Realization of Deutsch–Jozsa Algorithm in Rydberg Atoms by Composite Nonadiabatic Holonomic Quantum Computation with Strong Robustness Against Systematic Errors

Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC)...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 4; no. 11
Main Authors Liu, Bing‐Bing, Guo, Fu‐Qiang, Yan, Lei‐Lei, Zhang, Shou, Feng, Mang, Su, Shi‐Lei
Format Journal Article
LanguageEnglish
Published 01.11.2021
Subjects
Online AccessGet full text
ISSN2511-9044
2511-9044
DOI10.1002/qute.202100093

Cover

Abstract Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented. Taking advantages of composite loops and holonomic features to resist systematic errors, the scheme of composite NHQC works more robustly compared with the standard dynamic counterparts. By exemplifying the DJ algorithm implementation, the performance of single‐loop NHQC‐, composite NHQC‐, and the dynamic counterpart‐based processes are compared both analytically and numerically, indicating the best robustness of composite scheme to systematic errors. In addition, the combination of composite NHQC and quantum algorithm also provides an alternative pathway for the realization of robust quantum algorithm in the future. A scheme to implement the Deutsch–Jozsa algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented, which works more robustly to the systematic errors compared with the schemes of its standard dynamic counterpart and single‐loop NHQC, providing an alternative pathway for the realization of robust quantum algorithm.
AbstractList Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented. Taking advantages of composite loops and holonomic features to resist systematic errors, the scheme of composite NHQC works more robustly compared with the standard dynamic counterparts. By exemplifying the DJ algorithm implementation, the performance of single‐loop NHQC‐, composite NHQC‐, and the dynamic counterpart‐based processes are compared both analytically and numerically, indicating the best robustness of composite scheme to systematic errors. In addition, the combination of composite NHQC and quantum algorithm also provides an alternative pathway for the realization of robust quantum algorithm in the future. A scheme to implement the Deutsch–Jozsa algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented, which works more robustly to the systematic errors compared with the schemes of its standard dynamic counterpart and single‐loop NHQC, providing an alternative pathway for the realization of robust quantum algorithm.
Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant functions. Here, a scheme to implement the DJ algorithm in Rydberg atoms using the composite nonadiabatic holonomic quantum computation (NHQC) is presented. Taking advantages of composite loops and holonomic features to resist systematic errors, the scheme of composite NHQC works more robustly compared with the standard dynamic counterparts. By exemplifying the DJ algorithm implementation, the performance of single‐loop NHQC‐, composite NHQC‐, and the dynamic counterpart‐based processes are compared both analytically and numerically, indicating the best robustness of composite scheme to systematic errors. In addition, the combination of composite NHQC and quantum algorithm also provides an alternative pathway for the realization of robust quantum algorithm in the future.
Author Liu, Bing‐Bing
Feng, Mang
Yan, Lei‐Lei
Zhang, Shou
Su, Shi‐Lei
Guo, Fu‐Qiang
Author_xml – sequence: 1
  givenname: Bing‐Bing
  surname: Liu
  fullname: Liu, Bing‐Bing
  organization: Zhengzhou University
– sequence: 2
  givenname: Fu‐Qiang
  surname: Guo
  fullname: Guo, Fu‐Qiang
  organization: Zhengzhou University
– sequence: 3
  givenname: Lei‐Lei
  surname: Yan
  fullname: Yan, Lei‐Lei
  email: llyan@zzu.edu.cn
  organization: Zhengzhou University
– sequence: 4
  givenname: Shou
  surname: Zhang
  fullname: Zhang, Shou
  organization: Yanbian University
– sequence: 5
  givenname: Mang
  surname: Feng
  fullname: Feng, Mang
  email: mangfeng@wipm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Shi‐Lei
  orcidid: 0000-0002-2153-5827
  surname: Su
  fullname: Su, Shi‐Lei
  email: slsu@zzu.edu.cn
  organization: Zhengzhou University
BookMark eNqFkEtOwzAQhi1UJErplrUv0BLHTdIsq1IoqAL1tY4mjpMaJXaxHVXpijtwA47GSUgbBAgJsZrn94_mP0ctqSRH6JI4feI47tVzaXnfddy6cEJ6gtquR0gvdAaD1o_8DHWNeapXXEroIKBt9LbgkIs9WKEkVim-5qU1bPP-8nqv9gbwKM-UFnZTYCHxokpirjM8sqowOK7wWBVbZYTl-EFJSATEtRDDU5UrqYo6m5cgbVkcF0vbXNnVcnhptZIZXqi4NFZyY_AoAyGNxcvKWF4cdSZaK20u0GkKueHdz9hB65vJajztzR5v78ajWY-5w5D2hm6ahizh4Pk-BRIA97zQS2hKfebEdS9gkFJSzwIvjkMIAiDgDgPmezQgCaEd1G90mVbGaJ5GWy0K0FVEnOhgcnQwOfoyuQYGvwAmmh-tBpH_jYUNthM5r_45Es3Xq8k3-wEw9ZmZ
CitedBy_id crossref_primary_10_1002_qute_202400080
crossref_primary_10_1002_andp_202200360
crossref_primary_10_1103_PhysRevA_109_042615
crossref_primary_10_1103_PhysRevApplied_20_034063
crossref_primary_10_1007_s11467_023_1322_2
crossref_primary_10_1007_s10773_024_05746_0
crossref_primary_10_1088_1612_202X_aca759
Cites_doi 10.1103/PhysRevA.89.030301
10.1103/PhysRevLett.100.170504
10.1038/414883a
10.1007/s11128-015-0954-8
10.1103/PhysRevA.100.062312
10.1103/PhysRevA.98.032306
10.1103/PhysRevA.96.062315
10.1103/PhysRevLett.85.2208
10.1103/PhysRevA.84.042335
10.1103/PhysRevLett.91.187902
10.1103/PhysRevA.93.032313
10.1103/PhysRevA.92.022333
10.1103/PhysRevA.52.3457
10.1098/rspa.1998.0164
10.1088/2058-9565/aaf019
10.1103/PhysRevLett.75.346
10.1103/PhysRevA.103.022424
10.1103/PhysRevApplied.14.054058
10.1103/PhysRevApplied.7.064017
10.1103/PhysRevApplied.10.034006
10.1103/PhysRevD.47.488
10.1103/PhysRevA.82.052326
10.1126/science.1058835
10.1103/PhysRevB.79.060507
10.1103/PhysRevA.79.052504
10.1038/nphoton.2012.259
10.1017/S0305004100013554
10.1103/PhysRevLett.117.170501
10.1137/S0036144598347011
10.1006/jmra.1994.1159
10.1103/PhysRevA.95.022319
10.1088/1674-1056/abd755
10.1103/PhysRevLett.115.043003
10.1103/PhysRevA.81.012322
10.1103/PhysRevA.103.012205
10.1103/PhysRevA.92.022320
10.1103/PhysRevLett.109.170501
10.1103/PhysRevA.103.012601
10.1103/PhysRevLett.75.4714
10.1088/1674-1056/27/11/110304
10.1103/PhysRevA.102.062410
10.1016/S0375-9601(99)00803-8
10.1088/1367-2630/18/2/023001
10.1016/S0009-2614(98)01015-X
10.1103/PhysRevA.91.043402
10.1103/PhysRevLett.124.230503
10.1103/PhysRevLett.89.247902
10.1103/PhysRevApplied.14.034003
10.1364/OE.19.002037
10.1038/nphys1183
10.1103/PhysRevApplied.10.054051
10.1103/PhysRevLett.79.325
10.1103/PhysRevA.94.052310
10.1103/PhysRevA.92.022336
10.1103/PhysRevLett.123.170503
10.1103/PhysRevLett.123.100501
10.1103/RevModPhys.68.733
10.1103/PhysRevA.89.022341
10.1103/PhysRevLett.75.4710
10.1140/epjd/e2015-60464-1
10.1103/PhysRevA.89.052313
10.1103/PhysRevLett.87.097901
10.1103/PhysRevLett.52.2111
10.1103/PhysRevA.98.022324
10.1103/PhysRev.47.777
10.1103/PhysRevLett.70.1187
10.1103/PhysRevA.99.052309
10.1126/science.282.5394.1686
10.1103/PhysRevResearch.2.043130
10.1103/PhysRevA.75.042308
10.1103/PhysRevA.101.030301
10.1103/PhysRevApplied.12.024024
10.1103/PhysRevLett.104.010503
10.1098/rspa.1995.0065
10.1103/PhysRevLett.104.010502
10.1103/PhysRevLett.10.277
10.1364/PRJ.6.000713
10.1103/PhysRevA.77.052334
10.1103/PhysRevA.102.032627
10.1103/PhysRevLett.89.097902
10.1103/PhysRevA.70.034301
10.1103/PhysRevLett.123.230501
10.1364/JOSAB.35.000892
10.1103/PhysRevApplied.14.054062
10.1364/OE.418626
10.1098/rsta.1998.0244
10.1103/PhysRevA.101.062306
10.1103/PhysRevA.92.052302
10.1098/rspa.1984.0023
10.1364/OE.393444
10.1103/PhysRevA.82.030306
10.1103/PhysRevA.101.062309
10.1103/PhysRevLett.105.040504
10.1103/PhysRevA.95.032311
10.1103/PhysRevA.96.042335
10.1002/andp.202100057
10.1103/PhysRevA.98.052315
10.1103/PhysRevA.103.062607
10.1103/PhysRevApplied.7.054022
10.1103/PhysRevA.93.012306
10.1103/PhysRevLett.121.123603
10.1088/0953-4075/49/9/094004
10.1038/nature18648
10.1038/30181
10.1088/1367-2630/14/10/103035
10.1103/PhysRevLett.104.083001
10.1103/PhysRevLett.58.1593
10.1038/s41567-020-0903-z
10.1103/PhysRevA.103.052402
10.1103/PhysRev.131.2766
10.1103/PhysRevLett.111.033606
10.1038/nphys1178
10.1002/qute.202000098
10.1126/science.270.5234.255
10.1038/nature01336
10.1103/PhysRevLett.119.160502
10.1103/RevModPhys.82.2313
10.1103/PhysRevLett.121.123605
10.1002/qute.201900119
10.1103/PhysRevA.95.022317
10.1038/35002528
10.1103/PhysRevA.103.052612
10.1103/PhysRevLett.110.263201
10.1088/1367-2630/14/9/093040
10.1103/PhysRevA.102.042607
10.1103/PhysRevA.95.052349
10.1103/PhysRevLett.114.100503
10.1137/S0097539795293172
10.1103/PhysRevLett.87.037901
10.1088/1751-8121/abdba1
10.1143/PTPS.69.80
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/qute.202100093
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202100093
QUTE202100093
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11804375; 11804308; 12074346
– fundername: Key Research & Development Project of Guangdong Province
  funderid: 2020B0303300001
– fundername: Natural Science Foundation of Henan Province
  funderid: 202300410481; 212300410085
GroupedDBID 0R~
1OC
33P
34L
AAHHS
AAHQN
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ACCFJ
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEQDE
AEUYR
AFFPM
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAMMB
AAYXX
ABJNI
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
ID FETCH-LOGICAL-c2893-82ff9cdea5663a17ae5595d3f36c0b6637caf3163a75bb9a77a1a287c65371d13
ISSN 2511-9044
IngestDate Wed Oct 29 21:19:54 EDT 2025
Thu Apr 24 23:13:04 EDT 2025
Wed Jan 22 16:28:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2893-82ff9cdea5663a17ae5595d3f36c0b6637caf3163a75bb9a77a1a287c65371d13
ORCID 0000-0002-2153-5827
PageCount 11
ParticipantIDs crossref_primary_10_1002_qute_202100093
crossref_citationtrail_10_1002_qute_202100093
wiley_primary_10_1002_qute_202100093_QUTE202100093
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2021
References 1995; 75
2017; 119
2017; 7
1935; 31
1963; 131
2020 2016 2018 2018 2015 2014 2013 2010 2008; 10 49 121 98 91 89 111 82 100
2019; 99
2010; 105
2021; 29
2010; 104
2019; 12
2020; 16
2020; 14
1999; 41
1998; 356
2008; 77
2020; 124
2008; 1
2012; 14
2007; 75
2011; 19
2021; 30
1998; 393
2019; 123
2001; 87
1984; 392
2018; 6
1984; 52
2020; 3
2020; 2
2003; 91
2004; 70
2018; 4
2001; 292
1993; 70
2002; 89
2000; 403
2018 2018 2016; 27 98 93
1995; 449
2016; 117
2013; 110
1994; 109
1996; 68
1998; 282
2001; 414
2018; 35
1995; 52
1993; 47
1987; 58
1980; 69
2015; 14
2021; 4
2017 2018 2020; 7 10 14
2015; 92
2021; 103
1997; 26
2011; 84
1999; 264
2016; 94
2020; 101
2016; 93
2020; 102
2016; 18
2010; 81
1998; 454
2019; 100
2014; 89
1995; 270
2012; 109
1998; 296
2017; 95
2017; 96
2009; 79
2015; 69
2021; 54
1963; 10
2015; 115
2021; 533
2020
2016; 536
2015; 114
1997; 79
2000 2001 2019 2018 2019; 85 87 123 121 123
2020; 28
2010 2009 2021 2010 2015 2019 2020; 82 5 103 82 92 123 101
2009; 5
1935; 47
2012; 6
2018; 98
2018; 10
2003; 421
e_1_2_12_6_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_111_1
e_1_2_12_115_1
e_1_2_12_108_1
e_1_2_12_66_1
e_1_2_12_43_1
e_1_2_12_85_1
e_1_2_12_24_1
e_1_2_12_47_1
e_1_2_12_89_1
e_1_2_12_62_1
e_1_2_12_81_3
e_1_2_12_81_2
e_1_2_12_81_1
e_1_2_12_100_1
e_1_2_12_28_1
e_1_2_12_104_1
e_1_2_12_73_4
e_1_2_12_31_1
e_1_2_12_73_5
e_1_2_12_77_1
e_1_2_12_73_2
e_1_2_12_54_1
e_1_2_12_73_3
e_1_2_12_96_1
e_1_2_12_35_1
e_1_2_12_73_6
e_1_2_12_58_1
e_1_2_12_73_7
e_1_2_12_12_1
e_1_2_12_73_1
e_1_2_12_50_1
e_1_2_12_92_1
e_1_2_12_3_1
e_1_2_12_18_1
e_1_2_12_75_8
e_1_2_12_110_1
e_1_2_12_75_9
e_1_2_12_114_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_63_1
e_1_2_12_86_1
e_1_2_12_107_1
e_1_2_12_25_1
e_1_2_12_48_1
e_1_2_12_67_1
e_1_2_12_82_3
e_1_2_12_82_2
e_1_2_12_40_1
e_1_2_12_82_1
e_1_2_12_29_1
e_1_2_12_103_1
e_1_2_12_74_3
e_1_2_12_74_4
e_1_2_12_32_1
e_1_2_12_55_1
e_1_2_12_74_1
e_1_2_12_97_1
e_1_2_12_74_2
e_1_2_12_36_1
e_1_2_12_59_1
e_1_2_12_74_5
e_1_2_12_78_1
e_1_2_12_13_1
Sjöqvist E. (e_1_2_12_20_1) 2008; 1
e_1_2_12_7_1
e_1_2_12_51_1
e_1_2_12_70_1
e_1_2_12_93_1
e_1_2_12_4_1
e_1_2_12_19_1
e_1_2_12_38_1
e_1_2_12_113_1
e_1_2_12_41_1
e_1_2_12_87_1
e_1_2_12_106_1
e_1_2_12_22_1
e_1_2_12_64_1
e_1_2_12_45_1
e_1_2_12_26_1
e_1_2_12_68_1
e_1_2_12_83_1
e_1_2_12_60_1
e_1_2_12_49_1
e_1_2_12_102_1
e_1_2_12_75_2
e_1_2_12_52_1
e_1_2_12_75_3
e_1_2_12_98_1
e_1_2_12_118_1
e_1_2_12_33_1
e_1_2_12_75_6
e_1_2_12_56_1
e_1_2_12_75_7
e_1_2_12_75_4
e_1_2_12_37_1
e_1_2_12_75_5
e_1_2_12_79_1
e_1_2_12_14_1
e_1_2_12_90_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_94_1
e_1_2_12_71_1
e_1_2_12_5_1
e_1_2_12_1_1
e_1_2_12_16_1
e_1_2_12_112_1
e_1_2_12_39_1
e_1_2_12_116_1
e_1_2_12_42_1
e_1_2_12_65_1
e_1_2_12_88_1
e_1_2_12_109_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_69_1
e_1_2_12_80_1
e_1_2_12_61_1
e_1_2_12_84_1
Khazali M. (e_1_2_12_75_1) 2020; 10
e_1_2_12_27_1
e_1_2_12_101_1
e_1_2_12_105_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_76_1
e_1_2_12_99_1
e_1_2_12_117_1
e_1_2_12_34_1
e_1_2_12_57_1
e_1_2_12_15_1
e_1_2_12_91_1
e_1_2_12_11_1
e_1_2_12_72_1
e_1_2_12_95_1
e_1_2_12_9_1
References_xml – volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 84
  year: 2011
  publication-title: Phys. Rev. A
– volume: 91
  year: 2003
  publication-title: Phys. Rev. Lett.
– volume: 81
  year: 2010
  publication-title: Phys. Rev. A
– volume: 47
  start-page: 488
  year: 1993
  publication-title: Phys. Rev. D
– volume: 101
  year: 2020
  publication-title: Phys. Rev. A
– volume: 82 5 103 82 92 123 101
  start-page: 2313 110 6
  year: 2010 2009 2021 2010 2015 2019 2020
  publication-title: Rev. Mod. Phys. Nat. Phys. Phys. Rev. A Phys. Rev. A Phys. Rev. A Phys. Rev. Lett. Phys. Rev. A
– volume: 282
  start-page: 1686
  year: 1998
  publication-title: Science
– volume: 27 98 93
  year: 2018 2018 2016
  publication-title: Chin. Phys. B Phys. Rev. A Phys. Rev. A
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Res.
– volume: 100
  year: 2019
  publication-title: Phys. Rev. A
– volume: 6
  start-page: 713
  year: 2018
  publication-title: Photonics Res.
– volume: 16
  start-page: 857
  year: 2020
  publication-title: Nat. Phys.
– volume: 109
  start-page: 221
  year: 1994
  publication-title: J. Magn. Reson., Ser. A
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. A
– volume: 54
  year: 2021
  publication-title: J. Phys. A: Math. Theor.
– volume: 131
  start-page: 2766
  year: 1963
  publication-title: Phys. Rev.
– volume: 6
  start-page: 773
  year: 2012
  publication-title: Nat. Photonics
– volume: 75
  start-page: 4714
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 35
  start-page: 892
  year: 2018
  publication-title: J. Opt. Soc. Am. B
– volume: 41
  start-page: 303
  year: 1999
  publication-title: SIAM Rev.
– volume: 92
  year: 2015
  publication-title: Phys. Rev. A
– volume: 117
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 4
  year: 2018
  publication-title: Quantum Sci. Technol.
– volume: 79
  year: 2009
  publication-title: Phys. Rev. B
– volume: 403
  start-page: 869
  year: 2000
  publication-title: Nature
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 296
  start-page: 61
  year: 1998
  publication-title: Chem. Phys. Lett.
– volume: 18
  year: 2016
  publication-title: New J. Phys.
– volume: 7 10 14
  year: 2017 2018 2020
  publication-title: Phys. Rev. Appl. Phys. Rev. Appl. Phys. Rev. Appl.
– volume: 89
  year: 2014
  publication-title: Phys. Rev. A
– volume: 533
  year: 2021
  publication-title: Ann. Phys. (Berlin)
– volume: 5
  start-page: 115
  year: 2009
  publication-title: Nat. Phys.
– volume: 75
  start-page: 4710
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 392
  start-page: 45
  year: 1984
  publication-title: Proc. R. Soc. Lond., Ser. A
– volume: 10 49 121 98 91 89 111 82 100
  year: 2020 2016 2018 2018 2015 2014 2013 2010 2008
  publication-title: Phys. Rev. X J. Phys. B: At., Mol. Opt. Phys. Phys. Rev. Lett. Phys. Rev. A Phys. Rev. A Phys. Rev. A Phys. Rev. Lett. Phys. Rev. A Phys. Rev. Lett.
– volume: 264
  start-page: 94
  year: 1999
  publication-title: Phys. Lett. A
– volume: 414
  start-page: 883
  year: 2001
  publication-title: Nature
– volume: 14
  start-page: 1787
  year: 2015
  publication-title: Quantum Inf. Process.
– volume: 7
  year: 2017
  publication-title: Phys. Rev. Appl.
– volume: 10
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 421
  start-page: 48
  year: 2003
  publication-title: Nature
– volume: 95
  year: 2017
  publication-title: Phys. Rev. A
– volume: 98
  year: 2018
  publication-title: Phys. Rev. A
– volume: 3
  year: 2020
  publication-title: Adv. Quantum Technol.
– volume: 12
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 52
  start-page: 3457
  year: 1995
  publication-title: Phys. Rev. A
– volume: 29
  start-page: 8737
  year: 2021
  publication-title: Opt. Express
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 87
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 79
  start-page: 325
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 393
  start-page: 143
  year: 1998
  publication-title: Nature
– volume: 79
  year: 2009
  publication-title: Phys. Rev. A
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 733
  year: 1996
  publication-title: Rev. Mod. Phys.
– volume: 69
  start-page: 80
  year: 1980
  publication-title: Prog. Theor. Phys. Suppl.
– volume: 70
  year: 2004
  publication-title: Phys. Rev. A
– volume: 85 87 123 121 123
  start-page: 2208
  year: 2000 2001 2019 2018 2019
  publication-title: Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett. Phys. Rev. Lett.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. A
– volume: 454
  start-page: 339
  year: 1998
  publication-title: Proc. R. Soc. Lond., Ser. A
– volume: 75
  start-page: 346
  year: 1995
  publication-title: Phys. Rev. Lett.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 26
  start-page: 1484
  year: 1997
  publication-title: SIAM J. Comput.
– volume: 19
  start-page: 2037
  year: 2011
  publication-title: Opt. Express
– volume: 93
  year: 2016
  publication-title: Phys. Rev. A
– volume: 449
  start-page: 669
  year: 1995
  publication-title: Proc. R. Soc. Lond., Ser. A
– volume: 356
  start-page: 1717
  year: 1998
  publication-title: Philos. Trans. R. Soc., A
– volume: 4
  year: 2021
  publication-title: Adv. Quantum Technol.
– volume: 14
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 292
  start-page: 1695
  year: 2001
  publication-title: Science
– volume: 103
  year: 2021
  publication-title: Phys. Rev. A
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 14
  year: 2012
  publication-title: New J. Phys.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. A
– volume: 70
  start-page: 1187
  year: 1993
  publication-title: Phys. Rev. Lett.
– volume: 69
  start-page: 279
  year: 2015
  publication-title: Eur. Phys. J. D
– volume: 1
  start-page: 35
  year: 2008
  publication-title: Phys. Online J.
– volume: 58
  start-page: 1593
  year: 1987
  publication-title: Phys. Rev. Lett.
– year: 2020
– volume: 31
  start-page: 555
  year: 1935
  publication-title: Math. Proc. Cambridge Philos. Soc.
– volume: 30
  year: 2021
  publication-title: Chin. Phys. B
– volume: 47
  start-page: 777
  year: 1935
  publication-title: Phys. Rev.
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 536
  start-page: 63
  year: 2016
  publication-title: Nature
– volume: 52
  start-page: 2111
  year: 1984
  publication-title: Phys. Rev. Lett.
– volume: 270
  start-page: 255
  year: 1995
  publication-title: Science
– volume: 105
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. A
– volume: 10
  start-page: 277
  year: 1963
  publication-title: Phys. Rev. Lett.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. A
– ident: e_1_2_12_75_6
  doi: 10.1103/PhysRevA.89.030301
– ident: e_1_2_12_75_9
  doi: 10.1103/PhysRevLett.100.170504
– ident: e_1_2_12_61_1
  doi: 10.1038/414883a
– ident: e_1_2_12_66_1
  doi: 10.1007/s11128-015-0954-8
– ident: e_1_2_12_49_1
  doi: 10.1103/PhysRevA.100.062312
– ident: e_1_2_12_82_2
  doi: 10.1103/PhysRevA.98.032306
– ident: e_1_2_12_103_1
  doi: 10.1103/PhysRevA.96.062315
– volume: 1
  start-page: 35
  year: 2008
  ident: e_1_2_12_20_1
  publication-title: Phys. Online J.
– ident: e_1_2_12_74_1
  doi: 10.1103/PhysRevLett.85.2208
– ident: e_1_2_12_53_1
  doi: 10.1103/PhysRevA.84.042335
– ident: e_1_2_12_48_1
  doi: 10.1103/PhysRevLett.91.187902
– ident: e_1_2_12_52_1
  doi: 10.1103/PhysRevA.93.032313
– ident: e_1_2_12_96_1
  doi: 10.1103/PhysRevA.92.022333
– ident: e_1_2_12_8_1
  doi: 10.1103/PhysRevA.52.3457
– ident: e_1_2_12_60_1
  doi: 10.1098/rspa.1998.0164
– ident: e_1_2_12_106_1
  doi: 10.1088/2058-9565/aaf019
– ident: e_1_2_12_9_1
  doi: 10.1103/PhysRevLett.75.346
– ident: e_1_2_12_73_3
  doi: 10.1103/PhysRevA.103.022424
– ident: e_1_2_12_81_3
  doi: 10.1103/PhysRevApplied.14.054058
– ident: e_1_2_12_81_1
  doi: 10.1103/PhysRevApplied.7.064017
– ident: e_1_2_12_81_2
  doi: 10.1103/PhysRevApplied.10.034006
– ident: e_1_2_12_14_1
  doi: 10.1103/PhysRevD.47.488
– ident: e_1_2_12_75_8
  doi: 10.1103/PhysRevA.82.052326
– volume: 10
  year: 2020
  ident: e_1_2_12_75_1
  publication-title: Phys. Rev. X
– ident: e_1_2_12_19_1
  doi: 10.1126/science.1058835
– ident: e_1_2_12_117_1
  doi: 10.1103/PhysRevB.79.060507
– ident: e_1_2_12_107_1
  doi: 10.1103/PhysRevA.79.052504
– ident: e_1_2_12_59_1
  doi: 10.1038/nphoton.2012.259
– ident: e_1_2_12_6_1
  doi: 10.1017/S0305004100013554
– ident: e_1_2_12_115_1
  doi: 10.1103/PhysRevLett.117.170501
– ident: e_1_2_12_1_1
  doi: 10.1137/S0036144598347011
– ident: e_1_2_12_98_1
  doi: 10.1006/jmra.1994.1159
– ident: e_1_2_12_101_1
  doi: 10.1103/PhysRevA.95.022319
– ident: e_1_2_12_85_1
  doi: 10.1088/1674-1056/abd755
– ident: e_1_2_12_105_1
  doi: 10.1103/PhysRevLett.115.043003
– ident: e_1_2_12_68_1
  doi: 10.1103/PhysRevA.81.012322
– ident: e_1_2_12_38_1
  doi: 10.1103/PhysRevA.103.012205
– ident: e_1_2_12_25_1
  doi: 10.1103/PhysRevA.92.022320
– ident: e_1_2_12_44_1
  doi: 10.1103/PhysRevLett.109.170501
– ident: e_1_2_12_84_1
  doi: 10.1103/PhysRevA.103.012601
– ident: e_1_2_12_69_1
  doi: 10.1103/PhysRevLett.75.4714
– ident: e_1_2_12_82_1
  doi: 10.1088/1674-1056/27/11/110304
– ident: e_1_2_12_99_1
  doi: 10.1103/PhysRevA.102.062410
– ident: e_1_2_12_36_1
  doi: 10.1016/S0375-9601(99)00803-8
– ident: e_1_2_12_47_1
  doi: 10.1088/1367-2630/18/2/023001
– ident: e_1_2_12_58_1
  doi: 10.1016/S0009-2614(98)01015-X
– ident: e_1_2_12_75_5
  doi: 10.1103/PhysRevA.91.043402
– ident: e_1_2_12_54_1
  doi: 10.1103/PhysRevLett.124.230503
– ident: e_1_2_12_7_1
  doi: 10.1103/PhysRevLett.89.247902
– ident: e_1_2_12_23_1
  doi: 10.1103/PhysRevApplied.14.034003
– ident: e_1_2_12_71_1
  doi: 10.1364/OE.19.002037
– ident: e_1_2_12_110_1
  doi: 10.1038/nphys1183
– ident: e_1_2_12_42_1
  doi: 10.1103/PhysRevApplied.10.054051
– ident: e_1_2_12_3_1
  doi: 10.1103/PhysRevLett.79.325
– ident: e_1_2_12_94_1
  doi: 10.1103/PhysRevA.94.052310
– ident: e_1_2_12_73_5
  doi: 10.1103/PhysRevA.92.022336
– ident: e_1_2_12_74_3
  doi: 10.1103/PhysRevLett.123.170503
– ident: e_1_2_12_21_1
  doi: 10.1103/PhysRevLett.123.100501
– ident: e_1_2_12_62_1
  doi: 10.1103/RevModPhys.68.733
– ident: e_1_2_12_95_1
  doi: 10.1103/PhysRevA.89.022341
– ident: e_1_2_12_70_1
  doi: 10.1103/PhysRevLett.75.4710
– ident: e_1_2_12_112_1
  doi: 10.1140/epjd/e2015-60464-1
– ident: e_1_2_12_79_1
– ident: e_1_2_12_87_1
  doi: 10.1103/PhysRevA.89.052313
– ident: e_1_2_12_40_1
  doi: 10.1103/PhysRevLett.87.097901
– ident: e_1_2_12_34_1
  doi: 10.1103/PhysRevLett.52.2111
– ident: e_1_2_12_75_4
  doi: 10.1103/PhysRevA.98.022324
– ident: e_1_2_12_5_1
  doi: 10.1103/PhysRev.47.777
– ident: e_1_2_12_16_1
  doi: 10.1103/PhysRevLett.70.1187
– ident: e_1_2_12_50_1
  doi: 10.1103/PhysRevA.99.052309
– ident: e_1_2_12_4_1
  doi: 10.1126/science.282.5394.1686
– ident: e_1_2_12_22_1
  doi: 10.1103/PhysRevResearch.2.043130
– ident: e_1_2_12_116_1
  doi: 10.1103/PhysRevA.75.042308
– ident: e_1_2_12_78_1
  doi: 10.1103/PhysRevA.101.030301
– ident: e_1_2_12_93_1
  doi: 10.1103/PhysRevApplied.12.024024
– ident: e_1_2_12_109_1
  doi: 10.1103/PhysRevLett.104.010503
– ident: e_1_2_12_10_1
  doi: 10.1098/rspa.1995.0065
– ident: e_1_2_12_72_1
  doi: 10.1103/PhysRevLett.104.010502
– ident: e_1_2_12_13_1
  doi: 10.1103/PhysRevLett.10.277
– ident: e_1_2_12_91_1
  doi: 10.1364/PRJ.6.000713
– ident: e_1_2_12_97_1
  doi: 10.1103/PhysRevA.77.052334
– ident: e_1_2_12_27_1
  doi: 10.1103/PhysRevA.102.032627
– ident: e_1_2_12_41_1
  doi: 10.1103/PhysRevLett.89.097902
– ident: e_1_2_12_92_1
  doi: 10.1103/PhysRevA.70.034301
– ident: e_1_2_12_73_6
  doi: 10.1103/PhysRevLett.123.230501
– ident: e_1_2_12_111_1
  doi: 10.1364/JOSAB.35.000892
– ident: e_1_2_12_28_1
  doi: 10.1103/PhysRevApplied.14.054062
– ident: e_1_2_12_30_1
  doi: 10.1364/OE.418626
– ident: e_1_2_12_15_1
  doi: 10.1098/rsta.1998.0244
– ident: e_1_2_12_35_1
  doi: 10.1103/PhysRevA.101.062306
– ident: e_1_2_12_74_5
  doi: 10.1103/PhysRevLett.123.170503
– ident: e_1_2_12_46_1
  doi: 10.1103/PhysRevA.92.052302
– ident: e_1_2_12_33_1
  doi: 10.1098/rspa.1984.0023
– ident: e_1_2_12_57_1
  doi: 10.1364/OE.393444
– ident: e_1_2_12_73_4
  doi: 10.1103/PhysRevA.82.030306
– ident: e_1_2_12_39_1
  doi: 10.1103/PhysRevA.92.022320
– ident: e_1_2_12_45_1
  doi: 10.1103/PhysRevA.94.052310
– ident: e_1_2_12_73_7
  doi: 10.1103/PhysRevA.101.062309
– ident: e_1_2_12_64_1
  doi: 10.1103/PhysRevLett.105.040504
– ident: e_1_2_12_51_1
  doi: 10.1103/PhysRevA.95.032311
– ident: e_1_2_12_102_1
  doi: 10.1103/PhysRevA.96.042335
– ident: e_1_2_12_31_1
  doi: 10.1002/andp.202100057
– ident: e_1_2_12_29_1
  doi: 10.1103/PhysRevA.98.052315
– ident: e_1_2_12_83_1
  doi: 10.1103/PhysRevA.103.062607
– ident: e_1_2_12_26_1
  doi: 10.1103/PhysRevApplied.7.054022
– ident: e_1_2_12_82_3
  doi: 10.1103/PhysRevA.93.012306
– ident: e_1_2_12_74_4
  doi: 10.1103/PhysRevLett.121.123603
– ident: e_1_2_12_75_2
  doi: 10.1088/0953-4075/49/9/094004
– ident: e_1_2_12_65_1
  doi: 10.1038/nature18648
– ident: e_1_2_12_56_1
  doi: 10.1038/30181
– ident: e_1_2_12_43_1
  doi: 10.1088/1367-2630/14/10/103035
– ident: e_1_2_12_55_1
– ident: e_1_2_12_114_1
  doi: 10.1103/PhysRevLett.104.083001
– ident: e_1_2_12_17_1
  doi: 10.1103/PhysRevLett.58.1593
– ident: e_1_2_12_77_1
  doi: 10.1038/s41567-020-0903-z
– ident: e_1_2_12_88_1
  doi: 10.1103/PhysRevA.103.052402
– ident: e_1_2_12_12_1
  doi: 10.1103/PhysRev.131.2766
– ident: e_1_2_12_75_7
  doi: 10.1103/PhysRevLett.111.033606
– ident: e_1_2_12_73_2
  doi: 10.1038/nphys1178
– ident: e_1_2_12_90_1
  doi: 10.1002/qute.202000098
– ident: e_1_2_12_63_1
  doi: 10.1126/science.270.5234.255
– ident: e_1_2_12_67_1
  doi: 10.1038/nature01336
– ident: e_1_2_12_76_1
  doi: 10.1103/PhysRevLett.119.160502
– ident: e_1_2_12_73_1
  doi: 10.1103/RevModPhys.82.2313
– ident: e_1_2_12_75_3
  doi: 10.1103/PhysRevLett.121.123605
– ident: e_1_2_12_89_1
  doi: 10.1002/qute.201900119
– ident: e_1_2_12_86_1
  doi: 10.1103/PhysRevA.95.022317
– ident: e_1_2_12_18_1
  doi: 10.1038/35002528
– ident: e_1_2_12_80_1
  doi: 10.1038/nphys1183
– ident: e_1_2_12_32_1
  doi: 10.1103/PhysRevA.103.052612
– ident: e_1_2_12_100_1
  doi: 10.1103/PhysRevLett.110.263201
– ident: e_1_2_12_113_1
  doi: 10.1088/1367-2630/14/9/093040
– ident: e_1_2_12_108_1
  doi: 10.1103/PhysRevA.102.042607
– ident: e_1_2_12_37_1
  doi: 10.1103/PhysRevA.95.052349
– ident: e_1_2_12_24_1
  doi: 10.1103/PhysRevA.98.052315
– ident: e_1_2_12_104_1
  doi: 10.1103/PhysRevLett.114.100503
– ident: e_1_2_12_2_1
  doi: 10.1137/S0097539795293172
– ident: e_1_2_12_74_2
  doi: 10.1103/PhysRevLett.87.037901
– ident: e_1_2_12_118_1
  doi: 10.1088/1751-8121/abdba1
– ident: e_1_2_12_11_1
  doi: 10.1143/PTPS.69.80
SSID ssj0002313473
Score 2.226315
Snippet Deutsch–Jozsa (DJ) algorithm, as the first example of quantum algorithm, performs better than any classical algorithm for distinguishing balance and constant...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Deutsch–Jozsa algorithm
geometric quantum computation
Rydberg atoms
Title Realization of Deutsch–Jozsa Algorithm in Rydberg Atoms by Composite Nonadiabatic Holonomic Quantum Computation with Strong Robustness Against Systematic Errors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202100093
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2511-9044
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0002313473
  issn: 2511-9044
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVcBwV6Kbqi6QYeCvRgKBVFrUe1cWAETYAkNpCeDFKiHAGxldjSITn1H_oH_bT-RW8dLqJlJN1yEQSSomDP82x-M0ToHWWUsIIIx4145visYA4TPHCSPAl5EuTEjWW988FhOJr4-6fBaa_3s8Naamq-k13fWldyF6nCGMhVVsn-h2TtpjAA9yBfuIKE4fpPMj4GL8_UUUqnb1c0NQSrLX-B7lfXKzZIz2fVsqzP5jK1cXyVS0LXIK2r-Uq6nlIfSN6WGBxWqk8BVy1cR6ATVcGyZH2CWZoP9PEP-l0qeXsik-gzSc1uVrVSmOmMleBtmi7oap_hclmZ_4vaVrct6eDSbFy3yf1SZ4C7zU81V6hsFAplaXZLzfjYWlxJHWpUunevsbNHgHk7_cVUV4jSzsP9zYT5WdV0UyAeMbWAVlPKMMlJXN1IckfcMmZUvd9FNOkYfWsSb1gU3aH2slE9VT2iUkBr29nyBezK4M9rleNwNBkP7fw9tOWBQXL7aCvdPfh8YhOE4HhTXzEk7Edpm4663ofNl2w4Vd0gS3lJ40fooQlvcKqx-hj1xOIJuq9oxtnqKfreQSyuCmwQ--PrN4VVbLGKywU2WMUKq5hfYYtV3MUqtljFBqu4g1UssYo1VvEaq9hgFa-xijVWn6HJ3nD8aeSYU0KczANn24m9okiyXDAITCgjERMQJAc5LWiYuRzGoowVFMIOFgWcJyyKGGFeHGVhQCOSE_oc9RfVQrxAGLzrKAxlcTiPfeqBT8LhUdBWNAsJi8Nt5LRf8zQzLfTlSS7nU93825tKsUytWLbRe7v-QjeP-e1KT0ntL8umG9B5eZeHXqEH65_Qa9Svl414A351zd8aBP4CxJDL0A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realization+of+Deutsch%E2%80%93Jozsa+Algorithm+in+Rydberg+Atoms+by+Composite+Nonadiabatic+Holonomic+Quantum+Computation+with+Strong+Robustness+Against+Systematic+Errors&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Liu%2C+Bing%E2%80%90Bing&rft.au=Guo%2C+Fu%E2%80%90Qiang&rft.au=Yan%2C+Lei%E2%80%90Lei&rft.au=Zhang%2C+Shou&rft.date=2021-11-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=4&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202100093&rft.externalDBID=10.1002%252Fqute.202100093&rft.externalDocID=QUTE202100093
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon