SpikeBASE: Spiking Neural Learning Algorithm With Backward Adaptation of Synaptic Efflux

Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have be...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 71; no. 11; pp. 2707 - 2716
Main Authors Stauffer, Jake, Zhang, Qingxue
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9340
1557-9956
DOI10.1109/TC.2022.3197089

Cover

Abstract Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have been made, highly effective SNN learning algorithms are still urged, driven by the challenges of coordinating spiking spatiotemporal dynamics. We therefore propose a novel algorithm, SpikeBASE, denoting Spiking learning with Backward Adaption of Synaptic Efflux, to globally, supervisedly, and comprehensively coordinate the synaptic dynamics including both synaptic strength and responses. SpikeBASE can learn synaptic strength by backpropagating the error through the predefined synaptic responses. More importantly, SpikeBASE enables synaptic response adaptation through backpropagation, to mimic the complex dynamics of neural transmissions. Further, SpikeBASE enables multi-scale temporal memory formation by supporting multi-synaptic response adaptation. We have evaluated the algorithm on a challenging scarce data learning task and shown highly promising performance. The proposed SpikeBASE algorithm, through comprehensively coordinating the learning of synaptic strength, synaptic responses, and multi-scale temporal memory formation, has demonstrated its effectiveness on end-to-end SNN training. This study is expected to greatly advance the learning effectiveness of SNN and thus broadly benefit smart and efficient big data applications.
AbstractList Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal information encoding and processing that bring both learning effectiveness and energy efficiency. Although substantial advances in SNN studies have been made, highly effective SNN learning algorithms are still urged, driven by the challenges of coordinating spiking spatiotemporal dynamics. We therefore propose a novel algorithm, SpikeBASE, denoting Spiking learning with Backward Adaption of Synaptic Efflux, to globally, supervisedly, and comprehensively coordinate the synaptic dynamics including both synaptic strength and responses. SpikeBASE can learn synaptic strength by backpropagating the error through the predefined synaptic responses. More importantly, SpikeBASE enables synaptic response adaptation through backpropagation, to mimic the complex dynamics of neural transmissions. Further, SpikeBASE enables multi-scale temporal memory formation by supporting multi-synaptic response adaptation. We have evaluated the algorithm on a challenging scarce data learning task and shown highly promising performance. The proposed SpikeBASE algorithm, through comprehensively coordinating the learning of synaptic strength, synaptic responses, and multi-scale temporal memory formation, has demonstrated its effectiveness on end-to-end SNN training. This study is expected to greatly advance the learning effectiveness of SNN and thus broadly benefit smart and efficient big data applications.
Author Zhang, Qingxue
Stauffer, Jake
Author_xml – sequence: 1
  givenname: Jake
  surname: Stauffer
  fullname: Stauffer, Jake
  email: jamstauf@purdue.edu
  organization: Purdue University School of Engineering and Technology at Indianapolis, Indinapolis, IN, USA
– sequence: 2
  givenname: Qingxue
  orcidid: 0000-0001-7125-7928
  surname: Zhang
  fullname: Zhang, Qingxue
  email: qxzhang@purdue.edu
  organization: Purdue University School of Engineering and Technology at Indianapolis, Indinapolis, IN, USA
BookMark eNp9UD1PwzAQtVCRKIWZgcUSc9qzHSc-trQqH1IFQ4tgi0xiF7dpUpxU0H9PqlQMDCx393Tv3dO9c9Irq9IQcsVgyBjgaDEZcuB8KBjGoPCE9JmUcYAoox7pAzAVoAjhjJzX9QoAIg7YJ2_zrVubcTKf3tLD6MolfTI7rws6M9qXB5wUy8q75mNDX9tKxzpbf2mf0yTX20Y3rippZel8X7bQZXRqbbH7viCnVhe1uTz2AXm5my4mD8Hs-f5xksyCjCtsAimNVRZiiIyMYomW52FujdIsFBgqI94jbLcx07kEI1GJ2IJBzCBrOTwTA3LT3d366nNn6iZdVTtftpYpj7lAYCwMW9aoY2W-qmtvbLr1bqP9PmWQHuJLF5P0EF96jK9VyD-KzHXPNl674h_ddadzxphfF1SSoVDiB2cSfNI
CODEN ITCOB4
CitedBy_id crossref_primary_10_3390_s23125723
crossref_primary_10_1007_s00138_024_01582_8
crossref_primary_10_1007_s10548_025_01106_1
Cites_doi 10.1109/IJCNN.2019.8852380
10.1109/IJCNN.2010.5596372
10.1103/PhysRevE.59.4498
10.1145/3354265.3354275
10.3389/fnins.2013.00002
10.1002/adfm.201704455
10.1162/neco.2006.18.6.1318
10.1016/j.neunet.2018.12.002
10.24963/ijcai.2021/321
10.1371/journal.pone.0192684
10.5555/3015812.3015979
10.1097/MCO.0b013e328312c368
10.1109/DAC18074.2021.9586323
10.3389/fncom.2020.576841
10.1152/jn.00900.2002
10.1037/0735-7044.115.3.602
10.1109/ISCAS.2010.5536970
10.1038/383076a0
10.1002/aelm.201900060
10.7551/mitpress/11474.001.0001
10.1038/nn1506
10.3389/fnins.2016.00508
10.1016/j.pneurobio.2011.08.002
10.1038/78829
10.1109/JSTQE.2019.2911565
10.3389/fnins.2017.00324
10.1007/978-3-030-36718-3_15
10.1109/TNNLS.2017.2726060
10.1109/ICCE50685.2021.9427710
10.1109/APEIE.2016.7806372
10.1109/IJCNN.2015.7280696
10.1145/3203217.3203231
10.1016/j.neunet.2019.09.004
10.1109/EMBC46164.2021.9629874
10.1109/TKDE.2020.2981333
10.3389/fnins.2017.00682
10.24963/ijcai.2020/388
10.1038/381706a0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TC.2022.3197089
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 2716
ExternalDocumentID 10_1109_TC_2022_3197089
9851938
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  funderid: 10.13039/501100008982
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c289t-55ef8f0706e56759f2d4dfe8a143948e3b6907071ad50e59837f0e99c0c8a12c3
IEDL.DBID RIE
ISSN 0018-9340
IngestDate Mon Jun 30 02:24:48 EDT 2025
Wed Oct 01 00:45:30 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Wed Aug 27 02:18:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c289t-55ef8f0706e56759f2d4dfe8a143948e3b6907071ad50e59837f0e99c0c8a12c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7125-7928
PQID 2723901144
PQPubID 85452
PageCount 10
ParticipantIDs crossref_primary_10_1109_TC_2022_3197089
proquest_journals_2723901144
crossref_citationtrail_10_1109_TC_2022_3197089
ieee_primary_9851938
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref19
ref18
Zou (ref38)
Zhang (ref27) 2020
ref24
ref23
ref25
ref20
ref42
Shrestha (ref26) 2018
ref41
ref22
ref21
ref43
ref28
Canziani (ref6) 2016
ref29
ref8
Gerstner (ref33) 2001
ref7
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref32
  doi: 10.1109/IJCNN.2019.8852380
– ident: ref43
  doi: 10.1109/IJCNN.2010.5596372
– ident: ref16
  doi: 10.1103/PhysRevE.59.4498
– ident: ref28
  doi: 10.1145/3354265.3354275
– ident: ref11
  doi: 10.3389/fnins.2013.00002
– ident: ref18
  doi: 10.1002/adfm.201704455
– ident: ref34
  doi: 10.1162/neco.2006.18.6.1318
– ident: ref10
  doi: 10.1016/j.neunet.2018.12.002
– ident: ref22
  doi: 10.24963/ijcai.2021/321
– year: 2016,
  ident: ref6
  article-title: An analysis of deep neural network models for practical applications
– ident: ref36
  doi: 10.1371/journal.pone.0192684
– ident: ref5
  doi: 10.5555/3015812.3015979
– ident: ref7
  doi: 10.1097/MCO.0b013e328312c368
– ident: ref41
  doi: 10.1109/DAC18074.2021.9586323
– ident: ref2
  doi: 10.3389/fncom.2020.576841
– ident: ref14
  doi: 10.1152/jn.00900.2002
– ident: ref8
  doi: 10.1037/0735-7044.115.3.602
– ident: ref42
  doi: 10.1109/ISCAS.2010.5536970
– ident: ref17
  doi: 10.1038/383076a0
– ident: ref19
  doi: 10.1002/aelm.201900060
– ident: ref1
  doi: 10.7551/mitpress/11474.001.0001
– ident: ref30
  doi: 10.1038/nn1506
– ident: ref24
  doi: 10.3389/fnins.2016.00508
– ident: ref9
  doi: 10.1016/j.pneurobio.2011.08.002
– ident: ref15
  doi: 10.1038/78829
– ident: ref13
  doi: 10.1109/JSTQE.2019.2911565
– ident: ref29
  doi: 10.3389/fnins.2017.00324
– start-page: 469
  volume-title: Handbook of Biological Physics
  year: 2001
  ident: ref33
  article-title: A framework for spiking neuron models: The spike response model
– ident: ref23
  doi: 10.1007/978-3-030-36718-3_15
– year: 2018
  ident: ref26
  article-title: Slayer: Spike layer error reassignment in time
– ident: ref25
  doi: 10.1109/TNNLS.2017.2726060
– start-page: 1861
  volume-title: Proc. IEEE EMBS Annu. Conf.
  ident: ref38
  article-title: UbiEi-Edge: Human big data decoding using deep learning on edge
– ident: ref39
  doi: 10.1109/ICCE50685.2021.9427710
– ident: ref12
  doi: 10.1109/APEIE.2016.7806372
– ident: ref21
  doi: 10.1109/IJCNN.2015.7280696
– ident: ref40
  doi: 10.1145/3203217.3203231
– ident: ref3
  doi: 10.1016/j.neunet.2019.09.004
– year: 2020
  ident: ref27
  article-title: Spike-timing-dependent back propagation in deep spiking neural networks
– ident: ref37
  doi: 10.1109/EMBC46164.2021.9629874
– ident: ref4
  doi: 10.1109/TKDE.2020.2981333
– ident: ref20
  doi: 10.3389/fnins.2017.00682
– ident: ref31
  doi: 10.24963/ijcai.2020/388
– ident: ref35
  doi: 10.1038/381706a0
SSID ssj0006209
Score 2.4006207
Snippet Brain-inspired Spiking Neural Network (SNN) is opening new possibilities towards human-level intelligence, by leveraging its nature of spatiotemporal...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2707
SubjectTerms Adaptation
Algorithms
artificial intelligence
Back propagation
Back propagation networks
Backpropagation
Big Data
Brain modeling
Cognitive tasks
Deep learning
Effectiveness
Efflux
Heuristic algorithms
Machine learning
neural models
Neural networks
Neuromorphic computing
Neurons
Spatiotemporal phenomena
Spiking
Training
Title SpikeBASE: Spiking Neural Learning Algorithm With Backward Adaptation of Synaptic Efflux
URI https://ieeexplore.ieee.org/document/9851938
https://www.proquest.com/docview/2723901144
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ukx58i_VFDh48uHW773irpSKCXlqxt2U3mWixtkW3oP56Z3azRXyAlyUbkhCYzGS-JPMNwHHQcjN2ExyDaJxAx2QHA9KrKCTDEOWJVppvdG9uo6u74HoQDhbgdB4Lg4jl4zNscrG8y9cTNeOjsjOZsL-RLMJinERVrNbc6kb1c44WKbAfuJbGp-XKs36HcKDnETyVscv53L_sQGVKlR92uNxcLtfgpp5W9abkqTkr8qb6-MbY-N95r8Oq9TJFu1oWG7CA401YqzM4CKvQm7DyhY5wCwa96fAJL9q97rngIlUKJu-gkSwN64Nojx4mL8Pi8Vnc01dc8PEfLTLR1tm0utUXEyN672P6HSrRNWY0e9uGu8tuv3Pl2MwLjiIAVjhhiCYxZA0iDAlRSOPpQBtMshYH0ibo5wyqyTvJdOhiKAnlGhelVK6iNp7yd2BpPBnjLojcJ2GoyMSZnwfk3GUy0BnmJpSKqeNMA5q1NFJlack5O8YoLeGJK9N-J2XxpVZ8DTiZd5hWjBx_N91iYcybWTk04KAWd2o19jX1Yo-Pfwhf7v3eax-WeewqDvEAloqXGR6SQ1LkR-VK_ASLh9s5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6N7QF4YGMDUTaGH3jggXRpYqfx3rqqU4F1L-1E36LEPo9qpa1GKsH--t0lTjXxQ9pL5ER2bOl85_ts33cAH2QnzNlNCByiC6Ttkh2UpFeJIsOQFKk1lk90R5fJ8Ep-marpFnzaxMIgYnX5DNtcrM7y7dKseavsRKfsb6RPYEdJKVUdrbWxu0lzoaNDKhzL0BP5dEJ9MukTEowiAqi6G3JG9wdrUJVU5S9LXC0v57swagZW3yq5aa_Lom3u_uBsfOzI9-CF9zNFr54YL2ELF_uw2-RwEF6l9-H5A0LCA5iOV7MbPOuNB6eCi_RRMH0H_ckTsV6L3vx6eTsrv_8Q3-gpzngDkKaZ6Nl8VZ_ri6UT498Lep0ZMXBuvv71Cq7OB5P-MPC5FwJDEKwMlEKXOrIHCSrCFNpFVlqHad7hUNoU44JhNfknuVUhKk0414WotQkN1YlM_Bq2F8sFvgFRxCQMk7huHheS3LtcS5tj4ZQ2TB7nWtBupJEZT0zO-THmWQVQQp1N-hmLL_Pia8HHTYNVzcnx_6oHLIxNNS-HFhw14s68zv7Mom7EG0CEMN_-u9V7eDqcjC6yi8-XXw_hGfdTRyUewXZ5u8Z35J6UxXE1K-8BMGTehg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpikeBASE%3A+Spiking+Neural+Learning+Algorithm+With+Backward+Adaptation+of+Synaptic+Efflux&rft.jtitle=IEEE+transactions+on+computers&rft.au=Stauffer%2C+Jake&rft.au=Zhang%2C+Qingxue&rft.date=2022-11-01&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=71&rft.issue=11&rft.spage=2707&rft.epage=2716&rft_id=info:doi/10.1109%2FTC.2022.3197089&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TC_2022_3197089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon