 128
  year: 2024
  ident: e_1_2_8_144_1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.4c01733
– volume: 431
  year: 2022
  ident: e_1_2_8_19_1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133208
– volume: 14
  start-page: 9409
  year: 2023
  ident: e_1_2_8_90_1
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC03553K
– volume: 49
  start-page: 6751
  year: 2010
  ident: e_1_2_8_123_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201003221
– volume: 53
  start-page: 2606
  year: 2014
  ident: e_1_2_8_143_1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402955e
– volume: 3
  start-page: 985
  year: 2018
  ident: e_1_2_8_30_1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0261-6
– volume: 46
  start-page: 4911
  year: 2010
  ident: e_1_2_8_124_1
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00997k
– volume: 790
  year: 2021
  ident: e_1_2_8_17_1
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.148211
– volume: 52
  start-page: 1079
  year: 2019
  ident: e_1_2_8_133_1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00018
– volume: 62
  start-page: 4403
  year: 2016
  ident: e_1_2_8_74_1
  publication-title: Angew. Chem., Int. Ed.
– volume: 60
  year: 2021
  ident: e_1_2_8_6_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202106259
– volume: 57
  start-page: 4532
  year: 2018
  ident: e_1_2_8_58_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710091
– volume: 2
  start-page: 608
  year: 2016
  ident: e_1_2_8_103_1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00168
– volume: 20
  start-page: 1347
  year: 2020
  ident: e_1_2_8_66_1
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b00955
– volume: 135
  start-page: 4195
  year: 2013
  ident: e_1_2_8_92_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312120x
– volume: 14
  start-page: 417
  year: 2021
  ident: e_1_2_8_118_1
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-3123-z
– volume: 139
  year: 2017
  ident: e_1_2_8_131_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07457
– volume: 5
  start-page: 1295
  year: 2019
  ident: e_1_2_8_2_1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b00750
– volume: 517
  year: 2024
  ident: e_1_2_8_78_1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.216004
– volume: 353
  start-page: 808
  year: 2016
  ident: e_1_2_8_44_1
  publication-title: Science
  doi: 10.1126/science.aaf9135
– volume: 38
  start-page: 1802
  year: 2009
  ident: e_1_2_8_106_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b819333a
– volume: 8
  start-page: 4278
  year: 2023
  ident: e_1_2_8_18_1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c07517
– volume: 24
  start-page: 5095
  year: 1983
  ident: e_1_2_8_132_1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(00)94050-4
– volume: 139
  year: 2017
  ident: e_1_2_8_55_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10922
– volume: 136
  start-page: 4369
  year: 2014
  ident: e_1_2_8_29_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500330a
– volume: 44
  start-page: 901
  year: 2005
  ident: e_1_2_8_113_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200461707
– volume: 2
  start-page: 439
  year: 2010
  ident: e_1_2_8_126_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.654
– volume: 225
  start-page: 84
  year: 2021
  ident: e_1_2_8_62_1
  publication-title: Faraday Discuss.
  doi: 10.1039/D0FD00012D
– volume: 50
  start-page: 5706
  year: 2021
  ident: e_1_2_8_41_1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01236J
– volume: 57
  start-page: 8678
  year: 2018
  ident: e_1_2_8_136_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201805004
– volume: 136
  start-page: 7403
  year: 2014
  ident: e_1_2_8_138_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502238a
– volume: 495
  start-page: 461
  year: 2013
  ident: e_1_2_8_40_1
  publication-title: Nature
  doi: 10.1038/nature11990
– volume: 112
  start-page: 724
  year: 2012
  ident: e_1_2_8_16_1
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– start-page: 239
  volume-title: Structure and Bonding: 21st Century Challenges in Chemical Crystallography I
  year: 2020
  ident: e_1_2_8_147_1
– volume: 38
  start-page: 3412
  year: 2019
  ident: e_1_2_8_91_1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.9b00401
– volume: 23
  year: 2022
  ident: e_1_2_8_145_1
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202200098
– volume: 613
  start-page: 287
  year: 2023
  ident: e_1_2_8_32_1
  publication-title: Nature
  doi: 10.1038/s41586-022-05409-2
– volume: 7
  start-page: 2037
  year: 2016
  ident: e_1_2_8_80_1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC03494A
– volume: 118
  year: 1996
  ident: e_1_2_8_110_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja961551l
– volume: 16
  start-page: 693
  year: 2024
  ident: e_1_2_8_134_1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-024-01460-w
– volume: 23
  start-page: 39
  year: 2024
  ident: e_1_2_8_8_1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-023-01749-0
– volume: 60
  start-page: 51
  year: 2024
  ident: e_1_2_8_82_1
  publication-title: Chem. Commun.
  doi: 10.1039/D3CC04320G
– volume: 51
  start-page: 2160
  year: 2012
  ident: e_1_2_8_114_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107873
– volume: 39
  start-page: 883
  year: 2020
  ident: e_1_2_8_33_1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.9b00735
– volume: 45
  start-page: 4090
  year: 2016
  ident: e_1_2_8_69_1
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT03522H
– volume: 51
  start-page: 4887
  year: 2012
  ident: e_1_2_8_71_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201108565
– start-page: 3814
  year: 2007
  ident: e_1_2_8_47_1
  publication-title: Chem. Commun.
