SpikeBASE: Spiking Neural Learning Algorithm With Backward Adaptation of Synaptic Efflux
Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have be...
Saved in:
| Published in | IEEE transactions on computers Vol. 71; no. 11; pp. 2707 - 2716 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9340 1557-9956 |
| DOI | 10.1109/TC.2022.3197089 |
Cover
| Abstract | Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have been made, highly effective SNN learning algorithms are still urged, driven by the challenges of coordinating spiking spatiotemporal dynamics. We therefore propose a novel algorithm, SpikeBASE, denoting Spiking learning with Backward Adaption of Synaptic Efflux, to globally, supervisedly, and comprehensively coordinate the synaptic dynamics including both synaptic strength and responses. SpikeBASE can learn synaptic strength by backpropagating the error through the predefined synaptic responses. More importantly, SpikeBASE enables synaptic response adaptation through backpropagation, to mimic the complex dynamics of neural transmissions. Further, SpikeBASE enables multi-scale temporal memory formation by supporting multi-synaptic response adaptation. We have evaluated the algorithm on a challenging scarce data learning task and shown highly promising performance. The proposed SpikeBASE algorithm, through comprehensively coordinating the learning of synaptic strength, synaptic responses, and multi-scale temporal memory formation, has demonstrated its effectiveness on end-to-end SNN training. This study is expected to greatly advance the learning effectiveness of SNN and thus broadly benefit smart and efficient big data applications. |
|---|---|
| AbstractList | Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have been made, highly effective SNN learning algorithms are still urged, driven by the challenges of coordinating spiking spatiotemporal dynamics. We therefore propose a novel algorithm, SpikeBASE, denoting Spiking learning with Backward Adaption of Synaptic Efflux, to globally, supervisedly, and comprehensively coordinate the synaptic dynamics including both synaptic strength and responses. SpikeBASE can learn synaptic strength by backpropagating the error through the predefined synaptic responses. More importantly, SpikeBASE enables synaptic response adaptation through backpropagation, to mimic the complex dynamics of neural transmissions. Further, SpikeBASE enables multi-scale temporal memory formation by supporting multi-synaptic response adaptation. We have evaluated the algorithm on a challenging scarce data learning task and shown highly promising performance. The proposed SpikeBASE algorithm, through comprehensively coordinating the learning of synaptic strength, synaptic responses, and multi-scale temporal memory formation, has demonstrated its effectiveness on end-to-end SNN training. This study is expected to greatly advance the learning effectiveness of SNN and thus broadly benefit smart and efficient big data applications. |
| Author | Zhang, Qingxue Stauffer, Jake |
| Author_xml | – sequence: 1 givenname: Jake surname: Stauffer fullname: Stauffer, Jake email: jamstauf@purdue.edu organization: Purdue University School of Engineering and Technology at Indianapolis, Indinapolis, IN, USA – sequence: 2 givenname: Qingxue orcidid: 0000-0001-7125-7928 surname: Zhang fullname: Zhang, Qingxue email: qxzhang@purdue.edu organization: Purdue University School of Engineering and Technology at Indianapolis, Indinapolis, IN, USA |
| BookMark | eNp9UD1PwzAQtVCRKIWZgcUSc9qzHSc-trQqH1IFQ4tgi0xiF7dpUpxU0H9PqlQMDCx393Tv3dO9c9Irq9IQcsVgyBjgaDEZcuB8KBjGoPCE9JmUcYAoox7pAzAVoAjhjJzX9QoAIg7YJ2_zrVubcTKf3tLD6MolfTI7rws6M9qXB5wUy8q75mNDX9tKxzpbf2mf0yTX20Y3rippZel8X7bQZXRqbbH7viCnVhe1uTz2AXm5my4mD8Hs-f5xksyCjCtsAimNVRZiiIyMYomW52FujdIsFBgqI94jbLcx07kEI1GJ2IJBzCBrOTwTA3LT3d366nNn6iZdVTtftpYpj7lAYCwMW9aoY2W-qmtvbLr1bqP9PmWQHuJLF5P0EF96jK9VyD-KzHXPNl674h_ddadzxphfF1SSoVDiB2cSfNI |
| CODEN | ITCOB4 |
| CitedBy_id | crossref_primary_10_3390_s23125723 crossref_primary_10_1007_s00138_024_01582_8 crossref_primary_10_1007_s10548_025_01106_1 |
| Cites_doi | 10.1109/IJCNN.2019.8852380 10.1109/IJCNN.2010.5596372 10.1103/PhysRevE.59.4498 10.1145/3354265.3354275 10.3389/fnins.2013.00002 10.1002/adfm.201704455 10.1162/neco.2006.18.6.1318 10.1016/j.neunet.2018.12.002 10.24963/ijcai.2021/321 10.1371/journal.pone.0192684 10.5555/3015812.3015979 10.1097/MCO.0b013e328312c368 10.1109/DAC18074.2021.9586323 10.3389/fncom.2020.576841 10.1152/jn.00900.2002 10.1037/0735-7044.115.3.602 10.1109/ISCAS.2010.5536970 10.1038/383076a0 10.1002/aelm.201900060 10.7551/mitpress/11474.001.0001 10.1038/nn1506 10.3389/fnins.2016.00508 10.1016/j.pneurobio.2011.08.002 10.1038/78829 10.1109/JSTQE.2019.2911565 10.3389/fnins.2017.00324 10.1007/978-3-030-36718-3_15 10.1109/TNNLS.2017.2726060 10.1109/ICCE50685.2021.9427710 10.1109/APEIE.2016.7806372 10.1109/IJCNN.2015.7280696 10.1145/3203217.3203231 10.1016/j.neunet.2019.09.004 10.1109/EMBC46164.2021.9629874 10.1109/TKDE.2020.2981333 10.3389/fnins.2017.00682 10.24963/ijcai.2020/388 10.1038/381706a0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TC.2022.3197089 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9956 |
| EndPage | 2716 |
| ExternalDocumentID | 10_1109_TC_2022_3197089 9851938 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation funderid: 10.13039/501100008982 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c289t-55ef8f0706e56759f2d4dfe8a143948e3b6907071ad50e59837f0e99c0c8a12c3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9340 |
| IngestDate | Mon Jun 30 02:24:48 EDT 2025 Wed Oct 01 00:45:30 EDT 2025 Thu Apr 24 22:52:00 EDT 2025 Wed Aug 27 02:18:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c289t-55ef8f0706e56759f2d4dfe8a143948e3b6907071ad50e59837f0e99c0c8a12c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7125-7928 |
| PQID | 2723901144 |
| PQPubID | 85452 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1109_TC_2022_3197089 proquest_journals_2723901144 crossref_citationtrail_10_1109_TC_2022_3197089 ieee_primary_9851938 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computers |
| PublicationTitleAbbrev | TC |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref19 ref18 Zou (ref38) Zhang (ref27) 2020 ref24 ref23 ref25 ref20 ref42 Shrestha (ref26) 2018 ref41 ref22 ref21 ref43 ref28 Canziani (ref6) 2016 ref29 ref8 Gerstner (ref33) 2001 ref7 ref9 ref4 ref3 ref5 ref40 |
| References_xml | – ident: ref32 doi: 10.1109/IJCNN.2019.8852380 – ident: ref43 doi: 10.1109/IJCNN.2010.5596372 – ident: ref16 doi: 10.1103/PhysRevE.59.4498 – ident: ref28 doi: 10.1145/3354265.3354275 – ident: ref11 doi: 10.3389/fnins.2013.00002 – ident: ref18 doi: 10.1002/adfm.201704455 – ident: ref34 doi: 10.1162/neco.2006.18.6.1318 – ident: ref10 doi: 10.1016/j.neunet.2018.12.002 – ident: ref22 doi: 10.24963/ijcai.2021/321 – year: 2016, ident: ref6 article-title: An analysis of deep neural network models for practical applications – ident: ref36 doi: 10.1371/journal.pone.0192684 – ident: ref5 doi: 10.5555/3015812.3015979 – ident: ref7 doi: 10.1097/MCO.0b013e328312c368 – ident: ref41 doi: 10.1109/DAC18074.2021.9586323 – ident: ref2 doi: 10.3389/fncom.2020.576841 – ident: ref14 doi: 10.1152/jn.00900.2002 – ident: ref8 doi: 10.1037/0735-7044.115.3.602 – ident: ref42 doi: 10.1109/ISCAS.2010.5536970 – ident: ref17 doi: 10.1038/383076a0 – ident: ref19 doi: 10.1002/aelm.201900060 – ident: ref1 doi: 10.7551/mitpress/11474.001.0001 – ident: ref30 doi: 10.1038/nn1506 – ident: ref24 doi: 10.3389/fnins.2016.00508 – ident: ref9 doi: 10.1016/j.pneurobio.2011.08.002 – ident: ref15 doi: 10.1038/78829 – ident: ref13 doi: 10.1109/JSTQE.2019.2911565 – ident: ref29 doi: 10.3389/fnins.2017.00324 – start-page: 469 volume-title: Handbook of Biological Physics year: 2001 ident: ref33 article-title: A framework for spiking neuron models: The spike response model – ident: ref23 doi: 10.1007/978-3-030-36718-3_15 – year: 2018 ident: ref26 article-title: Slayer: Spike layer error reassignment in time – ident: ref25 doi: 10.1109/TNNLS.2017.2726060 – start-page: 1861 volume-title: Proc. IEEE EMBS Annu. Conf. ident: ref38 article-title: UbiEi-Edge: Human big data decoding using deep learning on edge – ident: ref39 doi: 10.1109/ICCE50685.2021.9427710 – ident: ref12 doi: 10.1109/APEIE.2016.7806372 – ident: ref21 doi: 10.1109/IJCNN.2015.7280696 – ident: ref40 doi: 10.1145/3203217.3203231 – ident: ref3 doi: 10.1016/j.neunet.2019.09.004 – year: 2020 ident: ref27 article-title: Spike-timing-dependent back propagation in deep spiking neural networks – ident: ref37 doi: 10.1109/EMBC46164.2021.9629874 – ident: ref4 doi: 10.1109/TKDE.2020.2981333 – ident: ref20 doi: 10.3389/fnins.2017.00682 – ident: ref31 doi: 10.24963/ijcai.2020/388 – ident: ref35 doi: 10.1038/381706a0 |
| SSID | ssj0006209 |
| Score | 2.4006207 |
| Snippet | Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2707 |
| SubjectTerms | Adaptation Algorithms artificial intelligence Back propagation Back propagation networks Backpropagation Big Data Brain modeling Cognitive tasks Deep learning Effectiveness Efflux Heuristic algorithms Machine learning neural models Neural networks Neuromorphic computing Neurons Spatiotemporal phenomena Spiking Training |
| Title | SpikeBASE: Spiking Neural Learning Algorithm With Backward Adaptation of Synaptic Efflux |
| URI | https://ieeexplore.ieee.org/document/9851938 https://www.proquest.com/docview/2723901144 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006209 issn: 0018-9340 databaseCode: RIE dateStart: 19680101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_VFDh48uHW773irpSKCXlqxt2U3mWixtkW3oP56Z3azRXyAlyUbkhCYzGS-JPMNwHHQcjN2ExyDaJxAx2QHA9KrKCTDEOWJVppvdG9uo6u74HoQDhbgdB4Lg4jl4zNscrG8y9cTNeOjsjOZsL-RLMJinERVrNbc6kb1c44WKbAfuJbGp-XKs36HcKDnETyVscv53L_sQGVKlR92uNxcLtfgpp5W9abkqTkr8qb6-MbY-N95r8Oq9TJFu1oWG7CA401YqzM4CKvQm7DyhY5wCwa96fAJL9q97rngIlUKJu-gkSwN64Nojx4mL8Pi8Vnc01dc8PEfLTLR1tm0utUXEyN672P6HSrRNWY0e9uGu8tuv3Pl2MwLjiIAVjhhiCYxZA0iDAlRSOPpQBtMshYH0ibo5wyqyTvJdOhiKAnlGhelVK6iNp7yd2BpPBnjLojcJ2GoyMSZnwfk3GUy0BnmJpSKqeNMA5q1NFJlack5O8YoLeGJK9N-J2XxpVZ8DTiZd5hWjBx_N91iYcybWTk04KAWd2o19jX1Yo-Pfwhf7v3eax-WeewqDvEAloqXGR6SQ1LkR-VK_ASLh9s5 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7QF4YGMDUTaGH3jggXRpYqfx3rqqU4F1L-1E36LEPo9qpa1GKsH--t0lTjXxQ9pL5ER2bOl85_ts33cAH2QnzNlNCByiC6Ttkh2UpFeJIsOQFKk1lk90R5fJ8Ep-marpFnzaxMIgYnX5DNtcrM7y7dKseavsRKfsb6RPYEdJKVUdrbWxu0lzoaNDKhzL0BP5dEJ9MukTEowiAqi6G3JG9wdrUJVU5S9LXC0v57swagZW3yq5aa_Lom3u_uBsfOzI9-CF9zNFr54YL2ELF_uw2-RwEF6l9-H5A0LCA5iOV7MbPOuNB6eCi_RRMH0H_ckTsV6L3vx6eTsrv_8Q3-gpzngDkKaZ6Nl8VZ_ri6UT498Lep0ZMXBuvv71Cq7OB5P-MPC5FwJDEKwMlEKXOrIHCSrCFNpFVlqHad7hUNoU44JhNfknuVUhKk0414WotQkN1YlM_Bq2F8sFvgFRxCQMk7huHheS3LtcS5tj4ZQ2TB7nWtBupJEZT0zO-THmWQVQQp1N-hmLL_Pia8HHTYNVzcnx_6oHLIxNNS-HFhw14s68zv7Mom7EG0CEMN_-u9V7eDqcjC6yi8-XXw_hGfdTRyUewXZ5u8Z35J6UxXE1K-8BMGTehg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpikeBASE%3A+Spiking+Neural+Learning+Algorithm+With+Backward+Adaptation+of+Synaptic+Efflux&rft.jtitle=IEEE+transactions+on+computers&rft.au=Stauffer%2C+Jake&rft.au=Zhang%2C+Qingxue&rft.date=2022-11-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=71&rft.issue=11&rft.spage=2707&rft.epage=2716&rft_id=info:doi/10.1109%2FTC.2022.3197089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2022_3197089 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |