Numerical analysis of miter bend with spiral phase mirror

To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate that vortex beams can be successfully excited by employing a spiral phase mirror that appropriately accounts for the phase difference between th...

Full description

Saved in:
Bibliographic Details
Published inJournal of Advanced Simulation in Science and Engineering Vol. 12; no. 2; pp. 329 - 339
Main Authors Fujita, Yoshihisa, Goto, Yuki, Nakamura, Hiroaki, Kubo, Shin
Format Journal Article
LanguageEnglish
Published Japan Society for Simulation Technology 01.01.2025
Subjects
Online AccessGet full text
ISSN2188-5303
2188-5303
DOI10.15748/jasse.12.329

Cover

Abstract To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate that vortex beams can be successfully excited by employing a spiral phase mirror that appropriately accounts for the phase difference between the input and output modes. The simulations also reveal the generation of higher-order modes caused by diffraction inherent to the miter bend structure and unintended reflections arising from the singularity at the optical axis of the spiral phase mirror. Additionally, we propose a method to estimate the topological charge, which corresponds to the vorticity, from real-valued data. The simulation results confirm that vortex beams are successfully excited as the dominant mode.
AbstractList To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate that vortex beams can be successfully excited by employing a spiral phase mirror that appropriately accounts for the phase difference between the input and output modes. The simulations also reveal the generation of higher-order modes caused by diffraction inherent to the miter bend structure and unintended reflections arising from the singularity at the optical axis of the spiral phase mirror. Additionally, we propose a method to estimate the topological charge, which corresponds to the vorticity, from real-valued data. The simulation results confirm that vortex beams are successfully excited as the dominant mode.
Author Yoshihisa Fujita
Yuki Goto
Shin Kubo
Hiroaki Nakamura
Author_xml – sequence: 1
  givenname: Yoshihisa
  surname: Fujita
  fullname: Fujita, Yoshihisa
– sequence: 2
  givenname: Yuki
  surname: Goto
  fullname: Goto, Yuki
– sequence: 3
  givenname: Hiroaki
  surname: Nakamura
  fullname: Nakamura, Hiroaki
– sequence: 4
  givenname: Shin
  surname: Kubo
  fullname: Kubo, Shin
BookMark eNpNj01LAzEQQINUsNYeve8f2DWZdJvkJFL8gqIXPYdpMrEp292SrEj_vUtbqqcZeG8G3jUbtV1LjN0KXolazfTdBnOmSkAlwVywMQity1pyOfq3X7FpzhvOuZR8DrIeM_P2vaUUHTYFttjsc8xFF4pt7CkVK2p98RP7dZF3MQ3Kbo2ZBphSl27YZcAm0_Q0J-zz6fFj8VIu359fFw_L0oE2fQkzqVwNIqxWwFHNvVB87r1XBmpvjArBoCAUM-30QDUXIYAibUAK4zXJCSuPf13qck4U7C7FLaa9Fdwe0u0h3QqwQ_rg3x_9Te7xi842pj66hv5kOF2ciVtjstTKX2yrZas
Cites_doi 10.1088/0029-5515/56/4/046005
10.1364/OE.24.016390
10.1007/s10762-019-00614-z
10.1063/5.0077893
10.7567/JJAP.55.01AH06
10.1109/8.477535
10.1109/TAP.2002.804571
10.1063/5.0015109
10.1088/1367-2630/16/5/053020
10.1585/pfr.5.S1029
10.1098/rspa.1974.0012
10.1109/TPS.2013.2288493
ContentType Journal Article
Copyright 2025 Japan Society for Simulation Technology
Copyright_xml – notice: 2025 Japan Society for Simulation Technology
DBID AAYXX
CITATION
DOI 10.15748/jasse.12.329
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2188-5303
EndPage 339
ExternalDocumentID 10_15748_jasse_12_329
article_jasse_12_2_12_329_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
AAYXX
CITATION
ID FETCH-LOGICAL-c289t-2437c521fbb20a76d1706ddd7925d997ff9a1ea148c876d801ff27e892319d8e3
ISSN 2188-5303
IngestDate Wed Oct 01 05:49:23 EDT 2025
Wed Sep 03 06:30:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c289t-2437c521fbb20a76d1706ddd7925d997ff9a1ea148c876d801ff27e892319d8e3
OpenAccessLink https://www.jstage.jst.go.jp/article/jasse/12/2/12_329/_article/-char/en
PageCount 11
ParticipantIDs crossref_primary_10_15748_jasse_12_329
jstage_primary_article_jasse_12_2_12_329_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Advanced Simulation in Science and Engineering
PublicationTitleAlternate JASSE
PublicationYear 2025
Publisher Japan Society for Simulation Technology
Publisher_xml – name: Japan Society for Simulation Technology
References [2] T. Shimozuma, H. Idei, M. A. Shapiro, R. J. Temkin, S. Kubo, H. Igami, Y. Yoshimura, H. Takahashi, S. Ito, S. Kobayashi, Y. Mizuno, Y. Takita, T. Mutoh: Mode-content analysis and field reconstruction of propagating waves in corrugated waveguides of an ECH system, Plasma Fusion Res., 5 (2010), S1029.
[4] J. F. Nye, M. V. Berry: Dislocations in wave trains, Proc. R. Soc. Lond. A, 336:1605 (1974), 165–190.
[9] J. P. Berenger: Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas Propag., 44:1 (1996), 110–117.
[12] K. Yamane, Z. Yang, Y. Toda, R. Morita: Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction, New J. Phys., 16 (2014), 053020.
[3] T. I. Tsujimura, S. Kubo: Propagation properties of electron cyclotron waves with helical wavefronts in magnetized plasma, Phys. Plasmas, 28 (2021), 012502.
[5] G. Vallone, A. Sponselli, V. D’Ambrosio, L. Marrucci, F. Sciarrino, P. Villoresi: Birth and evolution of an optical vortex, Opt. Express, 24:15 (2016), 16390–16395.
[6] Y. Goto, T. I. Tsujimura, S. Kubo: Diffraction patterns of the millimeter wave with a helical wavefront by a triangular aperture, J. Infrared Milli. Terahertz Waves, 40 (2019), 943–951.
[11] E. J. Kowalski, M. A. Shapiro, R. J. Temkin: Simple correctors for elimination of high-order modes in corrugated waveguide transmission lines, IEEE Trans. Plasma Sci., 42:1 (2014), 29–37.
[1] Y. Yoshimura, H. Kasahara, M. Tokitani, R. Sakamoto, Y. Ueda, S. Ito, K. Okada, S. Kubo, T. Shimozuma, H. Igami, H. Takahashi, T. I. Tsujimura, R. Makino, S. Kobayashi, Y. Mizuno, T. Akiyama, N. Ashikawa, S. Masuzaki, G. Motojima, M. Shoji, C. Suzuki, H. Tanaka, K. Tanaka, T. Tokuzawa, H. Tsuchiya, I. Yamada, Y. Goto, H. Yamada, T. Mutoh, A. Komori, Y. Takeiri and the LHD Experiment Group: Progress of long pulse discharges by ECH in LHD, Nucl. Fusion, 56 (2016), 046005.
[7] T. I. Tsujimura, Y. Goto, K. Okada, S. Kobayashi, S. Kubo: Development of off-axis spiral phase mirrors for generating optical vortices in a range of millimeter waves, Rev. Sci. Instrum., 93 (2022), 043507.
[10] V. Anantha, A. Taflove: Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML, IEEE Trans. Antennas Propag., 50:10 (2002), 1337–1349.
[8] Y. Fujita, S. Ikuno, S. Kubo, H. Nakamura: Finite-difference time-domain analysis of electromagnetic wave propagation in corrugated waveguide: Effect of miter bend/polarizer miter bend, Jpn. J. Appl. Phys., 55 (2016), 01AH06.
11
1
12
2
3
4
5
6
7
8
9
10
References_xml – reference: [2] T. Shimozuma, H. Idei, M. A. Shapiro, R. J. Temkin, S. Kubo, H. Igami, Y. Yoshimura, H. Takahashi, S. Ito, S. Kobayashi, Y. Mizuno, Y. Takita, T. Mutoh: Mode-content analysis and field reconstruction of propagating waves in corrugated waveguides of an ECH system, Plasma Fusion Res., 5 (2010), S1029.
– reference: [6] Y. Goto, T. I. Tsujimura, S. Kubo: Diffraction patterns of the millimeter wave with a helical wavefront by a triangular aperture, J. Infrared Milli. Terahertz Waves, 40 (2019), 943–951.
– reference: [9] J. P. Berenger: Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas Propag., 44:1 (1996), 110–117.
– reference: [3] T. I. Tsujimura, S. Kubo: Propagation properties of electron cyclotron waves with helical wavefronts in magnetized plasma, Phys. Plasmas, 28 (2021), 012502.
– reference: [4] J. F. Nye, M. V. Berry: Dislocations in wave trains, Proc. R. Soc. Lond. A, 336:1605 (1974), 165–190.
– reference: [12] K. Yamane, Z. Yang, Y. Toda, R. Morita: Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction, New J. Phys., 16 (2014), 053020.
– reference: [11] E. J. Kowalski, M. A. Shapiro, R. J. Temkin: Simple correctors for elimination of high-order modes in corrugated waveguide transmission lines, IEEE Trans. Plasma Sci., 42:1 (2014), 29–37.
– reference: [7] T. I. Tsujimura, Y. Goto, K. Okada, S. Kobayashi, S. Kubo: Development of off-axis spiral phase mirrors for generating optical vortices in a range of millimeter waves, Rev. Sci. Instrum., 93 (2022), 043507.
– reference: [8] Y. Fujita, S. Ikuno, S. Kubo, H. Nakamura: Finite-difference time-domain analysis of electromagnetic wave propagation in corrugated waveguide: Effect of miter bend/polarizer miter bend, Jpn. J. Appl. Phys., 55 (2016), 01AH06.
– reference: [1] Y. Yoshimura, H. Kasahara, M. Tokitani, R. Sakamoto, Y. Ueda, S. Ito, K. Okada, S. Kubo, T. Shimozuma, H. Igami, H. Takahashi, T. I. Tsujimura, R. Makino, S. Kobayashi, Y. Mizuno, T. Akiyama, N. Ashikawa, S. Masuzaki, G. Motojima, M. Shoji, C. Suzuki, H. Tanaka, K. Tanaka, T. Tokuzawa, H. Tsuchiya, I. Yamada, Y. Goto, H. Yamada, T. Mutoh, A. Komori, Y. Takeiri and the LHD Experiment Group: Progress of long pulse discharges by ECH in LHD, Nucl. Fusion, 56 (2016), 046005.
– reference: [10] V. Anantha, A. Taflove: Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML, IEEE Trans. Antennas Propag., 50:10 (2002), 1337–1349.
– reference: [5] G. Vallone, A. Sponselli, V. D’Ambrosio, L. Marrucci, F. Sciarrino, P. Villoresi: Birth and evolution of an optical vortex, Opt. Express, 24:15 (2016), 16390–16395.
– ident: 1
  doi: 10.1088/0029-5515/56/4/046005
– ident: 5
  doi: 10.1364/OE.24.016390
– ident: 6
  doi: 10.1007/s10762-019-00614-z
– ident: 7
  doi: 10.1063/5.0077893
– ident: 8
  doi: 10.7567/JJAP.55.01AH06
– ident: 9
  doi: 10.1109/8.477535
– ident: 10
  doi: 10.1109/TAP.2002.804571
– ident: 3
  doi: 10.1063/5.0015109
– ident: 12
  doi: 10.1088/1367-2630/16/5/053020
– ident: 2
  doi: 10.1585/pfr.5.S1029
– ident: 4
  doi: 10.1098/rspa.1974.0012
– ident: 11
  doi: 10.1109/TPS.2013.2288493
SSID ssj0003306235
Score 2.2822015
Snippet To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate...
SourceID crossref
jstage
SourceType Index Database
Publisher
StartPage 329
SubjectTerms Azimuthal decomposition
Miter bend
Optical vortex
Topological charge
Title Numerical analysis of miter bend with spiral phase mirror
URI https://www.jstage.jst.go.jp/article/jasse/12/2/12_329/_article/-char/en
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Advanced Simulation in Science and Engineering, 2025, Vol.12(2), pp.329-339
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2188-5303
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003306235
  issn: 2188-5303
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYW2gOXqlWpCqWVDxWXVdpdO07iY1WVrkAgIUCip8iJbW14JCibXPgX_GNmnMdmeUiUi7Vy7HXW8-28PDMm5LsfqBDFhKdTOUHXTeQpqX1PikmKeZ0icTfPHR4FszN__1ycj0Z3g6ilukp-pLdP5pW8hqrQB3TFLNn_oGz_pdABn4G-0AKFoX0RjY_q5rwF0_2XtUUwY6kcJyZvA8vdWfrV-GYOAgselmVRPqeSdgEBJ9l1e60X-kO6_z_62Af1C3vnzBzGHNRJseQgi3k2zxZqvFdfZFXP-GdZWYDCChz9Ul3XZd__r4bOv0VVDF0QTDxwQeyDWM9XokwHb_nghMA41gZ6ReQJPuErfJgN8MYGTJW3PpFGPvOm-NEj1i9CP3J3DiwWBj28_ayVatotrWI3LJ6ymGEDY-PuCWa7AbjWyBsWBgFeinFwHPVuOw4mFuOirdaKa_4crrii3by9AAW_Cw50-srpe_KupSr91az3gYxM_pHIHjG0QwwtLHWIoYgYioihDWKoQwxtELNJzvb-nP6eee3lGV4KNnTlYaHJFHQzmyRsosJAY50krXUomdBShtZKNTUKrOEUBKIGRcVaFpoIFX6pI8M_kfW8yM1nQhOYFADn9y06D5QGI9gypbiwhis15Vtkt_vR8U1TIyVG2xJ3Z7nRsDtbJGq2pB_2YnJsv37qF7KxBO0OWa_K2nwFTbJKvjna3gOl9IG_
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+miter+bend+with+spiral+phase+mirror&rft.jtitle=Journal+of+Advanced+Simulation+in+Science+and+Engineering&rft.au=Shin+Kubo&rft.au=Yoshihisa+Fujita&rft.au=Hiroaki+Nakamura&rft.au=Yuki+Goto&rft.date=2025-01-01&rft.pub=Japan+Society+for+Simulation+Technology&rft.eissn=2188-5303&rft.volume=12&rft.issue=2&rft.spage=329&rft.epage=339&rft_id=info:doi/10.15748%2Fjasse.12.329&rft.externalDocID=article_jasse_12_2_12_329_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2188-5303&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2188-5303&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2188-5303&client=summon