  doi: 10.1039/b704980c
– volume: 54
  year: 2015
  ident: e_1_2_8_38_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201501545
– volume: 7
  start-page: 514
  year: 2015
  ident: e_1_2_8_116_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2258
– volume: 8
  year: 2022
  ident: e_1_2_8_141_1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn4426
– volume: 42
  start-page: 74
  year: 2003
  ident: e_1_2_8_112_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200390057
– volume: 135
  year: 2013
  ident: e_1_2_8_60_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402577s
– volume: 58
  start-page: 1102
  year: 2018
  ident: e_1_2_8_109_1
  publication-title: Isr. J. Chem.
  doi: 10.1002/ijch.201800114
– volume: 135
  year: 2013
  ident: e_1_2_8_77_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4064475
– volume: 58
  start-page: 5829
  year: 2022
  ident: e_1_2_8_120_1
  publication-title: Chem. Commun.
  doi: 10.1039/D2CC01198K
– volume: 112
  year: 2015
  ident: e_1_2_8_139_1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1514485112
– volume: 2
  start-page: 688
  year: 2010
  ident: e_1_2_8_142_1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.681
– volume: 39
  start-page: 2699
  year: 2000
  ident: e_1_2_8_111_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000804)39:15<2699::AID-ANIE2699>3.0.CO;2-Z
– volume: 123
  start-page: 4368
  year: 2001
  ident: e_1_2_8_11_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0104352
– volume: 9
  start-page: 1779
  year: 2019
  ident: e_1_2_8_63_1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04515
– volume: 8
  start-page: 1171
  year: 2024
  ident: e_1_2_8_26_1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/D3QM00484H
– volume: 329
  start-page: 1053
  year: 2010
  ident: e_1_2_8_104_1
  publication-title: Science
  doi: 10.1126/science.1190672
– volume: 137
  start-page: 9527
  year: 2015
  ident: e_1_2_8_93_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05434
– volume: 130
  start-page: 5854
  year: 2008
  ident: e_1_2_8_54_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800669j
– volume: 58
  start-page: 7687
  year: 2019
  ident: e_1_2_8_87_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201902171
– volume: 341
  year: 2013
  ident: e_1_2_8_5_1
  publication-title: Science
  doi: 10.1126/science.1230444
– volume: 141
  year: 2019
  ident: e_1_2_8_75_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07891
– volume: 59
  year: 2020
  ident: e_1_2_8_46_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006438
– volume: 374
  start-page: 1464
  year: 2021
  ident: e_1_2_8_24_1
  publication-title: Science
  doi: 10.1126/science.abi7281
– volume: 6
  start-page: 117
  year: 2020
  ident: e_1_2_8_105_1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b01185
– volume: 140
  start-page: 3751
  year: 2018
  ident: e_1_2_8_73_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13330
– volume: 61
  year: 2022
  ident: e_1_2_8_34_1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202208305
– volume: 138
  year: 2016
  ident: e_1_2_8_57_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b08417
– volume: 142
  year: 2020
  ident: e_1_2_8_117_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c04477
– volume: 130
  start-page: 3246
  year: 2008
  ident: e_1_2_8_102_1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja077122c
SSID ssj0009606
Score 2.518701
SecondaryResourceType review_article
Snippet Far from being simply rigid, benign architectures, metal–organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From...
Far from being simply rigid, benign architectures, metal-organic frameworks (MOFs) exhibit diverse interactions with their interior environment. From...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage e2414509
Title Supramolecular Chemistry in Metal–Organic Framework Materials
URI https://www.ncbi.nlm.nih.gov/pubmed/39895182
https://www.proquest.com/docview/3162849828
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXOCAeLO8FCQkDlGWxHYS-1hWrSqk5VBa0Vvk-NFG6qarbfbCqf-h_5BfwthOnF0oUuESRYnsJJ6J_c145huEPjBCVZarOsGamoSKQiVM8CzBhqW5AiXhjqdg_rU4OKZfTvKT0aHvsku6eip_3JhX8j9ShWsgV5sl-w-SDZ3CBTgH-cIRJAzHW8n423q5EouhwG08G4q3WSfGXAOsHkIZiE-5lBan-liseC46_4qb8HR3iAhYDHctAv2um_ZM27LLwWswb07XOnSfzsSlsFvunzOfPHNqQ_iC_3bVh-g7_3sj4sNpvD8dd4BsNe4x2_1cx3vh5uxMLJZ2MnZKq5tzaLvpp8Au7zvddF1ykie88LyaU91Pt9hasL7M5h-TuSeHFcrxQwHSoHnKx2Vr2Kr_bTULMYaejxlXtn0V2t9F93AJKMvC58ORaMzacY6VsX_Hgd4zxZ-2n78NX_5ikzhscvQIPeyNimjXa8hjdEe3T9CDDarJp2CUbelKFHQlatrI6crPq-teS6KgJVHQkmfoeH_vaHaQ9MUzEol52iWAi2vD8lpTrEiudCFrI4kRzNQEm1KqQgA21MrY8qglLVRdEk1htTHKljCryXO00160-iWKOMzpDH52xaikTGOmaClwzjKTiVwSOUEfhzGplp4jpbp59Cfo_TBkFXyk3ZsSrb5YX1YkKwAocbD_J-iFH8vQF-EM7ACGX936Oa_R_VEF36CdbrXWbwE8dvU7J_dfWppqUA
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Chemistry+in+Metal%E2%80%93Organic+Framework+Materials&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Miguel%E2%80%90Casa%C3%B1%2C+Eugenia&rft.au=Orton%2C+Georgia+R.+F.&rft.au=Schier%2C+Danielle+E.&rft.au=Champness%2C+Neil+R.&rft.date=2025-02-02&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002%2Fadma.202414509&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_202414509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon