Realization of Deutsch–Jozsa Algorithm in Rydberg Atoms by Composite Nonadiabatic Holonomic Quantum Computation with Strong Robustness Against Systematic Errors
Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC)...
Saved in:
| Published in | Advanced quantum technologies (Online) Vol. 4; no. 11 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2511-9044 2511-9044 |
| DOI | 10.1002/qute.202100093 |
Cover
| Abstract | Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented. Taking advantages of composite loops and holonomic features to resist systematic errors, the scheme of composite NHQC works more robustly compared with the standard dynamic counterparts. By exemplifying the DJ algorithm implementation, the performance of single‐loop NHQC‐, composite NHQC‐, and the dynamic counterpart‐based processes are compared both analytically and numerically, indicating the best robustness of composite scheme to systematic errors. In addition, the combination of composite NHQC and quantum algorithm also provides an alternative pathway for the realization of robust quantum algorithm in the future.
A scheme to implement the Deutsch–Jozsa algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented, which works more robustly to the systematic errors compared with the schemes of its standard dynamic counterpart and single‐loop NHQC, providing an alternative pathway for the realization of robust quantum algorithm. |
|---|---|
| AbstractList | Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented. Taking advantages of composite loops and holonomic features to resist systematic errors, the scheme of composite NHQC works more robustly compared with the standard dynamic counterparts. By exemplifying the DJ algorithm implementation, the performance of single‐loop NHQC‐, composite NHQC‐, and the dynamic counterpart‐based processes are compared both analytically and numerically, indicating the best robustness of composite scheme to systematic errors. In addition, the combination of composite NHQC and quantum algorithm also provides an alternative pathway for the realization of robust quantum algorithm in the future.
A scheme to implement the Deutsch–Jozsa algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented, which works more robustly to the systematic errors compared with the schemes of its standard dynamic counterpart and single‐loop NHQC, providing an alternative pathway for the realization of robust quantum algorithm. Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented. Taking advantages of composite loops and holonomic features to resist systematic errors, the scheme of composite NHQC works more robustly compared with the standard dynamic counterparts. By exemplifying the DJ algorithm implementation, the performance of single‐loop NHQC‐, composite NHQC‐, and the dynamic counterpart‐based processes are compared both analytically and numerically, indicating the best robustness of composite scheme to systematic errors. In addition, the combination of composite NHQC and quantum algorithm also provides an alternative pathway for the realization of robust quantum algorithm in the future. |
| Author | Liu, Bing‐Bing Feng, Mang Yan, Lei‐Lei Zhang, Shou Su, Shi‐Lei Guo, Fu‐Qiang |
| Author_xml | – sequence: 1 givenname: Bing‐Bing surname: Liu fullname: Liu, Bing‐Bing organization: Zhengzhou University – sequence: 2 givenname: Fu‐Qiang surname: Guo fullname: Guo, Fu‐Qiang organization: Zhengzhou University – sequence: 3 givenname: Lei‐Lei surname: Yan fullname: Yan, Lei‐Lei email: llyan@zzu.edu.cn organization: Zhengzhou University – sequence: 4 givenname: Shou surname: Zhang fullname: Zhang, Shou organization: Yanbian University – sequence: 5 givenname: Mang surname: Feng fullname: Feng, Mang email: mangfeng@wipm.ac.cn organization: Chinese Academy of Sciences – sequence: 6 givenname: Shi‐Lei orcidid: 0000-0002-2153-5827 surname: Su fullname: Su, Shi‐Lei email: slsu@zzu.edu.cn organization: Zhengzhou University |
| BookMark | eNqFkEtOwzAQhi1UJErplrUv0BLHTdIsq1IoqAL1tY4mjpMaJXaxHVXpijtwA47GSUgbBAgJsZrn94_mP0ctqSRH6JI4feI47tVzaXnfddy6cEJ6gtquR0gvdAaD1o_8DHWNeapXXEroIKBt9LbgkIs9WKEkVim-5qU1bPP-8nqv9gbwKM-UFnZTYCHxokpirjM8sqowOK7wWBVbZYTl-EFJSATEtRDDU5UrqYo6m5cgbVkcF0vbXNnVcnhptZIZXqi4NFZyY_AoAyGNxcvKWF4cdSZaK20u0GkKueHdz9hB65vJajztzR5v78ajWY-5w5D2hm6ahizh4Pk-BRIA97zQS2hKfebEdS9gkFJSzwIvjkMIAiDgDgPmezQgCaEd1G90mVbGaJ5GWy0K0FVEnOhgcnQwOfoyuQYGvwAmmh-tBpH_jYUNthM5r_45Es3Xq8k3-wEw9ZmZ |
| CitedBy_id | crossref_primary_10_1002_qute_202400080 crossref_primary_10_1002_andp_202200360 crossref_primary_10_1103_PhysRevA_109_042615 crossref_primary_10_1103_PhysRevApplied_20_034063 crossref_primary_10_1007_s11467_023_1322_2 crossref_primary_10_1007_s10773_024_05746_0 crossref_primary_10_1088_1612_202X_aca759 |
| Cites_doi | 10.1103/PhysRevA.89.030301 10.1103/PhysRevLett.100.170504 10.1038/414883a 10.1007/s11128-015-0954-8 10.1103/PhysRevA.100.062312 10.1103/PhysRevA.98.032306 10.1103/PhysRevA.96.062315 10.1103/PhysRevLett.85.2208 10.1103/PhysRevA.84.042335 10.1103/PhysRevLett.91.187902 10.1103/PhysRevA.93.032313 10.1103/PhysRevA.92.022333 10.1103/PhysRevA.52.3457 10.1098/rspa.1998.0164 10.1088/2058-9565/aaf019 10.1103/PhysRevLett.75.346 10.1103/PhysRevA.103.022424 10.1103/PhysRevApplied.14.054058 10.1103/PhysRevApplied.7.064017 10.1103/PhysRevApplied.10.034006 10.1103/PhysRevD.47.488 10.1103/PhysRevA.82.052326 10.1126/science.1058835 10.1103/PhysRevB.79.060507 10.1103/PhysRevA.79.052504 10.1038/nphoton.2012.259 10.1017/S0305004100013554 10.1103/PhysRevLett.117.170501 10.1137/S0036144598347011 10.1006/jmra.1994.1159 10.1103/PhysRevA.95.022319 10.1088/1674-1056/abd755 10.1103/PhysRevLett.115.043003 10.1103/PhysRevA.81.012322 10.1103/PhysRevA.103.012205 10.1103/PhysRevA.92.022320 10.1103/PhysRevLett.109.170501 10.1103/PhysRevA.103.012601 10.1103/PhysRevLett.75.4714 10.1088/1674-1056/27/11/110304 10.1103/PhysRevA.102.062410 10.1016/S0375-9601(99)00803-8 10.1088/1367-2630/18/2/023001 10.1016/S0009-2614(98)01015-X 10.1103/PhysRevA.91.043402 10.1103/PhysRevLett.124.230503 10.1103/PhysRevLett.89.247902 10.1103/PhysRevApplied.14.034003 10.1364/OE.19.002037 10.1038/nphys1183 10.1103/PhysRevApplied.10.054051 10.1103/PhysRevLett.79.325 10.1103/PhysRevA.94.052310 10.1103/PhysRevA.92.022336 10.1103/PhysRevLett.123.170503 10.1103/PhysRevLett.123.100501 10.1103/RevModPhys.68.733 10.1103/PhysRevA.89.022341 10.1103/PhysRevLett.75.4710 10.1140/epjd/e2015-60464-1 10.1103/PhysRevA.89.052313 10.1103/PhysRevLett.87.097901 10.1103/PhysRevLett.52.2111 10.1103/PhysRevA.98.022324 10.1103/PhysRev.47.777 10.1103/PhysRevLett.70.1187 10.1103/PhysRevA.99.052309 10.1126/science.282.5394.1686 10.1103/PhysRevResearch.2.043130 10.1103/PhysRevA.75.042308 10.1103/PhysRevA.101.030301 10.1103/PhysRevApplied.12.024024 10.1103/PhysRevLett.104.010503 10.1098/rspa.1995.0065 10.1103/PhysRevLett.104.010502 10.1103/PhysRevLett.10.277 10.1364/PRJ.6.000713 10.1103/PhysRevA.77.052334 10.1103/PhysRevA.102.032627 10.1103/PhysRevLett.89.097902 10.1103/PhysRevA.70.034301 10.1103/PhysRevLett.123.230501 10.1364/JOSAB.35.000892 10.1103/PhysRevApplied.14.054062 10.1364/OE.418626 10.1098/rsta.1998.0244 10.1103/PhysRevA.101.062306 10.1103/PhysRevA.92.052302 10.1098/rspa.1984.0023 10.1364/OE.393444 10.1103/PhysRevA.82.030306 10.1103/PhysRevA.101.062309 10.1103/PhysRevLett.105.040504 10.1103/PhysRevA.95.032311 10.1103/PhysRevA.96.042335 10.1002/andp.202100057 10.1103/PhysRevA.98.052315 10.1103/PhysRevA.103.062607 10.1103/PhysRevApplied.7.054022 10.1103/PhysRevA.93.012306 10.1103/PhysRevLett.121.123603 10.1088/0953-4075/49/9/094004 10.1038/nature18648 10.1038/30181 10.1088/1367-2630/14/10/103035 10.1103/PhysRevLett.104.083001 10.1103/PhysRevLett.58.1593 10.1038/s41567-020-0903-z 10.1103/PhysRevA.103.052402 10.1103/PhysRev.131.2766 10.1103/PhysRevLett.111.033606 10.1038/nphys1178 10.1002/qute.202000098 10.1126/science.270.5234.255 10.1038/nature01336 10.1103/PhysRevLett.119.160502 10.1103/RevModPhys.82.2313 10.1103/PhysRevLett.121.123605 10.1002/qute.201900119 10.1103/PhysRevA.95.022317 10.1038/35002528 10.1103/PhysRevA.103.052612 10.1103/PhysRevLett.110.263201 10.1088/1367-2630/14/9/093040 10.1103/PhysRevA.102.042607 10.1103/PhysRevA.95.052349 10.1103/PhysRevLett.114.100503 10.1137/S0097539795293172 10.1103/PhysRevLett.87.037901 10.1088/1751-8121/abdba1 10.1143/PTPS.69.80 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/qute.202100093 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2511-9044 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_qute_202100093 QUTE202100093 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11804375; 11804308; 12074346 – fundername: Key Research & Development Project of Guangdong Province funderid: 2020B0303300001 – fundername: Natural Science Foundation of Henan Province funderid: 202300410481; 212300410085 |
| GroupedDBID | 0R~ 1OC 33P 34L AAHHS AAHQN AAMNL AANLZ AAYCA AAZKR ABCUV ACCFJ ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADXAS ADZMN ADZOD AEEZP AEIGN AEQDE AEUYR AFFPM AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAMMB AAYXX ABJNI ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION |
| ID | FETCH-LOGICAL-c2893-82ff9cdea5663a17ae5595d3f36c0b6637caf3163a75bb9a77a1a287c65371d13 |
| ISSN | 2511-9044 |
| IngestDate | Wed Oct 29 21:19:54 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 Wed Jan 22 16:28:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2893-82ff9cdea5663a17ae5595d3f36c0b6637caf3163a75bb9a77a1a287c65371d13 |
| ORCID | 0000-0002-2153-5827 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1002_qute_202100093 crossref_citationtrail_10_1002_qute_202100093 wiley_primary_10_1002_qute_202100093_QUTE202100093 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced quantum technologies (Online) |
| PublicationYear | 2021 |
| References | 1995; 75 2017; 119 2017; 7 1935; 31 1963; 131 2020 2016 2018 2018 2015 2014 2013 2010 2008; 10 49 121 98 91 89 111 82 100 2019; 99 2010; 105 2021; 29 2010; 104 2019; 12 2020; 16 2020; 14 1999; 41 1998; 356 2008; 77 2020; 124 2008; 1 2012; 14 2007; 75 2011; 19 2021; 30 1998; 393 2019; 123 2001; 87 1984; 392 2018; 6 1984; 52 2020; 3 2020; 2 2003; 91 2004; 70 2018; 4 2001; 292 1993; 70 2002; 89 2000; 403 2018 2018 2016; 27 98 93 1995; 449 2016; 117 2013; 110 1994; 109 1996; 68 1998; 282 2001; 414 2018; 35 1995; 52 1993; 47 1987; 58 1980; 69 2015; 14 2021; 4 2017 2018 2020; 7 10 14 2015; 92 2021; 103 1997; 26 2011; 84 1999; 264 2016; 94 2020; 101 2016; 93 2020; 102 2016; 18 2010; 81 1998; 454 2019; 100 2014; 89 1995; 270 2012; 109 1998; 296 2017; 95 2017; 96 2009; 79 2015; 69 2021; 54 1963; 10 2015; 115 2021; 533 2020 2016; 536 2015; 114 1997; 79 2000 2001 2019 2018 2019; 85 87 123 121 123 2020; 28 2010 2009 2021 2010 2015 2019 2020; 82 5 103 82 92 123 101 2009; 5 1935; 47 2012; 6 2018; 98 2018; 10 2003; 421 e_1_2_12_6_1 e_1_2_12_2_1 e_1_2_12_17_1 e_1_2_12_111_1 e_1_2_12_115_1 e_1_2_12_108_1 e_1_2_12_66_1 e_1_2_12_43_1 e_1_2_12_85_1 e_1_2_12_24_1 e_1_2_12_47_1 e_1_2_12_89_1 e_1_2_12_62_1 e_1_2_12_81_3 e_1_2_12_81_2 e_1_2_12_81_1 e_1_2_12_100_1 e_1_2_12_28_1 e_1_2_12_104_1 e_1_2_12_73_4 e_1_2_12_31_1 e_1_2_12_73_5 e_1_2_12_77_1 e_1_2_12_73_2 e_1_2_12_54_1 e_1_2_12_73_3 e_1_2_12_96_1 e_1_2_12_35_1 e_1_2_12_73_6 e_1_2_12_58_1 e_1_2_12_73_7 e_1_2_12_12_1 e_1_2_12_73_1 e_1_2_12_50_1 e_1_2_12_92_1 e_1_2_12_3_1 e_1_2_12_18_1 e_1_2_12_75_8 e_1_2_12_110_1 e_1_2_12_75_9 e_1_2_12_114_1 e_1_2_12_21_1 e_1_2_12_44_1 e_1_2_12_63_1 e_1_2_12_86_1 e_1_2_12_107_1 e_1_2_12_25_1 e_1_2_12_48_1 e_1_2_12_67_1 e_1_2_12_82_3 e_1_2_12_82_2 e_1_2_12_40_1 e_1_2_12_82_1 e_1_2_12_29_1 e_1_2_12_103_1 e_1_2_12_74_3 e_1_2_12_74_4 e_1_2_12_32_1 e_1_2_12_55_1 e_1_2_12_74_1 e_1_2_12_97_1 e_1_2_12_74_2 e_1_2_12_36_1 e_1_2_12_59_1 e_1_2_12_74_5 e_1_2_12_78_1 e_1_2_12_13_1 Sjöqvist E. (e_1_2_12_20_1) 2008; 1 e_1_2_12_7_1 e_1_2_12_51_1 e_1_2_12_70_1 e_1_2_12_93_1 e_1_2_12_4_1 e_1_2_12_19_1 e_1_2_12_38_1 e_1_2_12_113_1 e_1_2_12_41_1 e_1_2_12_87_1 e_1_2_12_106_1 e_1_2_12_22_1 e_1_2_12_64_1 e_1_2_12_45_1 e_1_2_12_26_1 e_1_2_12_68_1 e_1_2_12_83_1 e_1_2_12_60_1 e_1_2_12_49_1 e_1_2_12_102_1 e_1_2_12_75_2 e_1_2_12_52_1 e_1_2_12_75_3 e_1_2_12_98_1 e_1_2_12_118_1 e_1_2_12_33_1 e_1_2_12_75_6 e_1_2_12_56_1 e_1_2_12_75_7 e_1_2_12_75_4 e_1_2_12_37_1 e_1_2_12_75_5 e_1_2_12_79_1 e_1_2_12_14_1 e_1_2_12_90_1 e_1_2_12_8_1 e_1_2_12_10_1 e_1_2_12_94_1 e_1_2_12_71_1 e_1_2_12_5_1 e_1_2_12_1_1 e_1_2_12_16_1 e_1_2_12_112_1 e_1_2_12_39_1 e_1_2_12_116_1 e_1_2_12_42_1 e_1_2_12_65_1 e_1_2_12_88_1 e_1_2_12_109_1 e_1_2_12_23_1 e_1_2_12_46_1 e_1_2_12_69_1 e_1_2_12_80_1 e_1_2_12_61_1 e_1_2_12_84_1 Khazali M. (e_1_2_12_75_1) 2020; 10 e_1_2_12_27_1 e_1_2_12_101_1 e_1_2_12_105_1 e_1_2_12_30_1 e_1_2_12_53_1 e_1_2_12_76_1 e_1_2_12_99_1 e_1_2_12_117_1 e_1_2_12_34_1 e_1_2_12_57_1 e_1_2_12_15_1 e_1_2_12_91_1 e_1_2_12_11_1 e_1_2_12_72_1 e_1_2_12_95_1 e_1_2_12_9_1 |
| References_xml | – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 84 year: 2011 publication-title: Phys. Rev. A – volume: 91 year: 2003 publication-title: Phys. Rev. Lett. – volume: 81 year: 2010 publication-title: Phys. Rev. A – volume: 47 start-page: 488 year: 1993 publication-title: Phys. Rev. D – volume: 101 year: 2020 publication-title: Phys. Rev. A – volume: 82 5 103 82 92 123 101 start-page: 2313 110 6 year: 2010 2009 2021 2010 2015 2019 2020 publication-title: Rev. Mod. Phys. Nat. Phys. Phys. Rev. A Phys. Rev. A Phys. Rev. A Phys. Rev. Lett. Phys. Rev. A – volume: 282 start-page: 1686 year: 1998 publication-title: Science – volume: 27 98 93 year: 2018 2018 2016 publication-title: Chin. Phys. B Phys. Rev. A Phys. Rev. A – volume: 2 year: 2020 publication-title: Phys. Rev. Res. – volume: 100 year: 2019 publication-title: Phys. Rev. A – volume: 6 start-page: 713 year: 2018 publication-title: Photonics Res. – volume: 16 start-page: 857 year: 2020 publication-title: Nat. Phys. – volume: 109 start-page: 221 year: 1994 publication-title: J. Magn. Reson., Ser. A – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 77 year: 2008 publication-title: Phys. Rev. A – volume: 54 year: 2021 publication-title: J. Phys. A: Math. Theor. – volume: 131 start-page: 2766 year: 1963 publication-title: Phys. Rev. – volume: 6 start-page: 773 year: 2012 publication-title: Nat. Photonics – volume: 75 start-page: 4714 year: 1995 publication-title: Phys. Rev. Lett. – volume: 35 start-page: 892 year: 2018 publication-title: J. Opt. Soc. Am. B – volume: 41 start-page: 303 year: 1999 publication-title: SIAM Rev. – volume: 92 year: 2015 publication-title: Phys. Rev. A – volume: 117 year: 2016 publication-title: Phys. Rev. Lett. – volume: 4 year: 2018 publication-title: Quantum Sci. Technol. – volume: 79 year: 2009 publication-title: Phys. Rev. B – volume: 403 start-page: 869 year: 2000 publication-title: Nature – volume: 28 year: 2020 publication-title: Opt. Express – volume: 296 start-page: 61 year: 1998 publication-title: Chem. Phys. Lett. – volume: 18 year: 2016 publication-title: New J. Phys. – volume: 7 10 14 year: 2017 2018 2020 publication-title: Phys. Rev. Appl. Phys. Rev. Appl. Phys. Rev. Appl. – volume: 89 year: 2014 publication-title: Phys. Rev. A – volume: 533 year: 2021 publication-title: Ann. Phys. (Berlin) – volume: 5 start-page: 115 year: 2009 publication-title: Nat. Phys. – volume: 75 start-page: 4710 year: 1995 publication-title: Phys. Rev. Lett. – volume: 392 start-page: 45 year: 1984 publication-title: Proc. R. Soc. Lond., Ser. A – volume: 10 49 121 98 91 89 111 82 100 year: 2020 2016 2018 2018 2015 2014 2013 2010 2008 publication-title: Phys. Rev. X J. Phys. B: At., Mol. Opt. Phys. Phys. Rev. Lett. Phys. Rev. A Phys. Rev. A Phys. Rev. A Phys. Rev. Lett. Phys. Rev. A Phys. Rev. Lett. – volume: 264 start-page: 94 year: 1999 publication-title: Phys. Lett. A – volume: 414 start-page: 883 year: 2001 publication-title: Nature – volume: 14 start-page: 1787 year: 2015 publication-title: Quantum Inf. Process. – volume: 7 year: 2017 publication-title: Phys. Rev. Appl. – volume: 10 year: 2018 publication-title: Phys. Rev. Appl. – volume: 421 start-page: 48 year: 2003 publication-title: Nature – volume: 95 year: 2017 publication-title: Phys. Rev. A – volume: 98 year: 2018 publication-title: Phys. Rev. A – volume: 3 year: 2020 publication-title: Adv. Quantum Technol. – volume: 12 year: 2019 publication-title: Phys. Rev. Appl. – volume: 52 start-page: 3457 year: 1995 publication-title: Phys. Rev. A – volume: 29 start-page: 8737 year: 2021 publication-title: Opt. Express – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 87 year: 2001 publication-title: Phys. Rev. Lett. – volume: 79 start-page: 325 year: 1997 publication-title: Phys. Rev. Lett. – volume: 393 start-page: 143 year: 1998 publication-title: Nature – volume: 79 year: 2009 publication-title: Phys. Rev. A – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 68 start-page: 733 year: 1996 publication-title: Rev. Mod. Phys. – volume: 69 start-page: 80 year: 1980 publication-title: Prog. Theor. Phys. Suppl. – volume: 70 year: 2004 publication-title: Phys. Rev. A – volume: 85 87 123 121 123 start-page: 2208 year: 2000 2001 2019 2018 2019 publication-title: Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. – volume: 99 year: 2019 publication-title: Phys. Rev. A – volume: 454 start-page: 339 year: 1998 publication-title: Proc. R. Soc. Lond., Ser. A – volume: 75 start-page: 346 year: 1995 publication-title: Phys. Rev. Lett. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 26 start-page: 1484 year: 1997 publication-title: SIAM J. Comput. – volume: 19 start-page: 2037 year: 2011 publication-title: Opt. Express – volume: 93 year: 2016 publication-title: Phys. Rev. A – volume: 449 start-page: 669 year: 1995 publication-title: Proc. R. Soc. Lond., Ser. A – volume: 356 start-page: 1717 year: 1998 publication-title: Philos. Trans. R. Soc., A – volume: 4 year: 2021 publication-title: Adv. Quantum Technol. – volume: 14 year: 2020 publication-title: Phys. Rev. Appl. – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 292 start-page: 1695 year: 2001 publication-title: Science – volume: 103 year: 2021 publication-title: Phys. Rev. A – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 14 year: 2012 publication-title: New J. Phys. – volume: 75 year: 2007 publication-title: Phys. Rev. A – volume: 70 start-page: 1187 year: 1993 publication-title: Phys. Rev. Lett. – volume: 69 start-page: 279 year: 2015 publication-title: Eur. Phys. J. D – volume: 1 start-page: 35 year: 2008 publication-title: Phys. Online J. – volume: 58 start-page: 1593 year: 1987 publication-title: Phys. Rev. Lett. – year: 2020 – volume: 31 start-page: 555 year: 1935 publication-title: Math. Proc. Cambridge Philos. Soc. – volume: 30 year: 2021 publication-title: Chin. Phys. B – volume: 47 start-page: 777 year: 1935 publication-title: Phys. Rev. – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 536 start-page: 63 year: 2016 publication-title: Nature – volume: 52 start-page: 2111 year: 1984 publication-title: Phys. Rev. Lett. – volume: 270 start-page: 255 year: 1995 publication-title: Science – volume: 105 year: 2010 publication-title: Phys. Rev. Lett. – volume: 102 year: 2020 publication-title: Phys. Rev. A – volume: 10 start-page: 277 year: 1963 publication-title: Phys. Rev. Lett. – volume: 94 year: 2016 publication-title: Phys. Rev. A – ident: e_1_2_12_75_6 doi: 10.1103/PhysRevA.89.030301 – ident: e_1_2_12_75_9 doi: 10.1103/PhysRevLett.100.170504 – ident: e_1_2_12_61_1 doi: 10.1038/414883a – ident: e_1_2_12_66_1 doi: 10.1007/s11128-015-0954-8 – ident: e_1_2_12_49_1 doi: 10.1103/PhysRevA.100.062312 – ident: e_1_2_12_82_2 doi: 10.1103/PhysRevA.98.032306 – ident: e_1_2_12_103_1 doi: 10.1103/PhysRevA.96.062315 – volume: 1 start-page: 35 year: 2008 ident: e_1_2_12_20_1 publication-title: Phys. Online J. – ident: e_1_2_12_74_1 doi: 10.1103/PhysRevLett.85.2208 – ident: e_1_2_12_53_1 doi: 10.1103/PhysRevA.84.042335 – ident: e_1_2_12_48_1 doi: 10.1103/PhysRevLett.91.187902 – ident: e_1_2_12_52_1 doi: 10.1103/PhysRevA.93.032313 – ident: e_1_2_12_96_1 doi: 10.1103/PhysRevA.92.022333 – ident: e_1_2_12_8_1 doi: 10.1103/PhysRevA.52.3457 – ident: e_1_2_12_60_1 doi: 10.1098/rspa.1998.0164 – ident: e_1_2_12_106_1 doi: 10.1088/2058-9565/aaf019 – ident: e_1_2_12_9_1 doi: 10.1103/PhysRevLett.75.346 – ident: e_1_2_12_73_3 doi: 10.1103/PhysRevA.103.022424 – ident: e_1_2_12_81_3 doi: 10.1103/PhysRevApplied.14.054058 – ident: e_1_2_12_81_1 doi: 10.1103/PhysRevApplied.7.064017 – ident: e_1_2_12_81_2 doi: 10.1103/PhysRevApplied.10.034006 – ident: e_1_2_12_14_1 doi: 10.1103/PhysRevD.47.488 – ident: e_1_2_12_75_8 doi: 10.1103/PhysRevA.82.052326 – volume: 10 year: 2020 ident: e_1_2_12_75_1 publication-title: Phys. Rev. X – ident: e_1_2_12_19_1 doi: 10.1126/science.1058835 – ident: e_1_2_12_117_1 doi: 10.1103/PhysRevB.79.060507 – ident: e_1_2_12_107_1 doi: 10.1103/PhysRevA.79.052504 – ident: e_1_2_12_59_1 doi: 10.1038/nphoton.2012.259 – ident: e_1_2_12_6_1 doi: 10.1017/S0305004100013554 – ident: e_1_2_12_115_1 doi: 10.1103/PhysRevLett.117.170501 – ident: e_1_2_12_1_1 doi: 10.1137/S0036144598347011 – ident: e_1_2_12_98_1 doi: 10.1006/jmra.1994.1159 – ident: e_1_2_12_101_1 doi: 10.1103/PhysRevA.95.022319 – ident: e_1_2_12_85_1 doi: 10.1088/1674-1056/abd755 – ident: e_1_2_12_105_1 doi: 10.1103/PhysRevLett.115.043003 – ident: e_1_2_12_68_1 doi: 10.1103/PhysRevA.81.012322 – ident: e_1_2_12_38_1 doi: 10.1103/PhysRevA.103.012205 – ident: e_1_2_12_25_1 doi: 10.1103/PhysRevA.92.022320 – ident: e_1_2_12_44_1 doi: 10.1103/PhysRevLett.109.170501 – ident: e_1_2_12_84_1 doi: 10.1103/PhysRevA.103.012601 – ident: e_1_2_12_69_1 doi: 10.1103/PhysRevLett.75.4714 – ident: e_1_2_12_82_1 doi: 10.1088/1674-1056/27/11/110304 – ident: e_1_2_12_99_1 doi: 10.1103/PhysRevA.102.062410 – ident: e_1_2_12_36_1 doi: 10.1016/S0375-9601(99)00803-8 – ident: e_1_2_12_47_1 doi: 10.1088/1367-2630/18/2/023001 – ident: e_1_2_12_58_1 doi: 10.1016/S0009-2614(98)01015-X – ident: e_1_2_12_75_5 doi: 10.1103/PhysRevA.91.043402 – ident: e_1_2_12_54_1 doi: 10.1103/PhysRevLett.124.230503 – ident: e_1_2_12_7_1 doi: 10.1103/PhysRevLett.89.247902 – ident: e_1_2_12_23_1 doi: 10.1103/PhysRevApplied.14.034003 – ident: e_1_2_12_71_1 doi: 10.1364/OE.19.002037 – ident: e_1_2_12_110_1 doi: 10.1038/nphys1183 – ident: e_1_2_12_42_1 doi: 10.1103/PhysRevApplied.10.054051 – ident: e_1_2_12_3_1 doi: 10.1103/PhysRevLett.79.325 – ident: e_1_2_12_94_1 doi: 10.1103/PhysRevA.94.052310 – ident: e_1_2_12_73_5 doi: 10.1103/PhysRevA.92.022336 – ident: e_1_2_12_74_3 doi: 10.1103/PhysRevLett.123.170503 – ident: e_1_2_12_21_1 doi: 10.1103/PhysRevLett.123.100501 – ident: e_1_2_12_62_1 doi: 10.1103/RevModPhys.68.733 – ident: e_1_2_12_95_1 doi: 10.1103/PhysRevA.89.022341 – ident: e_1_2_12_70_1 doi: 10.1103/PhysRevLett.75.4710 – ident: e_1_2_12_112_1 doi: 10.1140/epjd/e2015-60464-1 – ident: e_1_2_12_79_1 – ident: e_1_2_12_87_1 doi: 10.1103/PhysRevA.89.052313 – ident: e_1_2_12_40_1 doi: 10.1103/PhysRevLett.87.097901 – ident: e_1_2_12_34_1 doi: 10.1103/PhysRevLett.52.2111 – ident: e_1_2_12_75_4 doi: 10.1103/PhysRevA.98.022324 – ident: e_1_2_12_5_1 doi: 10.1103/PhysRev.47.777 – ident: e_1_2_12_16_1 doi: 10.1103/PhysRevLett.70.1187 – ident: e_1_2_12_50_1 doi: 10.1103/PhysRevA.99.052309 – ident: e_1_2_12_4_1 doi: 10.1126/science.282.5394.1686 – ident: e_1_2_12_22_1 doi: 10.1103/PhysRevResearch.2.043130 – ident: e_1_2_12_116_1 doi: 10.1103/PhysRevA.75.042308 – ident: e_1_2_12_78_1 doi: 10.1103/PhysRevA.101.030301 – ident: e_1_2_12_93_1 doi: 10.1103/PhysRevApplied.12.024024 – ident: e_1_2_12_109_1 doi: 10.1103/PhysRevLett.104.010503 – ident: e_1_2_12_10_1 doi: 10.1098/rspa.1995.0065 – ident: e_1_2_12_72_1 doi: 10.1103/PhysRevLett.104.010502 – ident: e_1_2_12_13_1 doi: 10.1103/PhysRevLett.10.277 – ident: e_1_2_12_91_1 doi: 10.1364/PRJ.6.000713 – ident: e_1_2_12_97_1 doi: 10.1103/PhysRevA.77.052334 – ident: e_1_2_12_27_1 doi: 10.1103/PhysRevA.102.032627 – ident: e_1_2_12_41_1 doi: 10.1103/PhysRevLett.89.097902 – ident: e_1_2_12_92_1 doi: 10.1103/PhysRevA.70.034301 – ident: e_1_2_12_73_6 doi: 10.1103/PhysRevLett.123.230501 – ident: e_1_2_12_111_1 doi: 10.1364/JOSAB.35.000892 – ident: e_1_2_12_28_1 doi: 10.1103/PhysRevApplied.14.054062 – ident: e_1_2_12_30_1 doi: 10.1364/OE.418626 – ident: e_1_2_12_15_1 doi: 10.1098/rsta.1998.0244 – ident: e_1_2_12_35_1 doi: 10.1103/PhysRevA.101.062306 – ident: e_1_2_12_74_5 doi: 10.1103/PhysRevLett.123.170503 – ident: e_1_2_12_46_1 doi: 10.1103/PhysRevA.92.052302 – ident: e_1_2_12_33_1 doi: 10.1098/rspa.1984.0023 – ident: e_1_2_12_57_1 doi: 10.1364/OE.393444 – ident: e_1_2_12_73_4 doi: 10.1103/PhysRevA.82.030306 – ident: e_1_2_12_39_1 doi: 10.1103/PhysRevA.92.022320 – ident: e_1_2_12_45_1 doi: 10.1103/PhysRevA.94.052310 – ident: e_1_2_12_73_7 doi: 10.1103/PhysRevA.101.062309 – ident: e_1_2_12_64_1 doi: 10.1103/PhysRevLett.105.040504 – ident: e_1_2_12_51_1 doi: 10.1103/PhysRevA.95.032311 – ident: e_1_2_12_102_1 doi: 10.1103/PhysRevA.96.042335 – ident: e_1_2_12_31_1 doi: 10.1002/andp.202100057 – ident: e_1_2_12_29_1 doi: 10.1103/PhysRevA.98.052315 – ident: e_1_2_12_83_1 doi: 10.1103/PhysRevA.103.062607 – ident: e_1_2_12_26_1 doi: 10.1103/PhysRevApplied.7.054022 – ident: e_1_2_12_82_3 doi: 10.1103/PhysRevA.93.012306 – ident: e_1_2_12_74_4 doi: 10.1103/PhysRevLett.121.123603 – ident: e_1_2_12_75_2 doi: 10.1088/0953-4075/49/9/094004 – ident: e_1_2_12_65_1 doi: 10.1038/nature18648 – ident: e_1_2_12_56_1 doi: 10.1038/30181 – ident: e_1_2_12_43_1 doi: 10.1088/1367-2630/14/10/103035 – ident: e_1_2_12_55_1 – ident: e_1_2_12_114_1 doi: 10.1103/PhysRevLett.104.083001 – ident: e_1_2_12_17_1 doi: 10.1103/PhysRevLett.58.1593 – ident: e_1_2_12_77_1 doi: 10.1038/s41567-020-0903-z – ident: e_1_2_12_88_1 doi: 10.1103/PhysRevA.103.052402 – ident: e_1_2_12_12_1 doi: 10.1103/PhysRev.131.2766 – ident: e_1_2_12_75_7 doi: 10.1103/PhysRevLett.111.033606 – ident: e_1_2_12_73_2 doi: 10.1038/nphys1178 – ident: e_1_2_12_90_1 doi: 10.1002/qute.202000098 – ident: e_1_2_12_63_1 doi: 10.1126/science.270.5234.255 – ident: e_1_2_12_67_1 doi: 10.1038/nature01336 – ident: e_1_2_12_76_1 doi: 10.1103/PhysRevLett.119.160502 – ident: e_1_2_12_73_1 doi: 10.1103/RevModPhys.82.2313 – ident: e_1_2_12_75_3 doi: 10.1103/PhysRevLett.121.123605 – ident: e_1_2_12_89_1 doi: 10.1002/qute.201900119 – ident: e_1_2_12_86_1 doi: 10.1103/PhysRevA.95.022317 – ident: e_1_2_12_18_1 doi: 10.1038/35002528 – ident: e_1_2_12_80_1 doi: 10.1038/nphys1183 – ident: e_1_2_12_32_1 doi: 10.1103/PhysRevA.103.052612 – ident: e_1_2_12_100_1 doi: 10.1103/PhysRevLett.110.263201 – ident: e_1_2_12_113_1 doi: 10.1088/1367-2630/14/9/093040 – ident: e_1_2_12_108_1 doi: 10.1103/PhysRevA.102.042607 – ident: e_1_2_12_37_1 doi: 10.1103/PhysRevA.95.052349 – ident: e_1_2_12_24_1 doi: 10.1103/PhysRevA.98.052315 – ident: e_1_2_12_104_1 doi: 10.1103/PhysRevLett.114.100503 – ident: e_1_2_12_2_1 doi: 10.1137/S0097539795293172 – ident: e_1_2_12_74_2 doi: 10.1103/PhysRevLett.87.037901 – ident: e_1_2_12_118_1 doi: 10.1088/1751-8121/abdba1 – ident: e_1_2_12_11_1 doi: 10.1143/PTPS.69.80 |
| SSID | ssj0002313473 |
| Score | 2.226315 |
| Snippet | Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | Deutsch–Jozsa algorithm geometric quantum computation Rydberg atoms |
| Title | Realization of Deutsch–Jozsa Algorithm in Rydberg Atoms by Composite Nonadiabatic Holonomic Quantum Computation with Strong Robustness Against Systematic Errors |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100093 |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2511-9044 dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0002313473 issn: 2511-9044 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVcBwV6Kbqi6QYeCvRgKBVFrUe1cWAETYAkNpCeDFKiHAGxldjSITn1H_oH_bT-RW8dLqJlJN1yEQSSomDP82x-M0ToHWWUsIIIx4145visYA4TPHCSPAl5EuTEjWW988FhOJr4-6fBaa_3s8Naamq-k13fWldyF6nCGMhVVsn-h2TtpjAA9yBfuIKE4fpPMj4GL8_UUUqnb1c0NQSrLX-B7lfXKzZIz2fVsqzP5jK1cXyVS0LXIK2r-Uq6nlIfSN6WGBxWqk8BVy1cR6ATVcGyZH2CWZoP9PEP-l0qeXsik-gzSc1uVrVSmOmMleBtmi7oap_hclmZ_4vaVrct6eDSbFy3yf1SZ4C7zU81V6hsFAplaXZLzfjYWlxJHWpUunevsbNHgHk7_cVUV4jSzsP9zYT5WdV0UyAeMbWAVlPKMMlJXN1IckfcMmZUvd9FNOkYfWsSb1gU3aH2slE9VT2iUkBr29nyBezK4M9rleNwNBkP7fw9tOWBQXL7aCvdPfh8YhOE4HhTXzEk7Edpm4663ofNl2w4Vd0gS3lJ40fooQlvcKqx-hj1xOIJuq9oxtnqKfreQSyuCmwQ--PrN4VVbLGKywU2WMUKq5hfYYtV3MUqtljFBqu4g1UssYo1VvEaq9hgFa-xijVWn6HJ3nD8aeSYU0KczANn24m9okiyXDAITCgjERMQJAc5LWiYuRzGoowVFMIOFgWcJyyKGGFeHGVhQCOSE_oc9RfVQrxAGLzrKAxlcTiPfeqBT8LhUdBWNAsJi8Nt5LRf8zQzLfTlSS7nU93825tKsUytWLbRe7v-QjeP-e1KT0ntL8umG9B5eZeHXqEH65_Qa9Svl414A351zd8aBP4CxJDL0A |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+Deutsch%E2%80%93Jozsa+Algorithm+in+Rydberg+Atoms+by+Composite+Nonadiabatic+Holonomic+Quantum+Computation+with+Strong+Robustness+Against+Systematic+Errors&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Liu%2C+Bing%E2%80%90Bing&rft.au=Guo%2C+Fu%E2%80%90Qiang&rft.au=Yan%2C+Lei%E2%80%90Lei&rft.au=Zhang%2C+Shou&rft.date=2021-11-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=4&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202100093&rft.externalDBID=10.1002%252Fqute.202100093&rft.externalDocID=QUTE202100093 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |