Numerical analysis of miter bend with spiral phase mirror
To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate that vortex beams can be successfully excited by employing a spiral phase mirror that appropriately accounts for the phase difference between th...
Saved in:
Published in | Journal of Advanced Simulation in Science and Engineering Vol. 12; no. 2; pp. 329 - 339 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japan Society for Simulation Technology
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2188-5303 2188-5303 |
DOI | 10.15748/jasse.12.329 |
Cover
Abstract | To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate that vortex beams can be successfully excited by employing a spiral phase mirror that appropriately accounts for the phase difference between the input and output modes. The simulations also reveal the generation of higher-order modes caused by diffraction inherent to the miter bend structure and unintended reflections arising from the singularity at the optical axis of the spiral phase mirror. Additionally, we propose a method to estimate the topological charge, which corresponds to the vorticity, from real-valued data. The simulation results confirm that vortex beams are successfully excited as the dominant mode. |
---|---|
AbstractList | To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate that vortex beams can be successfully excited by employing a spiral phase mirror that appropriately accounts for the phase difference between the input and output modes. The simulations also reveal the generation of higher-order modes caused by diffraction inherent to the miter bend structure and unintended reflections arising from the singularity at the optical axis of the spiral phase mirror. Additionally, we propose a method to estimate the topological charge, which corresponds to the vorticity, from real-valued data. The simulation results confirm that vortex beams are successfully excited as the dominant mode. |
Author | Yoshihisa Fujita Yuki Goto Shin Kubo Hiroaki Nakamura |
Author_xml | – sequence: 1 givenname: Yoshihisa surname: Fujita fullname: Fujita, Yoshihisa – sequence: 2 givenname: Yuki surname: Goto fullname: Goto, Yuki – sequence: 3 givenname: Hiroaki surname: Nakamura fullname: Nakamura, Hiroaki – sequence: 4 givenname: Shin surname: Kubo fullname: Kubo, Shin |
BookMark | eNpNj01LAzEQQINUsNYeve8f2DWZdJvkJFL8gqIXPYdpMrEp292SrEj_vUtbqqcZeG8G3jUbtV1LjN0KXolazfTdBnOmSkAlwVywMQity1pyOfq3X7FpzhvOuZR8DrIeM_P2vaUUHTYFttjsc8xFF4pt7CkVK2p98RP7dZF3MQ3Kbo2ZBphSl27YZcAm0_Q0J-zz6fFj8VIu359fFw_L0oE2fQkzqVwNIqxWwFHNvVB87r1XBmpvjArBoCAUM-30QDUXIYAibUAK4zXJCSuPf13qck4U7C7FLaa9Fdwe0u0h3QqwQ_rg3x_9Te7xi842pj66hv5kOF2ciVtjstTKX2yrZas |
Cites_doi | 10.1088/0029-5515/56/4/046005 10.1364/OE.24.016390 10.1007/s10762-019-00614-z 10.1063/5.0077893 10.7567/JJAP.55.01AH06 10.1109/8.477535 10.1109/TAP.2002.804571 10.1063/5.0015109 10.1088/1367-2630/16/5/053020 10.1585/pfr.5.S1029 10.1098/rspa.1974.0012 10.1109/TPS.2013.2288493 |
ContentType | Journal Article |
Copyright | 2025 Japan Society for Simulation Technology |
Copyright_xml | – notice: 2025 Japan Society for Simulation Technology |
DBID | AAYXX CITATION |
DOI | 10.15748/jasse.12.329 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2188-5303 |
EndPage | 339 |
ExternalDocumentID | 10_15748_jasse_12_329 article_jasse_12_2_12_329_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT AAYXX CITATION |
ID | FETCH-LOGICAL-c289t-2437c521fbb20a76d1706ddd7925d997ff9a1ea148c876d801ff27e892319d8e3 |
ISSN | 2188-5303 |
IngestDate | Wed Oct 01 05:49:23 EDT 2025 Wed Sep 03 06:30:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c289t-2437c521fbb20a76d1706ddd7925d997ff9a1ea148c876d801ff27e892319d8e3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jasse/12/2/12_329/_article/-char/en |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_15748_jasse_12_329 jstage_primary_article_jasse_12_2_12_329_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Advanced Simulation in Science and Engineering |
PublicationTitleAlternate | JASSE |
PublicationYear | 2025 |
Publisher | Japan Society for Simulation Technology |
Publisher_xml | – name: Japan Society for Simulation Technology |
References | [2] T. Shimozuma, H. Idei, M. A. Shapiro, R. J. Temkin, S. Kubo, H. Igami, Y. Yoshimura, H. Takahashi, S. Ito, S. Kobayashi, Y. Mizuno, Y. Takita, T. Mutoh: Mode-content analysis and field reconstruction of propagating waves in corrugated waveguides of an ECH system, Plasma Fusion Res., 5 (2010), S1029. [4] J. F. Nye, M. V. Berry: Dislocations in wave trains, Proc. R. Soc. Lond. A, 336:1605 (1974), 165–190. [9] J. P. Berenger: Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas Propag., 44:1 (1996), 110–117. [12] K. Yamane, Z. Yang, Y. Toda, R. Morita: Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction, New J. Phys., 16 (2014), 053020. [3] T. I. Tsujimura, S. Kubo: Propagation properties of electron cyclotron waves with helical wavefronts in magnetized plasma, Phys. Plasmas, 28 (2021), 012502. [5] G. Vallone, A. Sponselli, V. D’Ambrosio, L. Marrucci, F. Sciarrino, P. Villoresi: Birth and evolution of an optical vortex, Opt. Express, 24:15 (2016), 16390–16395. [6] Y. Goto, T. I. Tsujimura, S. Kubo: Diffraction patterns of the millimeter wave with a helical wavefront by a triangular aperture, J. Infrared Milli. Terahertz Waves, 40 (2019), 943–951. [11] E. J. Kowalski, M. A. Shapiro, R. J. Temkin: Simple correctors for elimination of high-order modes in corrugated waveguide transmission lines, IEEE Trans. Plasma Sci., 42:1 (2014), 29–37. [1] Y. Yoshimura, H. Kasahara, M. Tokitani, R. Sakamoto, Y. Ueda, S. Ito, K. Okada, S. Kubo, T. Shimozuma, H. Igami, H. Takahashi, T. I. Tsujimura, R. Makino, S. Kobayashi, Y. Mizuno, T. Akiyama, N. Ashikawa, S. Masuzaki, G. Motojima, M. Shoji, C. Suzuki, H. Tanaka, K. Tanaka, T. Tokuzawa, H. Tsuchiya, I. Yamada, Y. Goto, H. Yamada, T. Mutoh, A. Komori, Y. Takeiri and the LHD Experiment Group: Progress of long pulse discharges by ECH in LHD, Nucl. Fusion, 56 (2016), 046005. [7] T. I. Tsujimura, Y. Goto, K. Okada, S. Kobayashi, S. Kubo: Development of off-axis spiral phase mirrors for generating optical vortices in a range of millimeter waves, Rev. Sci. Instrum., 93 (2022), 043507. [10] V. Anantha, A. Taflove: Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML, IEEE Trans. Antennas Propag., 50:10 (2002), 1337–1349. [8] Y. Fujita, S. Ikuno, S. Kubo, H. Nakamura: Finite-difference time-domain analysis of electromagnetic wave propagation in corrugated waveguide: Effect of miter bend/polarizer miter bend, Jpn. J. Appl. Phys., 55 (2016), 01AH06. 11 1 12 2 3 4 5 6 7 8 9 10 |
References_xml | – reference: [2] T. Shimozuma, H. Idei, M. A. Shapiro, R. J. Temkin, S. Kubo, H. Igami, Y. Yoshimura, H. Takahashi, S. Ito, S. Kobayashi, Y. Mizuno, Y. Takita, T. Mutoh: Mode-content analysis and field reconstruction of propagating waves in corrugated waveguides of an ECH system, Plasma Fusion Res., 5 (2010), S1029. – reference: [6] Y. Goto, T. I. Tsujimura, S. Kubo: Diffraction patterns of the millimeter wave with a helical wavefront by a triangular aperture, J. Infrared Milli. Terahertz Waves, 40 (2019), 943–951. – reference: [9] J. P. Berenger: Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas Propag., 44:1 (1996), 110–117. – reference: [3] T. I. Tsujimura, S. Kubo: Propagation properties of electron cyclotron waves with helical wavefronts in magnetized plasma, Phys. Plasmas, 28 (2021), 012502. – reference: [4] J. F. Nye, M. V. Berry: Dislocations in wave trains, Proc. R. Soc. Lond. A, 336:1605 (1974), 165–190. – reference: [12] K. Yamane, Z. Yang, Y. Toda, R. Morita: Frequency-resolved measurement of the orbital angular momentum spectrum of femtosecond ultra-broadband optical-vortex pulses based on field reconstruction, New J. Phys., 16 (2014), 053020. – reference: [11] E. J. Kowalski, M. A. Shapiro, R. J. Temkin: Simple correctors for elimination of high-order modes in corrugated waveguide transmission lines, IEEE Trans. Plasma Sci., 42:1 (2014), 29–37. – reference: [7] T. I. Tsujimura, Y. Goto, K. Okada, S. Kobayashi, S. Kubo: Development of off-axis spiral phase mirrors for generating optical vortices in a range of millimeter waves, Rev. Sci. Instrum., 93 (2022), 043507. – reference: [8] Y. Fujita, S. Ikuno, S. Kubo, H. Nakamura: Finite-difference time-domain analysis of electromagnetic wave propagation in corrugated waveguide: Effect of miter bend/polarizer miter bend, Jpn. J. Appl. Phys., 55 (2016), 01AH06. – reference: [1] Y. Yoshimura, H. Kasahara, M. Tokitani, R. Sakamoto, Y. Ueda, S. Ito, K. Okada, S. Kubo, T. Shimozuma, H. Igami, H. Takahashi, T. I. Tsujimura, R. Makino, S. Kobayashi, Y. Mizuno, T. Akiyama, N. Ashikawa, S. Masuzaki, G. Motojima, M. Shoji, C. Suzuki, H. Tanaka, K. Tanaka, T. Tokuzawa, H. Tsuchiya, I. Yamada, Y. Goto, H. Yamada, T. Mutoh, A. Komori, Y. Takeiri and the LHD Experiment Group: Progress of long pulse discharges by ECH in LHD, Nucl. Fusion, 56 (2016), 046005. – reference: [10] V. Anantha, A. Taflove: Efficient modeling of infinite scatterers using a generalized total-field/scattered-field FDTD boundary partially embedded within PML, IEEE Trans. Antennas Propag., 50:10 (2002), 1337–1349. – reference: [5] G. Vallone, A. Sponselli, V. D’Ambrosio, L. Marrucci, F. Sciarrino, P. Villoresi: Birth and evolution of an optical vortex, Opt. Express, 24:15 (2016), 16390–16395. – ident: 1 doi: 10.1088/0029-5515/56/4/046005 – ident: 5 doi: 10.1364/OE.24.016390 – ident: 6 doi: 10.1007/s10762-019-00614-z – ident: 7 doi: 10.1063/5.0077893 – ident: 8 doi: 10.7567/JJAP.55.01AH06 – ident: 9 doi: 10.1109/8.477535 – ident: 10 doi: 10.1109/TAP.2002.804571 – ident: 3 doi: 10.1063/5.0015109 – ident: 12 doi: 10.1088/1367-2630/16/5/053020 – ident: 2 doi: 10.1585/pfr.5.S1029 – ident: 4 doi: 10.1098/rspa.1974.0012 – ident: 11 doi: 10.1109/TPS.2013.2288493 |
SSID | ssj0003306235 |
Score | 2.2822015 |
Snippet | To excite optical vortices using high-power millimeter waves, we use a miter bend with a spiral phase mirror. Through numerical simulations, we demonstrate... |
SourceID | crossref jstage |
SourceType | Index Database Publisher |
StartPage | 329 |
SubjectTerms | Azimuthal decomposition Miter bend Optical vortex Topological charge |
Title | Numerical analysis of miter bend with spiral phase mirror |
URI | https://www.jstage.jst.go.jp/article/jasse/12/2/12_329/_article/-char/en |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Advanced Simulation in Science and Engineering, 2025, Vol.12(2), pp.329-339 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2188-5303 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003306235 issn: 2188-5303 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYW2gOXqlWpCqWVDxWXVdpdO07iY1WVrkAgIUCip8iJbW14JCibXPgX_GNmnMdmeUiUi7Vy7HXW8-28PDMm5LsfqBDFhKdTOUHXTeQpqX1PikmKeZ0icTfPHR4FszN__1ycj0Z3g6ilukp-pLdP5pW8hqrQB3TFLNn_oGz_pdABn4G-0AKFoX0RjY_q5rwF0_2XtUUwY6kcJyZvA8vdWfrV-GYOAgselmVRPqeSdgEBJ9l1e60X-kO6_z_62Af1C3vnzBzGHNRJseQgi3k2zxZqvFdfZFXP-GdZWYDCChz9Ul3XZd__r4bOv0VVDF0QTDxwQeyDWM9XokwHb_nghMA41gZ6ReQJPuErfJgN8MYGTJW3PpFGPvOm-NEj1i9CP3J3DiwWBj28_ayVatotrWI3LJ6ymGEDY-PuCWa7AbjWyBsWBgFeinFwHPVuOw4mFuOirdaKa_4crrii3by9AAW_Cw50-srpe_KupSr91az3gYxM_pHIHjG0QwwtLHWIoYgYioihDWKoQwxtELNJzvb-nP6eee3lGV4KNnTlYaHJFHQzmyRsosJAY50krXUomdBShtZKNTUKrOEUBKIGRcVaFpoIFX6pI8M_kfW8yM1nQhOYFADn9y06D5QGI9gypbiwhis15Vtkt_vR8U1TIyVG2xJ3Z7nRsDtbJGq2pB_2YnJsv37qF7KxBO0OWa_K2nwFTbJKvjna3gOl9IG_ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+analysis+of+miter+bend+with+spiral+phase+mirror&rft.jtitle=Journal+of+Advanced+Simulation+in+Science+and+Engineering&rft.au=Shin+Kubo&rft.au=Yoshihisa+Fujita&rft.au=Hiroaki+Nakamura&rft.au=Yuki+Goto&rft.date=2025-01-01&rft.pub=Japan+Society+for+Simulation+Technology&rft.eissn=2188-5303&rft.volume=12&rft.issue=2&rft.spage=329&rft.epage=339&rft_id=info:doi/10.15748%2Fjasse.12.329&rft.externalDocID=article_jasse_12_2_12_329_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2188-5303&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2188-5303&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2188-5303&client=summon |