StreamDFP: A General Stream Mining Framework for Adaptive Disk Failure Prediction
We explore machine learning for accurately predicting imminent disk failures and hence providing proactive fault tolerance for modern large-scale storage systems. Current disk failure prediction approaches are mostly offline and assume that the disk logs required for training learning models are ava...
Saved in:
| Published in | IEEE transactions on computers Vol. 72; no. 2; pp. 520 - 534 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.02.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9340 1557-9956 |
| DOI | 10.1109/TC.2022.3160365 |
Cover
| Abstract | We explore machine learning for accurately predicting imminent disk failures and hence providing proactive fault tolerance for modern large-scale storage systems. Current disk failure prediction approaches are mostly offline and assume that the disk logs required for training learning models are available a priori. However, disk logs are often continuously generated as an evolving data stream, in which the statistical patterns vary over time (also known as concept drift). Such a challenge motivates the need of online techniques that perform training and prediction on the incoming stream of disk logs in real time, while being adaptive to concept drift. We first measure and demonstrate the existence of concept drift on various disk models in production. Motivated by our study, we design StreamDFP , a general stream mining framework for disk failure prediction with concept-drift adaptation based on three key techniques, namely online labeling, concept-drift-aware training, and general prediction, with a primary objective of supporting various machine learning algorithms. We extend StreamDFP to support online transfer learning for minority disk models with concept-drift adaptation. Our evaluation shows that StreamDFP improves the prediction accuracy significantly compared to without concept-drift adaptation under various settings, and achieves reasonably high stream processing performance. |
|---|---|
| AbstractList | We explore machine learning for accurately predicting imminent disk failures and hence providing proactive fault tolerance for modern large-scale storage systems. Current disk failure prediction approaches are mostly offline and assume that the disk logs required for training learning models are available a priori. However, disk logs are often continuously generated as an evolving data stream, in which the statistical patterns vary over time (also known as concept drift). Such a challenge motivates the need of online techniques that perform training and prediction on the incoming stream of disk logs in real time, while being adaptive to concept drift. We first measure and demonstrate the existence of concept drift on various disk models in production. Motivated by our study, we design StreamDFP , a general stream mining framework for disk failure prediction with concept-drift adaptation based on three key techniques, namely online labeling, concept-drift-aware training, and general prediction, with a primary objective of supporting various machine learning algorithms. We extend StreamDFP to support online transfer learning for minority disk models with concept-drift adaptation. Our evaluation shows that StreamDFP improves the prediction accuracy significantly compared to without concept-drift adaptation under various settings, and achieves reasonably high stream processing performance. |
| Author | Lee, Patrick P. C. Shen, Zhirong Han, Shujie He, Cheng Huang, Tao Liu, Yi |
| Author_xml | – sequence: 1 givenname: Shujie orcidid: 0000-0001-5311-5782 surname: Han fullname: Han, Shujie email: shujiehan@pku.edu.cn organization: Peking University, Beijing, China – sequence: 2 givenname: Patrick P. C. orcidid: 0000-0002-4501-4364 surname: Lee fullname: Lee, Patrick P. C. email: pclee@cse.cuhk.edu.hk organization: Chinese University of Hong Kong, Hong Kong – sequence: 3 givenname: Zhirong surname: Shen fullname: Shen, Zhirong email: shenzr@xmu.edu.cn organization: Xiamen University, Xiamen, China – sequence: 4 givenname: Cheng surname: He fullname: He, Cheng email: hecheng.hc@alibaba-inc.com organization: Alibaba Group, Hangzhou, China – sequence: 5 givenname: Yi surname: Liu fullname: Liu, Yi email: mars.ly@alibaba-inc.com organization: Alibaba Group, Hangzhou, China – sequence: 6 givenname: Tao surname: Huang fullname: Huang, Tao email: zuiwu.ht@alibaba-inc.com organization: Alibaba Group, Hangzhou, China |
| BookMark | eNp9kL1PwzAUxC1UJNrCzMBiiTntsx3bMVvVkoJURBFljlz3BbkfSXFSEP89qVIxMDA96el-d7rrkU5RFkjINYMBY2CGi_GAA-cDwRQIJc9Il0mpI2Ok6pAuAEsiI2K4IL2qWgOA4mC65OW1Dmh3k3R-R0d0igUGu6Xtkz75whfvNA12h19l2NC8DHS0svvafyKd-GpDU-u3h4B0HnDlXe3L4pKc53Zb4dXp9slber8YP0Sz5-njeDSLHE9MHeVK5lwjdwbEkucJKgVmBUxIYxKbMLvUUopEx0y62DLr-NJinDcy46TTQvTJbeu7D-XHAas6W5eHUDSRGddKKc40l41q2KpcKKsqYJ7tg9_Z8J0xyI67ZYtxdtwtO-3WEPIP4Xxtj83q0JT9h7tpOY-IvylGCy0SED_6THnv |
| CODEN | ITCOB4 |
| CitedBy_id | crossref_primary_10_3390_info15060322 |
| Cites_doi | 10.1007/s10994-017-5642-8 10.1109/MSST.2013.6558427 10.21236/ada164453 10.1145/3225058.3225106 10.1137/1.9781611972771.42 10.1016/j.artint.2014.06.003 10.1080/01621459.1951.10500769 10.1109/TR.2002.802886 10.1109/ICDM.2018.00197 10.1109/ICSMC.2005.1571498 10.1080/01621459.1963.10500830 10.1109/ACCESS.2019.2935628 10.1109/SRDS.2016.019 10.1021/ci00027a006 10.2307/2333009 10.1145/3337821.3337881 10.1016/0893-6080(89)90020-8 10.1109/DSN48987.2021.00039 10.1109/DSN.2014.44 10.1007/978-3-540-28645-5_29 10.1007/s10618-010-0201-y 10.1007/978-3-642-14400-4_30 10.1023/A:1010933404324 10.1007/BF00058655 10.1145/2820615 10.1007/978-3-642-03915-7_22 10.1109/TC.2016.2538237 10.1145/347090.347107 10.1145/2523813 10.1109/ICDCS47774.2020.00044 10.1007/978-3-540-76928-6_11 10.1109/IJCNN.2016.7727427 10.1145/2939672.2939699 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TC.2022.3160365 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9956 |
| EndPage | 534 |
| ExternalDocumentID | 10_1109_TC_2022_3160365 9737380 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2021YFF0704001 – fundername: Alibaba Group – fundername: National Natural Science Foundation of China; Natural Science Foundation of China grantid: 62072381 funderid: 10.13039/501100001809 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c289t-f65f27e2c903b2f8e6609d0135998a81ab755387415c4a1ac2bae4fe669c5c733 |
| IEDL.DBID | RIE |
| ISSN | 0018-9340 |
| IngestDate | Mon Jun 30 02:46:01 EDT 2025 Wed Oct 01 00:45:29 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 Wed Aug 27 02:20:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c289t-f65f27e2c903b2f8e6609d0135998a81ab755387415c4a1ac2bae4fe669c5c733 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5311-5782 0000-0002-4501-4364 |
| PQID | 2766621725 |
| PQPubID | 85452 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2766621725 ieee_primary_9737380 crossref_citationtrail_10_1109_TC_2022_3160365 crossref_primary_10_1109_TC_2022_3160365 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computers |
| PublicationTitleAbbrev | TC |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref37 ref14 ref36 ref31 Saad (ref34) 1998; 5 ref11 ref33 ref32 ref2 ref17 Sun (ref35) ref39 ref16 ref38 ref19 ref18 Freund (ref10) Kadekodi (ref22) Breiman (ref7) 2001; 45 ref24 ref23 ref45 ref26 ref20 ref42 Mahdisoltani (ref27) ref41 ref44 ref21 ref43 ref28 ref8 Bifet (ref4) 2010; 11 ref9 Xu (ref40) ref3 ref6 ref5 Hamerly (ref15) Mouss (ref29) Murray (ref30) 2005; 6 Lu (ref25) |
| References_xml | – volume: 5 start-page: 6 year: 1998 ident: ref34 article-title: Online algorithms and stochastic approximations publication-title: Online Learn. – ident: ref14 doi: 10.1007/s10994-017-5642-8 – ident: ref45 doi: 10.1109/MSST.2013.6558427 – ident: ref17 doi: 10.21236/ada164453 – ident: ref37 doi: 10.1145/3225058.3225106 – ident: ref2 doi: 10.1137/1.9781611972771.42 – start-page: 148 volume-title: Proc. ACM Int. Conf. Mach. Learn. ident: ref10 article-title: Experiments with a new boosting algorithm – ident: ref43 doi: 10.1016/j.artint.2014.06.003 – start-page: 391 volume-title: Proc. USENIX Annu. Tech. Conf. ident: ref27 article-title: Proactive error prediction to improve storage system reliability – start-page: 481 volume-title: Proc. USENIX Conf. USENIX Annu. Tech. Conf. ident: ref40 article-title: Improving service availability of cloud systems by predicting disk error – ident: ref28 doi: 10.1080/01621459.1951.10500769 – start-page: 1 volume-title: Proc. 56th ACM/IEEE Des. Automat. Conf. ident: ref35 article-title: System-level hardware failure prediction using deep learning – ident: ref20 doi: 10.1109/TR.2002.802886 – ident: ref42 doi: 10.1109/ICDM.2018.00197 – ident: ref31 doi: 10.1109/ICSMC.2005.1571498 – ident: ref18 doi: 10.1080/01621459.1963.10500830 – ident: ref13 doi: 10.1109/ACCESS.2019.2935628 – start-page: 202 volume-title: Proc. ACM Int. Conf. Mach. Learn. ident: ref15 article-title: Bayesian approaches to failure prediction for disk drives – ident: ref24 doi: 10.1109/SRDS.2016.019 – ident: ref36 doi: 10.1021/ci00027a006 – volume: 11 start-page: 1601 issue: May year: 2010 ident: ref4 article-title: MOA: Massive online analysis publication-title: J. Mach. Learn. Res. – ident: ref32 doi: 10.2307/2333009 – ident: ref41 doi: 10.1145/3337821.3337881 – ident: ref19 doi: 10.1016/0893-6080(89)90020-8 – ident: ref39 doi: 10.1109/DSN48987.2021.00039 – ident: ref23 doi: 10.1109/DSN.2014.44 – ident: ref11 doi: 10.1007/978-3-540-28645-5_29 – ident: ref21 doi: 10.1007/s10618-010-0201-y – start-page: 345 volume-title: Proc. USENIX Conf. File Storage Technol. ident: ref22 article-title: Cluster storage systems gotta have HeART: Improving storage efficiency by exploiting disk-reliability heterogeneity – ident: ref44 doi: 10.1007/978-3-642-14400-4_30 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: ref7 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: ref6 doi: 10.1007/BF00058655 – ident: ref26 doi: 10.1145/2820615 – ident: ref3 doi: 10.1007/978-3-642-03915-7_22 – start-page: 815 volume-title: Proc. IEEE Asian Control Conf. ident: ref29 article-title: Test of Page-Hinckley, an approach for fault detection in an agro-alimentary production system – ident: ref38 doi: 10.1109/TC.2016.2538237 – ident: ref9 doi: 10.1145/347090.347107 – ident: ref12 doi: 10.1145/2523813 – ident: ref16 doi: 10.1109/ICDCS47774.2020.00044 – volume: 6 start-page: 783 issue: May year: 2005 ident: ref30 article-title: Machine learning methods for predicting failures in hard drives: A multiple-instance application publication-title: J. Mach. Learn. Res. – ident: ref33 doi: 10.1007/978-3-540-76928-6_11 – start-page: 151 volume-title: Proc. USENIX Conf. File Storage Technol. ident: ref25 article-title: Making disk failure predictions SMARTer! – ident: ref8 doi: 10.1109/IJCNN.2016.7727427 – ident: ref5 doi: 10.1145/2939672.2939699 |
| SSID | ssj0006209 |
| Score | 2.3971899 |
| Snippet | We explore machine learning for accurately predicting imminent disk failures and hence providing proactive fault tolerance for modern large-scale storage... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 520 |
| SubjectTerms | Adaptation Adaptation models Algorithms and online transfer learning concept drift Data transmission Disk failure prediction Drift Failure Fault tolerance Machine learning Machine learning algorithms Prediction algorithms Predictions Predictive models Production Random forests Storage systems stream mining Training |
| Title | StreamDFP: A General Stream Mining Framework for Adaptive Disk Failure Prediction |
| URI | https://ieeexplore.ieee.org/document/9737380 https://www.proquest.com/docview/2766621725 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006209 issn: 0018-9340 databaseCode: RIE dateStart: 19680101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP2YO-nB6aY4nZKDBw92S9qmWb2NzTKEyYQNditJmsKYbmM_Lv71Jm1a_AneSkgg8JIv72u-vAdwqwiRPhPCEURxx09C7IiEeY7ClOvTQnKSmrfDo-dgOPWfZnRWgfvyLYxSKis-U23zmd3lJyu5N7_KOiEzOjw6QT9g3SB_q1VG3aAo5yB6A3s-tjI-BIedSV_nga6r09NAx2v65QTKLFV-xOHscIlqMCqmldeULNr7nWjL92-Kjf-d9wkcW5aJevmyOIWKWtahVjg4ILuh63D0SY6wAS_mipq_DaLxA-ohK0iN8kY0ypwkUFQUcyHNdlEv4WsTL9Fgvl2giM9NkTsab8ztj0H8DKbR46Q_dKzlgiN15rVz0oCmLlOuDLEn3LSrggCHiaaJVKdlvEu4YFSHSENDpM8Jl67gyk91t1BSyTzvHKrL1VJdACIJ5i4VMkkV9lNueIGmSoynUgREkLAJ7QKGWFo9cmOL8RpneQkO40k_NrjFFrcm3JUD1rkUx99dGwaFspsFoAmtAufYbtVt7DKdwRmbLnr5-6grODQe83mpdguqu81eXWsmshM32RL8ANzt2PM |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGP0YelAPTqfidGoOHjzYmbRJu3ob0zJ1FYUK3kqSpjCmm-zHxb_epE2HP8FbCQkEXvLlfc2X9wBOFSGSBkI4giju0CzEjsgCz1GYcX1aSE5y83Y4vvf7T_T2mT3X4Hz5FkYpVRSfqbb5LO7ys4lcmF9lF2FgdHh0gr7KKKWsfK21jLt-VdBB9Bb2KLZCPgSHF0lPZ4KuqxNUX0ds9uUMKkxVfkTi4niJ6hBXEyurSkbtxVy05fs3zcb_znwLNi3PRN1yYWxDTY0bUK88HJDd0g3Y-CRIuAOP5pKav15FD5eoi6wkNSobUVx4SaCoKudCmu-ibsbfTMREV8PZCEV8aMrc0cPU3P8YzHfhKbpOen3Hmi44Uudecyf3We4GypUh9oSbd5Tv4zDTRJHpxIx3CBcB00HSEBFJOeHSFVzRXHcLJZOB5-3ByngyVvuASIa5y4TMcoVpzg0z0GQp4LkUPhEkbEK7giGVVpHcGGO8pEVmgsM06aUGt9Ti1oSz5YC3Uozj7647BoVlNwtAE1oVzqndrLPUDXQOZ4y62MHvo05grZ_Eg3Rwc393COvGcb4s3G7Byny6UEeal8zFcbEcPwBkzdxA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StreamDFP%3A+A+General+Stream+Mining+Framework+for+Adaptive+Disk+Failure+Prediction&rft.jtitle=IEEE+transactions+on+computers&rft.au=Han%2C+Shujie&rft.au=Lee%2C+Patrick+P.+C.&rft.au=Shen%2C+Zhirong&rft.au=He%2C+Cheng&rft.date=2023-02-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=72&rft.issue=2&rft.spage=520&rft.epage=534&rft_id=info:doi/10.1109%2FTC.2022.3160365&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2022_3160365 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |