Reliability Modeling of Infrastructure Load-Sharing Systems With Workload Adjustment
Motivated by the need to support effective asset management of infrastructure systems, this paper presents a novel reliability model for a load-sharing system where the operator can adjust component work load to balance system degradation. The operator-intervention effect, combined with other system...
Saved in:
Published in | IEEE transactions on reliability Vol. 68; no. 4; pp. 1283 - 1295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9529 1558-1721 |
DOI | 10.1109/TR.2019.2900845 |
Cover
Abstract | Motivated by the need to support effective asset management of infrastructure systems, this paper presents a novel reliability model for a load-sharing system where the operator can adjust component work load to balance system degradation. The operator-intervention effect, combined with other system complexities, makes modeling reliability interesting and challenging. We first develop cost modeling for a load-sharing system that has experienced operational service at the time of analysis. The system replacement process is modeled as a delayed renewal process for which the expected operational cost of the system is derived. A numerical algorithm is proposed to compute the cost, and the error bound is shown to be of order O(n -1 ). Next, we extend modeling to consider multiple heterogeneous systems located at different sites within the infrastructure network. Heterogeneities here refer to possible cross-site differences in the operating environments and the operators' actions. When the heterogeneities are observable, we model as covariates; otherwise, we model as random effects. Statistical inference methods are developed for the proposed models. An example using real data from a water utility illustrates the logical model behavior given parameter choices as well as showing how analysis might inform asset management. |
---|---|
AbstractList | Motivated by the need to support effective asset management of infrastructure systems, this paper presents a novel reliability model for a load-sharing system where the operator can adjust component work load to balance system degradation. The operator-intervention effect, combined with other system complexities, makes modeling reliability interesting and challenging. We first develop cost modeling for a load-sharing system that has experienced operational service at the time of analysis. The system replacement process is modeled as a delayed renewal process for which the expected operational cost of the system is derived. A numerical algorithm is proposed to compute the cost, and the error bound is shown to be of order [Formula Omitted]. Next, we extend modeling to consider multiple heterogeneous systems located at different sites within the infrastructure network. Heterogeneities here refer to possible cross-site differences in the operating environments and the operators’ actions. When the heterogeneities are observable, we model as covariates; otherwise, we model as random effects. Statistical inference methods are developed for the proposed models. An example using real data from a water utility illustrates the logical model behavior given parameter choices as well as showing how analysis might inform asset management. Motivated by the need to support effective asset management of infrastructure systems, this paper presents a novel reliability model for a load-sharing system where the operator can adjust component work load to balance system degradation. The operator-intervention effect, combined with other system complexities, makes modeling reliability interesting and challenging. We first develop cost modeling for a load-sharing system that has experienced operational service at the time of analysis. The system replacement process is modeled as a delayed renewal process for which the expected operational cost of the system is derived. A numerical algorithm is proposed to compute the cost, and the error bound is shown to be of order O(n -1 ). Next, we extend modeling to consider multiple heterogeneous systems located at different sites within the infrastructure network. Heterogeneities here refer to possible cross-site differences in the operating environments and the operators' actions. When the heterogeneities are observable, we model as covariates; otherwise, we model as random effects. Statistical inference methods are developed for the proposed models. An example using real data from a water utility illustrates the logical model behavior given parameter choices as well as showing how analysis might inform asset management. |
Author | Ye, Zhi-Sheng Sun, Qiuzhuang Revie, Matthew Walls, Lesley |
Author_xml | – sequence: 1 givenname: Qiuzhuang orcidid: 0000-0002-7103-1387 surname: Sun fullname: Sun, Qiuzhuang email: qiuzhuang.sun@u.nus.edu organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore – sequence: 2 givenname: Zhi-Sheng orcidid: 0000-0001-5731-3911 surname: Ye fullname: Ye, Zhi-Sheng email: yez@nus.edu.sg organization: Department of Industrial Systems Engineering and Management, National University of Singapore, Singapore – sequence: 3 givenname: Matthew surname: Revie fullname: Revie, Matthew email: matthew.j.revie@strath.ac.uk organization: Department of Management Science, University of Strathclyde, G1 1XW Glasgow, U.K – sequence: 4 givenname: Lesley orcidid: 0000-0001-7016-9141 surname: Walls fullname: Walls, Lesley email: lesley.walls@strath.ac.uk organization: Department of Management Science, University of Strathclyde, G1 1XW Glasgow, U.K |
BookMark | eNp9kL1vwjAQxa2KSgXauUOXSJ0DthMH34hQS5GoKkEkRstxnGIaYmo7A_99E4E6dOh0err3u483QoPGNhqhR4InhGCY5psJxQQmFDDmKbtBQ8IYj8mMkgEaYkx4DIzCHRp5f-hkmgIfonyjayMLU5twjt5t2anmM7JVtGoqJ31wrQqt09HayjLe7qXr29uzD_roo50J-2hn3VfddaN5eWh9OOom3KPbStZeP1zrGOWvL_niLV5_LFeL-TpWlEOIlSwkUzQlGeAqw5IRWpWQzAB0UhSJlFRlWQXdoZJCigutoVRl2X1FCkayZIyeL2NPzn632gdxsK1ruo2CJhRzTijrXeziUs5673QllAkyGNsEJ00tCBZ9fiLfiD4_cc2v46Z_uJMzR-nO_xBPF8JorX_dPJuxFHDyAzSifT8 |
CODEN | IERQAD |
CitedBy_id | crossref_primary_10_1287_msom_2022_0473 crossref_primary_10_1016_j_cie_2020_106291 crossref_primary_10_1111_poms_14071 crossref_primary_10_1109_TR_2022_3215792 crossref_primary_10_1016_j_ijpe_2020_107974 crossref_primary_10_1109_TR_2022_3140483 crossref_primary_10_1002_qre_3714 crossref_primary_10_1002_qre_3736 crossref_primary_10_1080_00207543_2021_1887532 crossref_primary_10_1016_j_ress_2020_107226 crossref_primary_10_1016_j_ress_2024_110785 crossref_primary_10_1016_j_ejor_2020_11_036 crossref_primary_10_1109_TR_2020_3023827 crossref_primary_10_1109_TSMC_2023_3277497 crossref_primary_10_1016_j_ress_2024_110498 crossref_primary_10_1016_j_jocs_2024_102495 crossref_primary_10_1016_j_ress_2022_108907 crossref_primary_10_1002_qre_3407 crossref_primary_10_1080_24725854_2019_1672908 crossref_primary_10_1016_j_ress_2021_108224 crossref_primary_10_1016_j_ress_2020_107234 crossref_primary_10_1016_j_ress_2022_108443 crossref_primary_10_1080_00401706_2019_1668855 crossref_primary_10_1080_24725854_2019_1649505 crossref_primary_10_1016_j_ress_2023_109133 crossref_primary_10_1016_j_ress_2019_106588 |
Cites_doi | 10.1080/00224065.2018.1406770 10.1109/TR.2010.2083231 10.1093/oso/9780195064650.001.0001 10.1371/journal.pone.0189863 10.1109/TR.2015.2421819 10.1023/A:1009664101413 10.1057/palgrave.jors.2602185 10.1109/TR.2014.2313793 10.1109/TR.2013.2259205 10.1109/TR.2015.2461217 10.1109/TR.2014.2338251 10.1002/asmb.2063 10.1080/15732479.2011.563090 10.1080/03610918908812760 10.1080/00401706.2013.765324 10.1109/TR.2017.2778283 10.1109/TR.2014.2299151 10.1214/088342306000000510 10.1057/palgrave.jors.2600863 10.1080/00224065.2000.11979997 10.1080/0740817X.2015.1055391 10.1109/TR.2014.2315965 10.1111/j.1467-9868.2009.00726.x 10.1214/17-AOAS1060 10.1109/TR.2014.2336411 10.1007/BF00985760 10.1016/j.ress.2017.05.026 10.1109/TR.2017.2780170 10.1109/TR.2017.2767941 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/TR.2019.2900845 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-1721 |
EndPage | 1295 |
ExternalDocumentID | 10_1109_TR_2019_2900845 8675490 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Scholarship Council grantid: 201506230136 funderid: 10.13039/501100004543 – fundername: National Natural Science Foundation of China; Natural Science Foundation of China grantid: 71871191; 71771221 funderid: 10.13039/501100001809 – fundername: National Research Foundation Singapore; National Research Foundation of Singapore funderid: 10.13039/501100001381 – fundername: Campus for Research Excellence and Technological Enterprise – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20180232 funderid: 10.13039/501100004608 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 8WZ 97E A6W AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ OCL P2P RIA RIE RNS TN5 VH1 VJK AAYXX CITATION 7SP 8FD L7M RIG |
ID | FETCH-LOGICAL-c289t-caba5c241690f60a512fd93799e3bb3aa2c66f9449a2940bee9dcdd5581b5163 |
IEDL.DBID | RIE |
ISSN | 0018-9529 |
IngestDate | Sun Jun 29 16:50:47 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Wed Oct 01 01:27:37 EDT 2025 Wed Aug 27 02:43:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c289t-caba5c241690f60a512fd93799e3bb3aa2c66f9449a2940bee9dcdd5581b5163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5731-3911 0000-0002-7103-1387 0000-0001-7016-9141 |
PQID | 2320881256 |
PQPubID | 85456 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1109_TR_2019_2900845 crossref_citationtrail_10_1109_TR_2019_2900845 ieee_primary_8675490 proquest_journals_2320881256 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Dec. 2019-12-00 20191201 |
PublicationDateYYYYMMDD | 2019-12-01 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-Dec. |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on reliability |
PublicationTitleAbbrev | TR |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 meeker (ref29) 1998 ref24 ref23 ref26 ref25 ref20 cooke (ref12) 1991 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref19 doi: 10.1080/00224065.2018.1406770 – ident: ref1 doi: 10.1109/TR.2010.2083231 – year: 1991 ident: ref12 publication-title: Experts in Uncertainty doi: 10.1093/oso/9780195064650.001.0001 – year: 1998 ident: ref29 publication-title: Statistical Methods for Reliability Data – ident: ref10 doi: 10.1371/journal.pone.0189863 – ident: ref9 doi: 10.1109/TR.2015.2421819 – ident: ref18 doi: 10.1023/A:1009664101413 – ident: ref2 doi: 10.1057/palgrave.jors.2602185 – ident: ref7 doi: 10.1109/TR.2014.2313793 – ident: ref22 doi: 10.1109/TR.2013.2259205 – ident: ref4 doi: 10.1109/TR.2015.2461217 – ident: ref8 doi: 10.1109/TR.2014.2338251 – ident: ref6 doi: 10.1002/asmb.2063 – ident: ref15 doi: 10.1080/15732479.2011.563090 – ident: ref17 doi: 10.1080/03610918908812760 – ident: ref13 doi: 10.1080/00401706.2013.765324 – ident: ref5 doi: 10.1109/TR.2017.2778283 – ident: ref21 doi: 10.1109/TR.2014.2299151 – ident: ref28 doi: 10.1214/088342306000000510 – ident: ref3 doi: 10.1057/palgrave.jors.2600863 – ident: ref14 doi: 10.1080/00224065.2000.11979997 – ident: ref25 doi: 10.1080/0740817X.2015.1055391 – ident: ref11 doi: 10.1109/TR.2014.2315965 – ident: ref30 doi: 10.1111/j.1467-9868.2009.00726.x – ident: ref23 doi: 10.1214/17-AOAS1060 – ident: ref20 doi: 10.1109/TR.2014.2336411 – ident: ref27 doi: 10.1007/BF00985760 – ident: ref26 doi: 10.1016/j.ress.2017.05.026 – ident: ref16 doi: 10.1109/TR.2017.2780170 – ident: ref24 doi: 10.1109/TR.2017.2767941 |
SSID | ssj0014498 |
Score | 2.4214787 |
Snippet | Motivated by the need to support effective asset management of infrastructure systems, this paper presents a novel reliability model for a load-sharing system... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1283 |
SubjectTerms | Algorithms Analytical models Asset management Component reliability Cumulative work load (CWL) Data models Degradation degradation failure delayed renewal process Gamma process Infrastructure Load modeling load-sharing system Numerical analysis Operating costs Reliability Reliability analysis Reliability engineering Statistical inference Statistical methods Sun System effectiveness Water resources Water utilities Workload |
Title | Reliability Modeling of Infrastructure Load-Sharing Systems With Workload Adjustment |
URI | https://ieeexplore.ieee.org/document/8675490 https://www.proquest.com/docview/2320881256 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-1721 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014498 issn: 0018-9529 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKJxh4FUShIA8MDCRN0zjtjRWiAkQZqiC6RY4f4lE1qI8Bfj13iVvxlNgi2Y6sO9v3nX33HWOnLRV3bCyEF7SFoRJmgQdZaD2jtQDZ7YSRpkThwV18dR_djMSows5XuTDGmCL4zPj0Wbzl61wt6Kqs2UV0GwE66GudDpS5WqsXgygCd-riBhYhOBqfVgDNZEghXOCHQOzx4osFKkqq_DiHC-PS32KD5bTKmJIXfzHPfPX-jbHxv_PeZpsOZfJeuSx2WMVMdtnGJ-7BGksoGLkk6X7jVBGN8tJ5bvn1xE5lSSu7mBp-m0vtEa0zNTt-c_7wNH_kdM8-xlbe08-LWRGtvseS_mVyceW5EgueQk9r7imZSaHQiqOTbONAovm3GhELgGlnWVvKUMWxBRSuDCEKMmNAK1SjQLQrEMrts-okn5gDxnWbioRb0QVpiFRQAiUnRdoGBhQYUWf-UuqpcvTjVAVjnBZuSABpMkxJTalTU52drQa8lswbf3etkdBX3Zy866yxVGvqduYsRQSJByvCuvjw91FHbJ3-XYasNFgV5W2OEXjMs5NixX0A3w_Urw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYQHIADb8RgQA4cONBSuqabjxMCDdg4oCK4VWke4qUNwXaAX4_dZhNPiVulJGpkJ87nxP4MsHek06ZLpQyihrRcwiwKsIhdYI2RqFrNODGcKNy7TDvXyfmtvJ2Cg0kujLW2DD6zIX-Wb_lmoEd8VXbYInSbIDnoM5K8imaVrTV5M0gS9HaXtrCM0RP5HEV4mF1xEBeGMTJ_vPxyBpVFVX5Y4vJ4OV2E3nhiVVTJYzgaFqF-_8bZ-N-ZL8GCx5miXS2MZZiy_RWY_8Q-uAoZhyNXNN1vgmuicWa6GDhx1ncvqiKWHb1Y0R0oEzCxMzd7hnNxcz-8E3zT_kStom0eRq9lvPoaZKcn2XEn8EUWAk2-1jDQqlBS0zlObrJLI0UAwBnCLIi2URQNpWKdpg5JuCrGJCqsRaNJkZLwriQwtw7T_UHfboAwDS4T7mQLlWVaQYWcnpQYF1nUaGUNwrHUc-0JyLkOxlNeOiIR5tlVzmrKvZpqsD8Z8Fxxb_zddZWFPunm5V2D-litud-brzlhSDKtBOzSzd9H7cJsJ-t18-7Z5cUWzPF_qgCWOkyT7O02wZBhsVOuvg81h9gA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reliability+Modeling+of+Infrastructure+Load-Sharing+Systems+With+Workload+Adjustment&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Sun%2C+Qiuzhuang&rft.au=Ye%2C+Zhi-Sheng&rft.au=Revie%2C+Matthew&rft.au=Walls%2C+Lesley&rft.date=2019-12-01&rft.issn=0018-9529&rft.eissn=1558-1721&rft.volume=68&rft.issue=4&rft.spage=1283&rft.epage=1295&rft_id=info:doi/10.1109%2FTR.2019.2900845&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TR_2019_2900845 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon |