Map-Based Millimeter-Wave Channel Models: An Overview, Data for B5G Evaluation and Machine Learning

Within the mm-Wave range of the B5G communication systems, there will appear many types of applications with different link types. In discussions on how to cover the various channel modeling requirements of such applications, some researchers have suggested map-based channel models that are based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE wireless communications Vol. 27; no. 4; pp. 54 - 62
Main Authors Lim, Yeon-Geun, Cho, Yae Jee, Sim, Min Soo, Kim, Younsun, Chae, Chan-Byoung, Valenzuela, Reinaldo A.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1536-1284
1558-0687
DOI10.1109/MWC.001.1900315

Cover

Abstract Within the mm-Wave range of the B5G communication systems, there will appear many types of applications with different link types. In discussions on how to cover the various channel modeling requirements of such applications, some researchers have suggested map-based channel models that are based on a ray-tracing algorithm. This article thus begins with an overview of mapbased mm-Wave channel models. The overview includes available modeling requirements with map-based channel models and the categorization of map-based channel parameters. We then explain why map-based channel models are necessary for researchers trying to evaluate novel technologies in the mm-Wave range. They are particularly necessary when the technologies operate with a new link type or when channel behaviors of a user exhibit user-specific characteristics. Next, we share the measurement data and the map-based channel parameters, which can model new link types and have user-specific characteristics. Finally, as a use case of the proposed channel model, we evaluate a machine-learning-based beam-selection algorithm that exploits power delay profiles through the shared database and a geometry-based stochastic channel model (GSCM). The delay profiles of the shared database are user-specific so they are highly correlated with angular parameters. Numerical results show that the algorithm can be more accurately evaluated through the shared database than through a GSCM. We expect that our overview and sharing the database will enable researchers to readily design a map-based channel model and evaluate B5G and machine-learning technologies.
AbstractList Within the mm-Wave range of the B5G communication systems, there will appear many types of applications with different link types. In discussions on how to cover the various channel modeling requirements of such applications, some researchers have suggested map-based channel models that are based on a ray-tracing algorithm. This article thus begins with an overview of mapbased mm-Wave channel models. The overview includes available modeling requirements with map-based channel models and the categorization of map-based channel parameters. We then explain why map-based channel models are necessary for researchers trying to evaluate novel technologies in the mm-Wave range. They are particularly necessary when the technologies operate with a new link type or when channel behaviors of a user exhibit user-specific characteristics. Next, we share the measurement data and the map-based channel parameters, which can model new link types and have user-specific characteristics. Finally, as a use case of the proposed channel model, we evaluate a machine-learning-based beam-selection algorithm that exploits power delay profiles through the shared database and a geometry-based stochastic channel model (GSCM). The delay profiles of the shared database are user-specific so they are highly correlated with angular parameters. Numerical results show that the algorithm can be more accurately evaluated through the shared database than through a GSCM. We expect that our overview and sharing the database will enable researchers to readily design a map-based channel model and evaluate B5G and machine-learning technologies.
Author Valenzuela, Reinaldo A.
Sim, Min Soo
Kim, Younsun
Lim, Yeon-Geun
Cho, Yae Jee
Chae, Chan-Byoung
Author_xml – sequence: 1
  givenname: Yeon-Geun
  surname: Lim
  fullname: Lim, Yeon-Geun
– sequence: 2
  givenname: Yae Jee
  surname: Cho
  fullname: Cho, Yae Jee
– sequence: 3
  givenname: Min Soo
  surname: Sim
  fullname: Sim, Min Soo
– sequence: 4
  givenname: Younsun
  surname: Kim
  fullname: Kim, Younsun
– sequence: 5
  givenname: Chan-Byoung
  surname: Chae
  fullname: Chae, Chan-Byoung
– sequence: 6
  givenname: Reinaldo A.
  surname: Valenzuela
  fullname: Valenzuela, Reinaldo A.
BookMark eNp9kE1PAjEQhhujiYCePXhp4tWFltIvb4CIJhAuGo6btjtIydLF7rLGf-8ixIMHTzOH93ln8rTReSgCIHRDSZdSonvz5bhLCO1STQij_Ay1KOcqIULJ88POREL7anCJ2mW5aYJScNFCbm52yciUkOG5z3O_hQpisjQ14PHahAA5nhcZ5OUDHga8qCHWHj7v8aOpDF4VEY_4FE9qk-9N5YuATWiKjFv7AHgGJgYf3q_QxcrkJVyfZge9PU1ex8_JbDF9GQ9niesrXSVOWk3USlomuSVCCK6dYFZm3OrMMqEVkXqQWa4058xyIywo54QUkmlmNOugu2PvLhYfeyirdFPsY2hOpv0BE4L0VaOmg_gx5WJRlhFWqfPVz_NVND5PKUkPPtPGZ9poSk8-G673h9tFvzXx6x_i9kh4APhNa3p4hbJvi8F_mQ
CODEN IWCEAS
CitedBy_id crossref_primary_10_1109_TWC_2022_3149903
crossref_primary_10_1109_TWC_2023_3298546
crossref_primary_10_1109_TWC_2024_3487225
crossref_primary_10_1002_ett_4385
crossref_primary_10_1109_ACCESS_2020_3015762
crossref_primary_10_1109_JSYST_2021_3089536
crossref_primary_10_1109_OJAP_2020_3044460
crossref_primary_10_1109_ACCESS_2024_3486453
crossref_primary_10_1109_COMST_2022_3176802
crossref_primary_10_1109_COMST_2024_3364508
crossref_primary_10_1155_2022_9901960
crossref_primary_10_1016_j_eswa_2022_119324
crossref_primary_10_1109_MCOM_020_2300165
crossref_primary_10_1109_IOTM_001_2200021
crossref_primary_10_1016_j_heliyon_2022_e09317
crossref_primary_10_1109_TVT_2024_3492719
crossref_primary_10_3390_electronics10070843
crossref_primary_10_1109_TWC_2023_3241845
crossref_primary_10_1016_j_rinp_2023_106977
crossref_primary_10_3390_electronics10141653
crossref_primary_10_1109_LWC_2023_3273280
crossref_primary_10_1109_TWC_2024_3457016
crossref_primary_10_1109_ACCESS_2020_3025181
Cites_doi 10.1109/GLOCOM.2018.8647921
10.1109/25.330150
10.1109/MWC.2018.1700351
10.1109/TMTT.2016.2574849
10.1109/JSAC.2017.2698780
10.1109/TMTT.2016.2574851
10.1109/49.585778
10.1109/MCOM.2018.1701019
10.1109/MCOM.2016.7498102
10.1109/ITA.2018.8503086
10.1109/ACCESS.2014.2365991
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/MWC.001.1900315
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0687
EndPage 62
ExternalDocumentID 10_1109_MWC_001_1900315
9136601
Genre orig-research
GroupedDBID -~X
0R~
1OL
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
TN5
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c289t-c7b908f7b375b066659c63b7d5b9db36980794db589553b5a6be8cc6767393a93
IEDL.DBID RIE
ISSN 1536-1284
IngestDate Mon Jun 30 10:27:55 EDT 2025
Thu Apr 24 22:51:34 EDT 2025
Wed Oct 01 02:34:36 EDT 2025
Wed Aug 27 02:31:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-c7b908f7b375b066659c63b7d5b9db36980794db589553b5a6be8cc6767393a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2436602800
PQPubID 75748
PageCount 9
ParticipantIDs ieee_primary_9136601
crossref_primary_10_1109_MWC_001_1900315
proquest_journals_2436602800
crossref_citationtrail_10_1109_MWC_001_1900315
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-August
2020-8-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-August
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE wireless communications
PublicationTitleAbbrev WC-M
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref6
(ref3) 2015
ref5
(ref13) 2013
(ref4) 2019
ju (ref12) 0
References_xml – ident: ref14
  doi: 10.1109/GLOCOM.2018.8647921
– ident: ref9
  doi: 10.1109/25.330150
– ident: ref1
  doi: 10.1109/MWC.2018.1700351
– ident: ref6
  doi: 10.1109/TMTT.2016.2574849
– ident: ref8
  doi: 10.1109/JSAC.2017.2698780
– year: 2019
  ident: ref4
  publication-title: Study on Channel Model for Frequencies From 0 5 to 100 GHz
– ident: ref2
  doi: 10.1109/TMTT.2016.2574851
– start-page: 1
  year: 0
  ident: ref12
  article-title: Millimeter-Wave Extended NYU-SIM Channel Model for Spatial Consistency
  publication-title: Proc IEEE Global Commun Conf
– ident: ref10
  doi: 10.1109/49.585778
– year: 2013
  ident: ref13
  publication-title: Effects of Building Materials and Structures on Radiowave Propagation Above About 100 MHz
– ident: ref7
  doi: 10.1109/MCOM.2018.1701019
– year: 2015
  ident: ref3
  article-title: ICT-317669 METIS Project deliverable D1.4 v.3
  publication-title: METIS Channel Models
– ident: ref5
  doi: 10.1109/MCOM.2016.7498102
– ident: ref11
  doi: 10.1109/ITA.2018.8503086
– ident: ref15
  doi: 10.1109/ACCESS.2014.2365991
SSID ssj0017656
Score 2.4910178
Snippet Within the mm-Wave range of the B5G communication systems, there will appear many types of applications with different link types. In discussions on how to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms 3GPP
5G mobile communication
Algorithms
Channel models
Communications systems
Delays
Evaluation
Layout
Machine learning
Machine learning algorithms
Mathematical models
Millimeter wave communication
Millimeter waves
Parameters
Ray tracing
Researchers
Stochastic processes
Title Map-Based Millimeter-Wave Channel Models: An Overview, Data for B5G Evaluation and Machine Learning
URI https://ieeexplore.ieee.org/document/9136601
https://www.proquest.com/docview/2436602800
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0687
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017656
  issn: 1536-1284
  databaseCode: RIE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYKEwy8CqJQkAcGhiYkdW3HbLwrpMICarfIryBESSuaFolfj89NI8RDYosUO7JyPvvO_u77EDqSNjFGMxNkCZxWKa4CyZ0_SpJxA0pJVHmA7B3rPnZuB3RQQ62qFsZa68FnNoRHf5dvRnoKR2UnIiaMQbHWEk_YvFarujHgzCu1OgcGXZmkU9L4xJE46fUv4MIhjOHUDvRvv-xAXlLlxzrsN5frddRbDGuOKXkJp4UK9cc3xsb_jnsDrZVRJj6bT4tNVLP5Flr9wj1YR7onx8G528MMhnrA51fAxQR9ObMYKg5yO8SgkzacnOKzHN_PYE2x7y18KQuJXaSLz-kNvqq4wrHM3Yc8MtPikrT1aRs9Xl89XHSDUnEh0C7xKgLNlYiSjCvCqYLMhgrNiOLGWcwowkQSOf81iiaCUqKoZMomWgPpGxFECrKDlvNRbncRlm0XKUjXUkbEJUWZAmZBN18UUJR1YtNA4cIKqS7pyEEVY5j6tCQSqTMbIO7S0mwNdFx1GM-ZOP5uWgcjVM3K_99AzYWZ09JTJ2m7A-_aLm7e-73XPlppQ47tQX9NtFy8Te2BC0QKdehn4CfMsdeA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1VcAAO7IhCAR84cCAhreMk5gZlKUvhAoJb5K0IUdKKpkXi6_G4aYRYJG6RYkdWxmPP2G_eA9gVJtFaRdrrJHhaJWPpidj6o6CdWKNSEpMOIHsTte7Dy0f2WIH9shbGGOPAZ8bHR3eXr3tqiEdlB7xOowiLtaZZGIZsXK1V3hnEkdNqtS6MyjJJWBD51AN-0H5o4pWDX8dzO1TA_bIHOVGVHyux217OFqA9GdgYVfLiD3Ppq49vnI3_HfkizBdxJjkaT4wlqJhsGea-sA-ugGqLvndsdzFNsCLw-RWRMd6DGBmCNQeZ6RJUSusODslRRm5HuKqY931yInJBbKxLjtk5OS3ZwonI7IccNtOQgrb1aRXuz07vmi2v0FzwlE29ck_FkgdJJ5Y0ZhJzG8ZVRGWsrc20pBFPAuvBWrKEM0YlE5E0iVJI-0Y5FZyuwVTWy8w6ENGwsYKwLUVAbVrUkcgtaGeMRJKysK6r4E-skKqCkBx1MbqpS0wCnlqzIeYuLcxWhb2yQ3_MxfF30xU0Qtms-P9VqE3MnBa-OkgbIb5r2Mh54_deOzDTumtfp9cXN1ebMNvAjNtBAGswlb8NzZYNS3K57WbjJ0I62s0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Map-Based+Millimeter-Wave+Channel+Models%3A+An+Overview%2C+Data+for+B5G+Evaluation+and+Machine+Learning&rft.jtitle=IEEE+wireless+communications&rft.au=Lim%2C+Yeon-Geun&rft.au=Yae+Jee+Cho&rft.au=Sim%2C+Min+Soo&rft.au=Kim%2C+Younsun&rft.date=2020-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1536-1284&rft.eissn=1558-0687&rft.volume=27&rft.issue=4&rft.spage=54&rft_id=info:doi/10.1109%2FMWC.001.1900315&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1284&client=summon