OPTIMAL SELECTION FOR THE WEIGHTED COEFFICIENTS OF THE CONSTRAINED VARIATIONAL PROBLEMS

The aim is to put forward the optimal selecting of weights in variational problem in which the linear advection equation is used as constraint. The selection of the functional weight coefficients (FWC) is one of the key problems for the relevant research. It was arbitrary and subjective to some exte...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 24; no. 8; pp. 936 - 944
Main Author 魏鸣 刘国庆 王成刚 葛文忠 许秦
Format Journal Article
LanguageEnglish
Published Key Laboratory of Mesoscale Severe Weather, Ministry of Education, Narjing University, Nanjing 210093, P.R.China%School of Science, Nanjing University of Technology, Nanjing 210009, P.R. China%National Severe Storms Laboratory, NOAA, 1313 Halley Circle Norman, OK 73069, USA 01.08.2003
Subjects
Online AccessGet full text
ISSN0253-4827
1573-2754
DOI10.1007/bf02446499

Cover

Abstract The aim is to put forward the optimal selecting of weights in variational problem in which the linear advection equation is used as constraint. The selection of the functional weight coefficients (FWC) is one of the key problems for the relevant research. It was arbitrary and subjective to some extent presently. To overcome this difficulty, the reasonable assumptions were given for the observation field and analyzed field, variational problems with “weak constraints” and “strong constraints” were considered separately. By solving Euler' s equation with the matrix theory and the finite difference method of partial differential equation, the objective weight coefficients were obtained in the minimum variance of the difference between the analyzed field and ideal field. Deduction results show that theoretically the optimal selection indeed exists in the weighting factors of the cost function in the means of the minimal variance between the analysis and ideal field in terms of the matrix theory and partial differential (corresponding difference ) equation, if the reasonable assumption from the actual problem is valid and the differnece equation is stable. It may realize the coordination among the weight factors, numerical models and the observational data. With its theoretical basis as well as its prospects of applications, this objective selecting method is probably a way towards the finding of the optimal weighting factors in the variational problem.
AbstractList The aim is to put forward the optimal selecting of weights in variational problem in which the linear advection equation is used as constraint. The selection of the functional weight coefficients (FWC) is one of the key problems for the relevant research. It was arbitrary and subjective to some extent presently. To overcome this difficulty, the reasonable assumptions were given for the observation field and analyzed field, variational problems with “weak constraints” and “strong constraints” were considered separately. By solving Euler' s equation with the matrix theory and the finite difference method of partial differential equation, the objective weight coefficients were obtained in the minimum variance of the difference between the analyzed field and ideal field. Deduction results show that theoretically the optimal selection indeed exists in the weighting factors of the cost function in the means of the minimal variance between the analysis and ideal field in terms of the matrix theory and partial differential (corresponding difference ) equation, if the reasonable assumption from the actual problem is valid and the differnece equation is stable. It may realize the coordination among the weight factors, numerical models and the observational data. With its theoretical basis as well as its prospects of applications, this objective selecting method is probably a way towards the finding of the optimal weighting factors in the variational problem.
O177.92; The aim is to put forward the optimal selecting of weights in variational problem in which the linear advection equation is used as constraint. The selection of the functional weight coefficients (FWC) is one of the key problems for the relevant research. It was arbitrary and subjective to some extent presently. To overcome this difficulty, the reasonable assumptions were given for the observation field and analyz ed field, variational problems with "weak constraints" and "strong constraints" were considered separately. By solving Euler' s equation with the matrix theory and the finite difference method of partial differential equation, the objective weight coefficients were obtained in the minimum variance of the difference between the analyzed field and ideal field. Deduction results show that theoretically the optimal selection indeed exists in the weighting factors of the cost function in the means of the minimal variance between the analysis and ideal field in terms of the matrix theory and partial differential ( corresponding difference ) equation, if the reasonable assumption from the actual problem is valid and the differnece equation is stable.It may realize the coordination among the weight factors, numerical models and the observational data. With its theoretical basis as well as its prospects of applications, this objective selecting method is probably a way towards the finding of the optimal weighting factors in the variational problem.
Author 魏鸣 刘国庆 王成刚 葛文忠 许秦
AuthorAffiliation KeyLaboratoryofMesoscaleSevereWeather,MinislryofEducation,NanjingUniversity,Nanjing210093,P.R.China SchoolofScience,NanjingUniversityofTechnology,Nanjing210009,P.R.China NationalSevereStormsLaboratory,NOAA,1313HalleyCircleNorman,OK73069,USA
AuthorAffiliation_xml – name: Key Laboratory of Mesoscale Severe Weather, Ministry of Education, Narjing University, Nanjing 210093, P.R.China%School of Science, Nanjing University of Technology, Nanjing 210009, P.R. China%National Severe Storms Laboratory, NOAA, 1313 Halley Circle Norman, OK 73069, USA
Author_xml – sequence: 1
  fullname: 魏鸣 刘国庆 王成刚 葛文忠 许秦
BookMark eNptkE9PwkAUxDcGEwG9-Anq1aT69h9tj6VuoUmhBKocm227C0VstcUI396iGBPj6R3mNzMv00OdsioVQtcY7jCAdZ9qIIwNmOOcoS7mFjWJxVkHdYFwajKbWBeo1zQbAGAWY120jGZxMHFDYyFC4cVBNDX8aG7EY2EsRTAax-LB8CLh-4EXiGm8MCL_S_Si6SKeu8G01Z_ceeAerW3MbB4NQzFZXKJzLbeNujrdPnr0ReyNzTAaBZ4bmhlxYGfSXCmbp6nEjCqLgVaSa0Ls3LFbhXIplQ2aZpKoPCcaMMdkwKlmVo5znmLaR7ffuR-y1LJcJZvqvS7bxuRwaPbr7T5RBICCDeD8wlldNU2tdPJaFy-yPiQYkuN-ydD_2a-F4Q-cFTu5K6pyV8ti-7_l5mRZV-XqrWjfSWX2rIutSmw6cABj-gnqD3fD
CitedBy_id crossref_primary_10_3390_atmos12121602
Cites_doi 10.1175/1520-0426(1995)012<1111:AMROLA>2.0.CO;2
10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2
10.1007/s00376-998-0032-6
10.1175/1520-0426(1994)011<0289:SAMFSD>2.0.CO;2
10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2
ClassificationCodes O177.92
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/bf02446499
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-2754
EndPage 944
ExternalDocumentID yysxhlx_e200308009
10_1007_BF02446499
8369011
GrantInformation_xml – fundername: 国家自然科学基金; 国家重点基础研究发展计划(973计划)
  funderid: (40075005); (G1998040909)
GroupedDBID -01
-0A
-52
-5D
-5G
-BR
-EM
-SA
-S~
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
1SB
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
5XL
67Z
6NX
8RM
8TC
8UJ
92E
92I
92L
92M
92Q
93N
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACDSR
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AINHJ
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
CAJEA
CAJUS
CCEZO
CCVFK
CDYEO
CHBEP
CIAHI
COF
CQIGP
CS3
CSCUP
CW9
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IPNFZ
IXD
IZIGR
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
KSO
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT4
PT5
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RT1
RZC
RZE
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8Q
TCJ
TEORI
TGP
TSG
TSK
TSV
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UGNYK
UMP
UNUBA
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W23
W48
W94
WK8
YLTOR
Z5O
Z7R
Z7S
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
ZMTXR
ZWQNP
~A9
~L9
~LB
~WA
AACDK
AAJBT
AAPKM
AASML
AATNV
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABJNI
ABQSL
ABRTQ
ABTKH
ABWNU
ACAOD
ACDTI
ACPIV
ACUHS
ACZOJ
ADHKG
ADTPH
AEFQL
AEMSY
AESKC
AEVLU
AFDZB
AFOHR
AGQEE
AGQPQ
AGRTI
AHPBZ
AIGIU
AMVHM
AMXSW
AOCGG
ATHPR
AYFIA
BSONS
CITATION
DDRTE
DPUIP
IKXTQ
IWAJR
NPVJJ
SNPRN
SOHCF
UY8
~8M
4A8
PSX
ID FETCH-LOGICAL-c290t-3dee85bba143e740fea5f228d98dee35aae80f3ca2edd2f01512653f47d1d5b13
ISSN 0253-4827
IngestDate Thu May 29 03:56:05 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Wed Oct 01 04:01:42 EDT 2025
Fri Nov 25 02:34:51 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords weight
constraint
minimum variance
variation
Language English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c290t-3dee85bba143e740fea5f228d98dee35aae80f3ca2edd2f01512653f47d1d5b13
Notes O224
O176
31-1650/O1
PageCount 9
ParticipantIDs wanfang_journals_yysxhlx_e200308009
crossref_primary_10_1007_BF02446499
crossref_citationtrail_10_1007_BF02446499
chongqing_backfile_8369011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-08-01
PublicationDateYYYYMMDD 2003-08-01
PublicationDate_xml – month: 08
  year: 2003
  text: 2003-08-01
  day: 01
PublicationDecade 2000
PublicationTitle Applied mathematics and mechanics
PublicationTitleAlternate Applied Mathematics and Mechanics(English Edition)
PublicationTitle_FL APPLIED MATHEMATICS AND MECHANICS(ENGLISH EDITION)
PublicationYear 2003
Publisher Key Laboratory of Mesoscale Severe Weather, Ministry of Education, Narjing University, Nanjing 210093, P.R.China%School of Science, Nanjing University of Technology, Nanjing 210009, P.R. China%National Severe Storms Laboratory, NOAA, 1313 Halley Circle Norman, OK 73069, USA
Publisher_xml – name: Key Laboratory of Mesoscale Severe Weather, Ministry of Education, Narjing University, Nanjing 210093, P.R.China%School of Science, Nanjing University of Technology, Nanjing 210009, P.R. China%National Severe Storms Laboratory, NOAA, 1313 Halley Circle Norman, OK 73069, USA
References Y K Sasaki (BF02446499_CR8) 1970; 98
Xu Qin (BF02446499_CR5) 1994; 11
Liu Guo-qing (BF02446499_CR2) 1995; 17
J Sun (BF02446499_CR4) 1991; 48
Xu Qin (BF02446499_CR7) 1995; 123
Qiu Chong-jian (BF02446499_CR3) 1992; 9
Chou Ji-fan (BF02446499_CR1) 1995
Xu Qin (BF02446499_CR6) 1995; 12
Wei Ming (BF02446499_CR9) 1998; 15
References_xml – volume: 12
  start-page: 1111
  issue: 5
  year: 1995
  ident: BF02446499_CR6
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/1520-0426(1995)012<1111:AMROLA>2.0.CO;2
– start-page: 262
  volume-title: A Certain Number of New Method for Numerical Weather Forecast[C]
  year: 1995
  ident: BF02446499_CR1
– volume: 123
  start-page: 1822
  issue: 12
  year: 1995
  ident: BF02446499_CR7
  publication-title: Monthly Weather Review
– volume: 9
  start-page: 588
  issue: 5
  year: 1992
  ident: BF02446499_CR3
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/1520-0426(1992)009<0588:ASAMOW>2.0.CO;2
– volume: 15
  start-page: 553
  issue: 4
  year: 1998
  ident: BF02446499_CR9
  publication-title: Advances in Atmospheric Sciences
  doi: 10.1007/s00376-998-0032-6
– volume: 11
  start-page: 289
  issue: 2
  year: 1994
  ident: BF02446499_CR5
  publication-title: Journal of Atmospheric and Oceanic Technology
  doi: 10.1175/1520-0426(1994)011<0289:SAMFSD>2.0.CO;2
– volume: 98
  start-page: 875
  issue: 6
  year: 1970
  ident: BF02446499_CR8
  publication-title: Monthly Weather Review
  doi: 10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
– volume: 48
  start-page: 876
  issue: 6
  year: 1991
  ident: BF02446499_CR4
  publication-title: Journal of the Atmospheric Sciences
  doi: 10.1175/1520-0469(1991)048<0876:ROTDWA>2.0.CO;2
– volume: 17
  start-page: 74
  issue: 1
  year: 1995
  ident: BF02446499_CR2
  publication-title: Journal of Nanjing Institute of Chemical Technology
SSID ssj0004744
Score 1.5955113
Snippet The aim is to put forward the optimal selecting of weights in variational problem in which the linear advection equation is used as constraint. The selection...
O177.92; The aim is to put forward the optimal selecting of weights in variational problem in which the linear advection equation is used as constraint. The...
SourceID wanfang
crossref
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 936
SubjectTerms 加权系数
变分问题
最优化
最小方差
Title OPTIMAL SELECTION FOR THE WEIGHTED COEFFICIENTS OF THE CONSTRAINED VARIATIONAL PROBLEMS
URI http://lib.cqvip.com/qk/86647X/20038/8369011.html
https://d.wanfangdata.com.cn/periodical/yysxhlx-e200308009
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1573-2754
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0004744
  issn: 0253-4827
  databaseCode: AMVHM
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2754
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004744
  issn: 0253-4827
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2754
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004744
  issn: 0253-4827
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZGJyR4QFy1josigR9QlSqxc3Ee05LSQttMvax7q3JxNmCk0HaC8es5dpw0uzwMXpLIdpzEx-di55zvIPTOIVYUJYmjZ6DcdSsxU93zEqoTm1NCM9dymIh3Ho2d_tz6dGKf7N3La15LF9u4nfy5Na7kf6gKZUBXESX7D5StOoUCuAb6whEoDMc70Tg8mg1GAs4gGAbSGaQFazrpxLMIBh_7IJRa3RAs0YHYSZpNSw-fbjgWqZIHY6g_9ieDEhD3aBJ2hoHapVYGKw5s3PGxZ-HAFUef4cDBHhQaosr_gH1HXHgEs664YNC4s6si0J5h1sEdU97oYOaKrpiHGSu3IcpdB1r5vCkffhBYw2KWKleAEd-sNjCtOAg5IBdvLQoTtogAkCjAl6WzZOG3IjXI-qvYEdk5oSi9IkthNSqxrmA2tidtmU8cE1uhk4qQnkL61W-56s2y-ztxvVuBslp02yr7HZebr-r9p_Bl3ze1r5R9hL4vziY1aasvst2A4P6yBuqL_2xqzzr83AK56chHzKd-TaITm-oCd7WufooQcsVmrKZLPOrUzBKvgMm8ofEKJ5c4A1vLcqwi2dQ1BPHLy83vs3PgGCLRiWS86z4BLWg00L4_Ou6PdpHErkx_XL1oDdB39wgBQ3K2yk9_wmheMefu_4ryLMpPaxba7DF6pJZWml_wyRO0x_On6OGowiXePEMLxTFaxTEacIwGTKGVHKPVOUYLe7KyxjFajWO0kmOeo3kvmHX7ukotoifEM7Y6TTlndhxHsFzgrmVkPLIzQljqMaihdhRxZmQ0iQhPU5IZwi52bJpZbmqmdmzSF6iRr3J-gDRKMzvhjCXMiS2XGFFsQTOQgLBy97zMbaLDarTANE2-CcC1JaMiE5zZRO_L4VsmCpRf5IY5X5Zw4p1eOexN9LZq-6OAorm9laLCUkmqzfLmBDi8U6uX6MGO91-hxnZ9wV-DDb6N36iJ8xexWb_i
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPTIMAL+SELECTION+FOR+THE+WEIGHTED+COEFFICIENTS+OF+THE+CONSTRAINED+VARIATIONAL+PROBLEMS&rft.jtitle=%E5%BA%94%E7%94%A8%E6%95%B0%E5%AD%A6%E5%92%8C%E5%8A%9B%E5%AD%A6%28%E8%8B%B1%E6%96%87%E7%89%88%29&rft.date=2003-08-01&rft.pub=Key+Laboratory+of+Mesoscale+Severe+Weather%2C+Ministry+of+Education%2C+Narjing+University%2C+Nanjing+210093%2C+P.R.China%25School+of+Science%2C+Nanjing+University+of+Technology%2C+Nanjing+210009%2C+P.R.+China%25National+Severe+Storms+Laboratory%2C+NOAA%2C+1313+Halley+Circle+Norman%2C+OK+73069%2C+USA&rft.issn=0253-4827&rft.volume=24&rft.issue=8&rft.spage=936&rft.epage=944&rft_id=info:doi/10.1007%2Fbf02446499&rft.externalDocID=yysxhlx_e200308009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86647X%2F86647X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fyysxhlx-e%2Fyysxhlx-e.jpg