Entropy Based Fault Classification Using the Case Western Reserve University Data: A Benchmark Study
Fault diagnosis of bearings using classification techniques plays an important role in industrial applications, and, hence, has received increasing attention. Recently, significant efforts have been made to develop various methods for bearing fault classification and the application of Case Western...
Saved in:
Published in | IEEE transactions on reliability Vol. 69; no. 2; pp. 754 - 767 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2019.2896240 |
Cover
Abstract | Fault diagnosis of bearings using classification techniques plays an important role in industrial applications, and, hence, has received increasing attention. Recently, significant efforts have been made to develop various methods for bearing fault classification and the application of Case Western Reserve University (CWRU) data for validation has become a standard reference to test the fault classification algorithms. However, a systematic research for evaluating bearing fault classification performance using the CWRU data is still lacking. This paper aims to provide a comprehensive benchmark analysis of the CWRU data using various entropy and classification methods. The main contribution of this paper is applying entropy-based fault classification methods to establish a benchmark analysis of entire CWRU datasets, aiming to provide a proper assessment of any new classification methods. Recommendations are provided for the selection of the CWRU data to aid in testing new fault classification algorithms, which will enable the researches to develop and evaluate various diagnostic algorithms. In the end, the comparison results and discussion are reported as a useful baseline for future research. |
---|---|
AbstractList | Fault diagnosis of bearings using classification techniques plays an important role in industrial applications, and, hence, has received increasing attention. Recently, significant efforts have been made to develop various methods for bearing fault classification and the application of Case Western Reserve University (CWRU) data for validation has become a standard reference to test the fault classification algorithms. However, a systematic research for evaluating bearing fault classification performance using the CWRU data is still lacking. This paper aims to provide a comprehensive benchmark analysis of the CWRU data using various entropy and classification methods. The main contribution of this paper is applying entropy-based fault classification methods to establish a benchmark analysis of entire CWRU datasets, aiming to provide a proper assessment of any new classification methods. Recommendations are provided for the selection of the CWRU data to aid in testing new fault classification algorithms, which will enable the researches to develop and evaluate various diagnostic algorithms. In the end, the comparison results and discussion are reported as a useful baseline for future research. |
Author | Wang, Xianzhi Li, Yongbo Huang, Shiqian Si, Shubin |
Author_xml | – sequence: 1 givenname: Yongbo orcidid: 0000-0003-2699-9951 surname: Li fullname: Li, Yongbo email: yongbo@nwpu.edu.cn organization: School of Aeronautics, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Xianzhi orcidid: 0000-0002-7997-8348 surname: Wang fullname: Wang, Xianzhi email: cagallilan@mail.nwpu.edu.cn organization: School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Shubin orcidid: 0000-0003-2297-4423 surname: Si fullname: Si, Shubin email: sisb@nwpu.edu.cn organization: School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Shiqian orcidid: 0000-0003-3066-8864 surname: Huang fullname: Huang, Shiqian email: 18777861869@163.com organization: School of Aeronautics, Northwestern Polytechnical University, Xi'an, China |
BookMark | eNp9kEFPAjEQRhuDiYCePXhp4nmh0-4urTdAUBMSE4R43JTdQYrYxbaQ8O8tYjx48DSZ5HszX16LNGxtkZBrYB0AprqzaYczUB0uVc5TdkaakGUygR6HBmkyBjJRGVcXpOX9Oq5pqmSTVCMbXL090IH2WNGx3m0CHW6092ZpSh1MbencG_tGwwrpMIboK_qAztIpenR7pHNr9ui8CQd6r4O-o306QFuuPrR7py9hVx0uyflSbzxe_cw2mY9Hs-FjMnl-eBr2J0kZS4ek0lWlFyznOYAUOlcIQuMyw1yCFpAC50plC1mhzEopEKTOyxRYxmM6ZaVok9vT3a2rP3exZrGud87Gl0U0ooQEIUVMdU-p0tXeO1wWW2di2UMBrDiqLGbT4qiy-FEZiewPUZrw7SY4bTb_cDcnziDi7xeZ57zHQHwBCtKBkw |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_1088_1361_6501_acb074 crossref_primary_10_1007_s11012_020_01216_z crossref_primary_10_1002_stc_2898 crossref_primary_10_1016_j_physa_2024_129519 crossref_primary_10_1016_j_aei_2024_102518 crossref_primary_10_1088_1361_6501_ac20f1 crossref_primary_10_1155_2021_3782446 crossref_primary_10_1088_2631_8695_ab2de8 crossref_primary_10_1016_j_neunet_2021_04_003 crossref_primary_10_1016_j_ymssp_2022_109852 crossref_primary_10_3390_s24154782 crossref_primary_10_1016_j_aei_2024_102753 crossref_primary_10_1155_2019_6943234 crossref_primary_10_1109_TMECH_2021_3120755 crossref_primary_10_1016_j_asoc_2021_107150 crossref_primary_10_1007_s12555_021_0100_6 crossref_primary_10_1007_s42417_023_01036_x crossref_primary_10_1016_j_ress_2024_110643 crossref_primary_10_1109_ACCESS_2021_3074255 crossref_primary_10_1177_14759217241271044 crossref_primary_10_17531_ein_2019_4_1 crossref_primary_10_1109_ACCESS_2024_3439017 crossref_primary_10_1109_TIM_2024_3403176 crossref_primary_10_1109_TR_2024_3382121 crossref_primary_10_1007_s13369_022_06599_7 crossref_primary_10_1109_ACCESS_2021_3073708 crossref_primary_10_1016_j_measurement_2022_111588 crossref_primary_10_1109_JSEN_2024_3403141 crossref_primary_10_1177_0954407019861028 crossref_primary_10_3390_app10165542 crossref_primary_10_3390_electronics13081524 crossref_primary_10_1016_j_measurement_2025_116989 crossref_primary_10_1016_j_measurement_2022_111651 crossref_primary_10_1016_j_measurement_2022_110843 crossref_primary_10_1186_s10033_023_00859_9 crossref_primary_10_1109_JSEN_2023_3319537 crossref_primary_10_1007_s10489_021_02504_1 crossref_primary_10_1109_TIM_2020_2981220 crossref_primary_10_1016_j_measurement_2024_115402 crossref_primary_10_3390_s22166184 crossref_primary_10_1007_s11831_022_09727_6 crossref_primary_10_1109_TII_2021_3082517 crossref_primary_10_1177_14759217221116417 crossref_primary_10_3390_s19092205 crossref_primary_10_1177_09544062231196938 crossref_primary_10_3390_s20123422 crossref_primary_10_1109_ACCESS_2021_3128669 crossref_primary_10_3390_s20247155 crossref_primary_10_3390_pr11051507 crossref_primary_10_1088_1742_6596_2184_1_012010 crossref_primary_10_1109_TIE_2021_3063979 crossref_primary_10_3390_app10124221 crossref_primary_10_1109_ACCESS_2021_3053075 crossref_primary_10_1177_01423312241265536 crossref_primary_10_1109_ACCESS_2022_3151240 crossref_primary_10_1007_s11071_023_08609_1 crossref_primary_10_3390_app11083369 crossref_primary_10_3390_s22145166 crossref_primary_10_1007_s42417_019_00134_z crossref_primary_10_1109_TIA_2022_3167658 crossref_primary_10_1109_ACCESS_2021_3056595 crossref_primary_10_1177_1077546320936506 crossref_primary_10_1177_16878132221080560 crossref_primary_10_1109_TIE_2020_3020252 crossref_primary_10_1177_13506501211038106 crossref_primary_10_3390_e24010026 crossref_primary_10_1109_TIM_2020_3047433 crossref_primary_10_1109_TR_2021_3075234 crossref_primary_10_1109_TR_2022_3173084 crossref_primary_10_1016_j_aei_2024_102681 crossref_primary_10_3390_a17120588 crossref_primary_10_1109_ACCESS_2023_3332243 crossref_primary_10_1109_TR_2023_3322860 crossref_primary_10_1109_ACCESS_2024_3386835 crossref_primary_10_3390_s20133721 crossref_primary_10_3390_e24091251 crossref_primary_10_1088_1742_6596_2902_1_012020 crossref_primary_10_1002_eng2_12307 crossref_primary_10_1109_ACCESS_2021_3132046 crossref_primary_10_1109_TIM_2021_3075751 crossref_primary_10_1016_j_chaos_2024_114680 crossref_primary_10_1016_j_cja_2019_08_014 crossref_primary_10_1109_ACCESS_2019_2907997 crossref_primary_10_1109_JSEN_2022_3164177 crossref_primary_10_1177_14759217231215351 crossref_primary_10_1007_s12206_023_0508_4 crossref_primary_10_1109_TR_2022_3215243 crossref_primary_10_1016_j_ymssp_2022_108934 crossref_primary_10_1109_TII_2020_3022369 crossref_primary_10_3390_s23063157 crossref_primary_10_1007_s12206_025_0201_x crossref_primary_10_1177_16878132221135745 crossref_primary_10_1177_00202940221135917 crossref_primary_10_1016_j_ress_2022_108967 crossref_primary_10_1109_ACCESS_2022_3209231 crossref_primary_10_1007_s11071_021_06728_1 crossref_primary_10_1177_16878132241245836 crossref_primary_10_1007_s10845_023_02131_2 |
Cites_doi | 10.1109/TIE.2016.2519325 10.1016/j.ymssp.2016.12.040 10.1016/j.ress.2017.06.014 10.1109/TII.2017.2755064 10.1152/ajpheart.2000.278.6.H2039 10.1016/j.ymssp.2005.11.008 10.1016/j.ymssp.2018.08.048 10.1109/TFUZZ.2018.2861719 10.4028/www.scientific.net/KEM.588.184 10.1103/PhysRevLett.88.174102 10.1016/j.measurement.2015.08.034 10.1016/j.ymssp.2017.06.012 10.1109/ACCESS.2018.2873782 10.1152/ajpregu.00069.2002 10.1103/PhysRevE.71.021906 10.1109/TR.2016.2570568 10.1016/j.eswa.2010.02.118 10.1109/TIE.2014.2327589 10.1177/1077546314520830 10.1016/j.knosys.2015.08.004 10.3390/e19010014 10.1007/s00521-016-2401-x 10.1016/j.measurement.2018.09.013 10.1016/j.jsv.2018.04.036 10.1016/j.ymssp.2015.04.021 10.1016/j.ymssp.2015.12.020 10.1109/TR.2016.2570567 10.1109/JSEN.2017.2727638 10.1016/j.ymssp.2010.10.012 10.1016/j.ymssp.2016.06.024 10.1016/j.jsv.2016.05.027 10.1016/j.ymssp.2017.11.045 10.1109/TR.2017.2754642 10.1016/j.ymssp.2014.12.020 10.1016/j.mechmachtheory.2014.01.011 10.1016/j.jsv.2004.02.058 10.1103/PhysRevLett.89.068102 10.1016/j.ymssp.2015.10.007 10.1109/TIE.2012.2194973 10.1016/j.ymssp.2018.02.016 10.1109/TR.2017.2739126 10.1016/j.mechmachtheory.2013.08.014 10.1016/j.ymssp.2005.09.012 10.1016/j.ymssp.2017.11.029 10.1109/TIE.2017.2698359 10.1016/j.eswa.2018.04.025 10.1007/978-3-7091-1390-5_4 10.1016/j.ymssp.2015.05.032 10.1016/j.triboint.2015.12.037 10.1016/j.asoc.2017.04.034 10.1016/0020-0255(86)90006-X 10.1016/j.jsv.2015.09.016 10.1016/j.ymssp.2017.12.008 10.1016/j.physa.2003.08.022 10.1080/08982112.2018.1448089 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2019.2896240 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 767 |
ExternalDocumentID | 10_1109_TR_2019_2896240 8662701 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51805434; 71771186; 71631001 funderid: 10.13039/501100001809 – fundername: China Postdoctoral Innovative Talent Plan, China grantid: BX20180257 – fundername: Start-up Research fund of NWPU, China grantid: 31020180QD001 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION RIG 7SP 8FD L7M |
ID | FETCH-LOGICAL-c289t-daddab06261183a69e13aef5e681a314122995b8de85c83e18a6c4105283a40c3 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Mon Jun 30 10:20:36 EDT 2025 Tue Jul 01 00:49:08 EDT 2025 Thu Apr 24 23:01:45 EDT 2025 Wed Aug 27 02:39:02 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-daddab06261183a69e13aef5e681a314122995b8de85c83e18a6c4105283a40c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2699-9951 0000-0002-7997-8348 0000-0003-2297-4423 0000-0003-3066-8864 |
PQID | 2409381383 |
PQPubID | 85456 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2409381383 crossref_primary_10_1109_TR_2019_2896240 ieee_primary_8662701 crossref_citationtrail_10_1109_TR_2019_2896240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-June 2020-6-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-June |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref13 ref56 ref12 ref15 ref14 ref53 ref55 ref11 ref54 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 vin (ref52) 2015; 21 make (ref22) 2019; 131 ref24 ref23 ref20 ani (ref26) 2019; 118 ref21 ref28 ref27 ref29 (ref25) 0 |
References_xml | – ident: ref5 doi: 10.1109/TIE.2016.2519325 – ident: ref11 doi: 10.1016/j.ymssp.2016.12.040 – ident: ref18 doi: 10.1016/j.ress.2017.06.014 – ident: ref28 doi: 10.1109/TII.2017.2755064 – ident: ref43 doi: 10.1152/ajpheart.2000.278.6.H2039 – ident: ref39 doi: 10.1016/j.ymssp.2005.11.008 – volume: 118 start-page: 226 year: 2019 ident: ref26 article-title: Cross-correlation of whitened vibration signals for low-speed bearing diagnostics publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.08.048 – ident: ref21 doi: 10.1109/TFUZZ.2018.2861719 – ident: ref15 doi: 10.4028/www.scientific.net/KEM.588.184 – ident: ref46 doi: 10.1103/PhysRevLett.88.174102 – ident: ref33 doi: 10.1016/j.measurement.2015.08.034 – ident: ref2 doi: 10.1016/j.ymssp.2017.06.012 – ident: ref42 doi: 10.1109/ACCESS.2018.2873782 – ident: ref44 doi: 10.1152/ajpregu.00069.2002 – ident: ref53 doi: 10.1103/PhysRevE.71.021906 – ident: ref6 doi: 10.1109/TR.2016.2570568 – ident: ref49 doi: 10.1016/j.eswa.2010.02.118 – ident: ref24 doi: 10.1109/TIE.2014.2327589 – volume: 21 start-page: 3123 year: 2015 ident: ref52 article-title: A multiscale permutation entropy based approach to select wavelet for fault diagnosis of ball bearings publication-title: J Vib Control doi: 10.1177/1077546314520830 – ident: ref55 doi: 10.1016/j.knosys.2015.08.004 – ident: ref51 doi: 10.3390/e19010014 – ident: ref41 doi: 10.1007/s00521-016-2401-x – volume: 131 start-page: 524 year: 2019 ident: ref22 article-title: Faulty bearing detection, classification and location in a three-phase induction motor based on stockwell transform and support vector machine publication-title: Measurement doi: 10.1016/j.measurement.2018.09.013 – ident: ref9 doi: 10.1016/j.jsv.2018.04.036 – ident: ref30 doi: 10.1016/j.ymssp.2015.04.021 – ident: ref36 doi: 10.1016/j.ymssp.2015.12.020 – ident: ref3 doi: 10.1109/TR.2016.2570567 – ident: ref29 doi: 10.1109/JSEN.2017.2727638 – ident: ref4 doi: 10.1016/j.ymssp.2010.10.012 – ident: ref40 doi: 10.1016/j.ymssp.2016.06.024 – ident: ref23 doi: 10.1016/j.jsv.2016.05.027 – ident: ref16 doi: 10.1016/j.ymssp.2017.11.045 – ident: ref19 doi: 10.1109/TR.2017.2754642 – ident: ref14 doi: 10.1016/j.measurement.2015.08.034 – ident: ref37 doi: 10.1016/j.ymssp.2014.12.020 – ident: ref48 doi: 10.1016/j.mechmachtheory.2014.01.011 – year: 0 ident: ref25 article-title: The case western reserve university bearing data center website. bearing data center test seeded fault test data – ident: ref17 doi: 10.1016/j.jsv.2004.02.058 – ident: ref47 doi: 10.1103/PhysRevLett.89.068102 – ident: ref35 doi: 10.1016/j.ymssp.2015.10.007 – ident: ref38 doi: 10.1109/TIE.2012.2194973 – ident: ref12 doi: 10.1016/j.ymssp.2018.02.016 – ident: ref8 doi: 10.1109/TR.2017.2739126 – ident: ref50 doi: 10.1016/j.mechmachtheory.2013.08.014 – ident: ref57 doi: 10.1016/j.ymssp.2005.09.012 – ident: ref1 doi: 10.1016/j.ymssp.2017.11.029 – ident: ref7 doi: 10.1109/TIE.2017.2698359 – ident: ref27 doi: 10.1016/j.eswa.2018.04.025 – ident: ref13 doi: 10.1007/978-3-7091-1390-5_4 – ident: ref10 doi: 10.1016/j.ymssp.2015.05.032 – ident: ref34 doi: 10.1016/j.triboint.2015.12.037 – ident: ref32 doi: 10.1016/j.asoc.2017.04.034 – ident: ref45 doi: 10.1016/0020-0255(86)90006-X – ident: ref31 doi: 10.1016/j.jsv.2015.09.016 – ident: ref56 doi: 10.1016/j.ymssp.2017.12.008 – ident: ref54 doi: 10.1016/j.physa.2003.08.022 – ident: ref20 doi: 10.1080/08982112.2018.1448089 |
SSID | ssj0014498 |
Score | 2.5942178 |
Snippet | Fault diagnosis of bearings using classification techniques plays an important role in industrial applications, and, hence, has received increasing attention.... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 754 |
SubjectTerms | Algorithms Benchmark analysis Benchmark testing Benchmarks Case Western Reserve University (CWRU) data Classification Diagnostic systems Entropy fault classification Fault diagnosis fault feature extraction Feature extraction Industrial applications Iron Support vector machines Time series analysis |
Title | Entropy Based Fault Classification Using the Case Western Reserve University Data: A Benchmark Study |
URI | https://ieeexplore.ieee.org/document/8662701 https://www.proquest.com/docview/2409381383 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Qkx58oRFF04MHD-6yj-6j3gAhxEQPBCK3TXc7GxMQCC4m-OuddpeV-Ei89TDdNPtNOzPtNzOEXKNeOL4TCsNOIcEAJXUMARaO0NVGi5hKmbN8n_z-iD2MvXGF3Ja5MACgyWdgqqF-y5fzZKWuypqhqlaukrV2UM3yXK3yxYAxXpy6uIE9hxdlfGyLN4cDReHiJsYWvqNuObYskG6p8uMc1sald0AeN8vKOSUTc5XFZvLxrWLjf9d9SPYLL5O2crU4IhWYHZO9rdqDNSK7iqO-WNM22jFJe2I1zahukanIQxovqvkEFF1E2kEh-pxXVaCKrbd8B_pF6qD3IhN3tEXbqPQvr2I5oYqguD4ho1532OkbRcsFI8G_kxkSjzsRWxjlYODhCp-D7QpIPfBDW7g2sx00X14cSgi9JHTBDoWfKKYoeimCWYl7Sqqz-QzOCJU8kOB5AU-BMU8GoYjxMy5nAMICFtSJuYEhSop65KotxjTScYnFo-EgUrhFBW51clNOWOSlOP4WrSkUSrECgDppbHCOiq36FqE4R7cFI_Xz32ddkF1HBdn66qVBqtlyBZfoiWTxlVbBT6DN2WM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADb8R45sCBA-36SLqGG69pvHaYhtitShtXSIOBRocEvx4n7QbiIXHLwamifk5sJ59tgH3SiyAKYuX4OWYUoOSBo9CjEbnaZBFzrUuWbztq3fLLnuhNweEkFwYRLfkMXTO0b_n6KRuZq7J6bKqVm2StGbL7XJTZWpM3A85lde7SFhaBrAr5-J6sdzuGxCVdii6iwNxzfLFBtqnKj5PYmpfmItyMF1aySvruqEjd7P1bzcb_rnwJFio_kx2XirEMUzhYgfkv1QdXQZ8blvrzGzshS6ZZU40eCmabZBr6kEWMWUYBIyeRnZIQuyvrKjDD1xu-IvukdbAzVagjdsxOSO3vH9WwzwxF8W0Nbpvn3dOWUzVdcDL6O4Wj6cBTqUdxDoUeoYok-qHCXGAU-yr0uR-QARNprDEWWRyiH6soM1xR8lMU97JwHaYHTwPcAKZlQ6MQDZkj50I3YpXSZ0LJEZWHvFEDdwxDklUVyU1jjIfERiaeTLqdxOCWVLjV4GAy4bksxvG36KpBYSJWAVCD7THOSbVZXxISl-S4UKy--fusPZhtdW-uk-uL9tUWzAUm5LYXMdswXQxHuEN-SZHuWnX8ACwH3LA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+Based+Fault+Classification+Using+the+Case+Western+Reserve+University+Data%3A+A+Benchmark+Study&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Li%2C+Yongbo&rft.au=Wang%2C+Xianzhi&rft.au=Shubin+Si&rft.au=Huang%2C+Shiqian&rft.date=2020-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=69&rft.issue=2&rft.spage=754&rft_id=info:doi/10.1109%2FTR.2019.2896240&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |