Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high‐capacity lithium‐ion battery

Summary With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of energy research Vol. 46; no. 2; pp. 786 - 794
Main Authors Tran, Manh‐Kien, Panchal, Satyam, Chauhan, Vedang, Brahmbhatt, Niku, Mevawalla, Anosh, Fraser, Roydon, Fowler, Michael
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Inc 01.02.2022
Subjects
Online AccessGet full text
ISSN0363-907X
1099-114X
DOI10.1002/er.7202

Cover

Abstract Summary With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and reliable battery modeling is important for the BMS to function properly. Currently, many BMS applications use the equivalent circuit model due to its simplicity. However, with the development of a cloud BMS, machine learning battery models can be utilized, which can potentially improve the accuracy and reliability of the BMS. This work investigates the performance of four different machine learning models used to predict the thermal (temperature) and electrical (voltage) behaviors of Li‐ion battery cells. A prismatic Li‐ion battery cell with a capacity of 25 Ah was cycled under a constant current profile at three different ambient temperatures, and the surface temperature and voltage of the battery were measured. The four machine learning regression models—linear regression, k‐nearest neighbors, random forest, and decision tree—were developed using the scikit‐learn library in Python and validated with experimental data. The results of their performance were reported and compared using the R2 metric. The decision tree‐based model, with an R2 score of 0.99, was determined to be the best model in this case study.
AbstractList Summary With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and reliable battery modeling is important for the BMS to function properly. Currently, many BMS applications use the equivalent circuit model due to its simplicity. However, with the development of a cloud BMS, machine learning battery models can be utilized, which can potentially improve the accuracy and reliability of the BMS. This work investigates the performance of four different machine learning models used to predict the thermal (temperature) and electrical (voltage) behaviors of Li‐ion battery cells. A prismatic Li‐ion battery cell with a capacity of 25 Ah was cycled under a constant current profile at three different ambient temperatures, and the surface temperature and voltage of the battery were measured. The four machine learning regression models—linear regression, k‐nearest neighbors, random forest, and decision tree—were developed using the scikit‐learn library in Python and validated with experimental data. The results of their performance were reported and compared using the R2 metric. The decision tree‐based model, with an R2 score of 0.99, was determined to be the best model in this case study.
With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and reliable battery modeling is important for the BMS to function properly. Currently, many BMS applications use the equivalent circuit model due to its simplicity. However, with the development of a cloud BMS, machine learning battery models can be utilized, which can potentially improve the accuracy and reliability of the BMS. This work investigates the performance of four different machine learning models used to predict the thermal (temperature) and electrical (voltage) behaviors of Li‐ion battery cells. A prismatic Li‐ion battery cell with a capacity of 25 Ah was cycled under a constant current profile at three different ambient temperatures, and the surface temperature and voltage of the battery were measured. The four machine learning regression models—linear regression, k‐nearest neighbors, random forest, and decision tree—were developed using the scikit‐learn library in Python and validated with experimental data. The results of their performance were reported and compared using the R2 metric. The decision tree‐based model, with an R2 score of 0.99, was determined to be the best model in this case study.
Author Panchal, Satyam
Mevawalla, Anosh
Fowler, Michael
Tran, Manh‐Kien
Fraser, Roydon
Chauhan, Vedang
Brahmbhatt, Niku
Author_xml – sequence: 1
  givenname: Manh‐Kien
  orcidid: 0000-0001-9937-1749
  surname: Tran
  fullname: Tran, Manh‐Kien
  email: kmtran@uwaterloo.ca
  organization: University of Waterloo
– sequence: 2
  givenname: Satyam
  orcidid: 0000-0001-8152-0451
  surname: Panchal
  fullname: Panchal, Satyam
  organization: University of Waterloo
– sequence: 3
  givenname: Vedang
  surname: Chauhan
  fullname: Chauhan, Vedang
  organization: Western New England University
– sequence: 4
  givenname: Niku
  surname: Brahmbhatt
  fullname: Brahmbhatt, Niku
  organization: ASIA Campus
– sequence: 5
  givenname: Anosh
  surname: Mevawalla
  fullname: Mevawalla, Anosh
  organization: University of Waterloo
– sequence: 6
  givenname: Roydon
  surname: Fraser
  fullname: Fraser, Roydon
  organization: University of Waterloo
– sequence: 7
  givenname: Michael
  surname: Fowler
  fullname: Fowler, Michael
  organization: University of Waterloo
BookMark eNp1kN9KwzAUxoNMcJviKwS88EI6k7Rr10sZ8w8MFFHYXUnT0zWzTWqSIb3zEfaMPonp5pXo1eE734_v_BmhgdIKEDqnZEIJYddgJgkj7AgNKUnTgNJoNUBDEsZhkJJkdYJG1m4I8R5Nhmj31LlKq6_PXc4tFNgK-SadlzVwo3DDRSUV4L2Sao0bXUBtcakNdhWYhteYqwJDDcIZKbxswXi34UoAbg0UUjipFdYlruS68smCt1xI1-FaukpuG9_qgZw7B6Y7Rcclry2c_dQxer1dvMzvg-Xj3cP8ZhkINktZACWnIZmVOU2mRMRClGEa0QTyGdCIMeAxgTgpplHI0ignwHwfpnEaT0tSpCQMx-jikNsa_b4F67KN3hrlR2YsZowlPph5KjhQwmhrDZSZ35z3BznDZZ1RkvVPz8Bk_dM9f_mLb41suOn-IK8O5IesofsPyxbPe_ob5heX4Q
CitedBy_id crossref_primary_10_1016_j_energy_2025_135504
crossref_primary_10_1016_j_egyr_2024_08_042
crossref_primary_10_1109_TASE_2024_3435443
crossref_primary_10_1007_s44163_024_00169_6
crossref_primary_10_1016_j_egyr_2023_08_043
crossref_primary_10_1016_j_cscm_2023_e02254
crossref_primary_10_1016_j_energy_2024_130773
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123486
crossref_primary_10_1016_j_est_2022_105141
crossref_primary_10_1016_j_applthermaleng_2024_123747
crossref_primary_10_1016_j_tsep_2022_101282
crossref_primary_10_1115_1_4066015
crossref_primary_10_1007_s11581_025_06063_0
crossref_primary_10_1109_ACCESS_2025_3532858
crossref_primary_10_1016_j_est_2025_115914
crossref_primary_10_1016_j_rineng_2024_103047
crossref_primary_10_1016_j_rser_2023_113280
crossref_primary_10_3390_batteries9070385
crossref_primary_10_1016_j_molliq_2023_123822
crossref_primary_10_1155_2023_5513446
crossref_primary_10_1007_s12239_023_0122_6
crossref_primary_10_3390_pr9122263
crossref_primary_10_1016_j_est_2023_106904
crossref_primary_10_1063_5_0222001
crossref_primary_10_3390_batteries8110199
crossref_primary_10_1016_j_est_2024_113217
crossref_primary_10_3390_app14093725
crossref_primary_10_1016_j_tws_2023_110947
crossref_primary_10_1016_j_ijleo_2022_170494
crossref_primary_10_1063_5_0230376
crossref_primary_10_1149_1945_7111_acfcdb
crossref_primary_10_3390_en15113930
crossref_primary_10_1016_j_egyr_2022_06_028
crossref_primary_10_1016_j_matpr_2023_06_345
crossref_primary_10_3390_genes14010071
crossref_primary_10_1007_s43236_024_00851_z
crossref_primary_10_1016_j_est_2022_104624
crossref_primary_10_1021_acs_jced_4c00234
crossref_primary_10_1177_09544070241242825
crossref_primary_10_1016_j_energy_2022_124812
crossref_primary_10_1080_01431161_2024_2409995
crossref_primary_10_1002_est2_70111
crossref_primary_10_1007_s12144_022_04119_2
crossref_primary_10_1016_j_est_2023_106789
crossref_primary_10_1002_aic_18182
crossref_primary_10_1016_j_nantod_2025_102660
crossref_primary_10_1007_s13369_023_08686_9
crossref_primary_10_1021_acs_energyfuels_2c04243
crossref_primary_10_1080_00295639_2024_2437916
crossref_primary_10_1016_j_nxsust_2025_100114
crossref_primary_10_1016_j_nxener_2024_100153
crossref_primary_10_1016_j_applthermaleng_2022_118530
crossref_primary_10_3390_math11173667
crossref_primary_10_47836_pjst_32_2_20
crossref_primary_10_1016_j_est_2025_115656
crossref_primary_10_1016_j_energy_2022_123851
crossref_primary_10_1016_j_energy_2022_123853
crossref_primary_10_3390_en17020535
crossref_primary_10_3390_en17122840
crossref_primary_10_3390_pr13010046
crossref_primary_10_1016_j_trechm_2024_04_007
crossref_primary_10_3390_app14156648
crossref_primary_10_1016_j_energy_2022_125234
crossref_primary_10_1021_acs_jpcc_4c03846
crossref_primary_10_1016_j_est_2023_109248
crossref_primary_10_3390_en16134897
crossref_primary_10_1007_s10836_024_06133_7
crossref_primary_10_1002_er_8665
crossref_primary_10_1016_j_est_2022_104720
crossref_primary_10_1016_j_est_2022_104289
crossref_primary_10_1016_j_est_2022_105059
crossref_primary_10_3390_app14062306
crossref_primary_10_1016_j_nexres_2024_100119
crossref_primary_10_1007_s12598_023_02445_3
crossref_primary_10_1109_TIA_2023_3327227
crossref_primary_10_4108_eetsis_3839
crossref_primary_10_1115_1_4067254
crossref_primary_10_1016_j_jpowsour_2024_234272
crossref_primary_10_1016_j_ijft_2024_100897
crossref_primary_10_1016_j_tws_2023_110574
crossref_primary_10_1109_TEC_2022_3178600
crossref_primary_10_3390_environments11070139
crossref_primary_10_1007_s11581_021_04337_x
crossref_primary_10_3390_batteries10030089
crossref_primary_10_1016_j_ces_2023_119553
crossref_primary_10_20964_2022_03_40
crossref_primary_10_1016_j_est_2024_115132
crossref_primary_10_1109_TTE_2022_3170230
crossref_primary_10_1007_s41060_024_00686_8
crossref_primary_10_3390_ai5040120
crossref_primary_10_3390_en16010460
crossref_primary_10_36548_jaicn_2024_1_003
crossref_primary_10_3390_atmos13060897
crossref_primary_10_1002_er_8538
crossref_primary_10_1016_j_cscee_2024_100881
crossref_primary_10_1016_j_est_2023_106688
Cites_doi 10.1038/s41578-020-0216-y
10.1016/j.pecs.2019.03.002
10.3390/batteries6010001
10.1016/j.jpowsour.2020.227935
10.1016/j.apenergy.2015.03.080
10.3390/vehicles2030021
10.1016/j.enconman.2017.08.016
10.1016/j.est.2020.101557
10.3390/en13071638
10.1007/978-0-387-78189-1
10.1016/j.jpowsour.2012.10.060
10.1016/j.est.2020.101785
10.1155/2013/953792
10.3390/en4111840
10.1016/j.enconman.2012.02.023
10.1016/j.jpowsour.2010.12.107
10.3390/a13030062
10.3390/en11092191
10.3390/a13070158
10.3390/vehicles3010002
10.1109/TTE.2015.2512237
10.3390/wevj12020054
10.1016/j.egypro.2018.12.046
10.1016/j.jpowsour.2018.06.104
10.1016/j.est.2020.101231
10.3390/batteries7030051
10.1016/j.est.2021.102471
10.1016/j.jpowsour.2005.07.014
10.1109/TVT.2010.2089647
10.1016/j.ijhydene.2016.06.243
10.3390/batteries6040061
10.1016/j.eswa.2011.03.063
10.1038/s42256-020-0156-7
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
DOI 10.1002/er.7202
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Oceanic Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Sciences and Pollution Management
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-114X
EndPage 794
ExternalDocumentID 10_1002_er_7202
ER7202
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BKSAR
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
H13
HCIFZ
HF~
HHY
HVGLF
HZ~
H~9
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PIMPY
PTHSS
PYCSY
Q.N
Q11
QB0
QRW
R.K
RHX
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SP
7ST
7TB
7TN
8FD
C1K
F1W
F28
FR3
H96
KR7
L.G
L7M
SOI
ID FETCH-LOGICAL-c2892-efa1308fb1750c6ccf39417eb8e1422ea60e67d543294b0e28e1e56965f0d9033
IEDL.DBID DR2
ISSN 0363-907X
IngestDate Wed Aug 13 07:15:59 EDT 2025
Wed Oct 01 02:18:52 EDT 2025
Thu Apr 24 23:00:06 EDT 2025
Wed Jan 22 16:27:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2892-efa1308fb1750c6ccf39417eb8e1422ea60e67d543294b0e28e1e56965f0d9033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8152-0451
0000-0001-9937-1749
PQID 2622271752
PQPubID 996365
PageCount 9
ParticipantIDs proquest_journals_2622271752
crossref_citationtrail_10_1002_er_7202
crossref_primary_10_1002_er_7202
wiley_primary_10_1002_er_7202_ER7202
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Bognor Regis
PublicationTitle International journal of energy research
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2012; 61
2021; 7
2021; 3
2019; 73
2015; 148
2013; 226
2011; 60
2018; 400
2008
2017; 150
2020; 13
2011; 12
2020; 32
2011; 4
2011; 196
2011; 38
2020; 6
2021; 37
2020; 5
2020; 2
2021; 12
2016; 2
2013; 2013
2020; 30
2020
2020; 28
2019; 159
2006; 162
2016; 41
2017
2020; 455
2018; 11
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Géron A (e_1_2_8_36_1) 2017
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Reback J (e_1_2_8_34_1) 2020
Pedregosa F (e_1_2_8_32_1) 2011; 12
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 11
  start-page: 2191
  issue: 9
  year: 2018
  article-title: Li‐ion battery fire hazards and safety strategies
  publication-title: Energies
– volume: 41
  issue: 45
  year: 2016
  article-title: Overview of energy storage in renewable energy systems
  publication-title: Int J Hydrogen Energy
– volume: 32
  year: 2020
  article-title: Effect of integrating the hysteresis component to the equivalent circuit model of Lithium‐ion battery for dynamic and non‐dynamic applications
  publication-title: J Energy Storage
– volume: 162
  start-page: 809
  year: 2006
  end-page: 812
  article-title: Recent developments and likely advances in lithium‐ion batteries
  publication-title: J Power Sources
– volume: 12
  start-page: 54
  issue: 2
  year: 2021
  article-title: A review of range extenders in battery electric vehicles: current progress and future perspectives
  publication-title: World Electr Veh J
– volume: 61
  start-page: 19
  year: 2012
  end-page: 30
  article-title: A sustainability assessment of electric vehicles as a personal mobility system
  publication-title: Energy Conver Manage
– volume: 2
  start-page: 398
  issue: 3
  year: 2020
  end-page: 412
  article-title: Environmental and economic benefits of a battery electric vehicle powertrain with a zinc–air range extender in the transition to electric vehicles
  publication-title: Vehicles
– volume: 28
  year: 2020
  article-title: Strategies to limit degradation and maximize Li‐ion battery service lifetime ‐ critical review and guidance for stakeholders
  publication-title: J Energy Storage
– volume: 6
  start-page: 1
  issue: 1
  year: 2020
  end-page: 16
  article-title: Sensor fault detection and isolation for degrading lithium‐ion batteries in electric vehicles using parameter estimation with recursive least squares
  publication-title: Batteries
– volume: 6
  start-page: 61
  issue: 4
  year: 2020
  article-title: Mathematical heat transfer modeling and experimental validation of lithium‐ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode‐cathode irreversible and reversible heat
  publication-title: Batteries
– volume: 2
  start-page: 161
  year: 2020
  end-page: 170
  article-title: Predicting the state of charge and health of batteries using data‐driven machine learning
  publication-title: Nat Mach Intell
– volume: 37
  year: 2021
  article-title: One dimensional fast computational partial differential model for heat transfer in lithium‐ion batteries
  publication-title: J Energy Storage
– volume: 13
  start-page: 158
  issue: 7
  year: 2020
  article-title: Fuzzy C‐means clustering algorithm with multiple fuzzification coefficients
  publication-title: Algorithms
– volume: 13
  start-page: 1638
  issue: 7
  year: 2020
  article-title: High Reynold's number turbulent model for micro‐channel cold plate using reverse engineering approach for water‐cooled battery in electric vehicles
  publication-title: Energies
– volume: 38
  year: 2011
  article-title: Intelligent prognostics for battery health monitoring based on sample entropy
  publication-title: Expert Syst Appl
– volume: 30
  year: 2020
  article-title: Digital twin for battery systems: cloud battery management system with online state‐of‐charge and state‐of‐health estimation
  publication-title: J Energy Storage
– volume: 60
  start-page: 76
  issue: 1
  year: 2011
  end-page: 88
  article-title: Battery‐management system (BMS) and SOC development for electrical vehicles
  publication-title: IEEE Trans Veh Technol
– year: 2020
  article-title: Pandas‐dev/pandas: Pandas 1.0.5
  publication-title: Zenobo
– volume: 196
  start-page: 4826
  issue: 10
  year: 2011
  end-page: 4831
  article-title: Equivalent circuit model parameters of a high‐power Li‐ion battery: thermal and state of charge effects
  publication-title: J Power Sources
– volume: 3
  start-page: 20
  issue: 1
  year: 2021
  end-page: 32
  article-title: Design of a hybrid electric vehicle powertrain for performance optimization considering various powertrain components and configurations
  publication-title: Vehicles
– volume: 148
  start-page: 403
  year: 2015
  end-page: 409
  article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced‐air cooling
  publication-title: Appl Energy
– volume: 4
  start-page: 1840
  issue: 11
  year: 2011
  end-page: 1857
  article-title: Battery management systems in electric and hybrid vehicles
  publication-title: Energies
– volume: 226
  start-page: 272
  year: 2013
  end-page: 288
  article-title: A review on the key issues for lithium‐ion battery management in electric vehicles
  publication-title: J Power Sources
– volume: 2
  start-page: 140
  issue: 2
  year: 2016
  end-page: 149
  article-title: Advanced machine learning approach for lithium‐ion battery state estimation in electric vehicles
  publication-title: IEEE Trans Transp Elect
– year: 2008
– volume: 5
  start-page: 725
  year: 2020
  end-page: 727
  article-title: Machine learning for continuous innovation in battery technologies
  publication-title: Nat Rev Mater
– volume: 159
  start-page: 168
  year: 2019
  end-page: 173
  article-title: Lithium‐ion battery modeling based on big data
  publication-title: Energy Procedia
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 73
  start-page: 95
  year: 2019
  end-page: 131
  article-title: A review of lithium ion battery failure mechanisms and fire prevention strategies
  publication-title: Prog Energy Combust Sci
– volume: 13
  start-page: 62
  issue: 3
  year: 2020
  article-title: A review of lithium‐ion battery fault diagnostic algorithms: current progress and future challenges
  publication-title: Algorithms
– volume: 7
  start-page: 51
  issue: 3
  year: 2021
  article-title: Comparative study of equivalent circuit models performance in four common lithium‐ion batteries: LFP, NMC, LMO, NCA
  publication-title: Batteries
– volume: 455
  year: 2020
  article-title: Co‐estimation of lithium‐ion battery state of charge and state of temperature based on a hybrid electrochemical‐thermal‐neural‐network model
  publication-title: J Power Sources
– year: 2017
– volume: 150
  start-page: 304
  year: 2017
  end-page: 330
  article-title: Thermal issues about Li‐ion batteries and recent progress in battery thermal management systems: a review
  publication-title: Energy Conver Manage
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 7
  article-title: The state of charge estimating methods for battery: a review
  publication-title: ISRN Appl Math
– volume: 400
  start-page: 242
  year: 2018
  end-page: 255
  article-title: State‐of‐charge estimation of Li‐ion batteries using deep neural networks: a machine learning approach
  publication-title: J Power Sources
– ident: e_1_2_8_38_1
  doi: 10.1038/s41578-020-0216-y
– ident: e_1_2_8_12_1
  doi: 10.1016/j.pecs.2019.03.002
– ident: e_1_2_8_19_1
  doi: 10.3390/batteries6010001
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jpowsour.2020.227935
– ident: e_1_2_8_5_1
  doi: 10.1016/j.apenergy.2015.03.080
– ident: e_1_2_8_4_1
  doi: 10.3390/vehicles2030021
– ident: e_1_2_8_13_1
  doi: 10.1016/j.enconman.2017.08.016
– ident: e_1_2_8_33_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.est.2020.101557
– ident: e_1_2_8_10_1
  doi: 10.3390/en13071638
– ident: e_1_2_8_35_1
  doi: 10.1007/978-0-387-78189-1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jpowsour.2012.10.060
– ident: e_1_2_8_24_1
  doi: 10.1016/j.est.2020.101785
– ident: e_1_2_8_22_1
  doi: 10.1155/2013/953792
– ident: e_1_2_8_17_1
  doi: 10.3390/en4111840
– ident: e_1_2_8_2_1
  doi: 10.1016/j.enconman.2012.02.023
– ident: e_1_2_8_23_1
  doi: 10.1016/j.jpowsour.2010.12.107
– ident: e_1_2_8_20_1
  doi: 10.3390/a13030062
– ident: e_1_2_8_14_1
  doi: 10.3390/en11092191
– ident: e_1_2_8_25_1
  doi: 10.3390/a13070158
– volume-title: Hands‐on Machine Learning With Scikit‐Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems
  year: 2017
  ident: e_1_2_8_36_1
– ident: e_1_2_8_6_1
  doi: 10.3390/vehicles3010002
– ident: e_1_2_8_29_1
  doi: 10.1109/TTE.2015.2512237
– ident: e_1_2_8_16_1
  doi: 10.3390/wevj12020054
– ident: e_1_2_8_27_1
  doi: 10.1016/j.egypro.2018.12.046
– ident: e_1_2_8_30_1
  doi: 10.1016/j.jpowsour.2018.06.104
– ident: e_1_2_8_9_1
  doi: 10.1016/j.est.2020.101231
– ident: e_1_2_8_8_1
  doi: 10.3390/batteries7030051
– ident: e_1_2_8_15_1
  doi: 10.1016/j.est.2021.102471
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_32_1
  article-title: Scikit‐learn: machine learning in python
  publication-title: J Mach Learn Res
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jpowsour.2005.07.014
– year: 2020
  ident: e_1_2_8_34_1
  article-title: Pandas‐dev/pandas: Pandas 1.0.5
  publication-title: Zenobo
– ident: e_1_2_8_21_1
  doi: 10.1109/TVT.2010.2089647
– ident: e_1_2_8_3_1
  doi: 10.1016/j.ijhydene.2016.06.243
– ident: e_1_2_8_11_1
  doi: 10.3390/batteries6040061
– ident: e_1_2_8_28_1
  doi: 10.1016/j.eswa.2011.03.063
– ident: e_1_2_8_31_1
  doi: 10.1038/s42256-020-0156-7
SSID ssj0009917
Score 2.6249719
Snippet Summary With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion)...
With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 786
SubjectTerms Ambient temperature
Batteries
battery modeling
Circuits
Decision trees
Electric potential
Electric vehicles
Equivalent circuits
Learning algorithms
Lithium
Lithium-ion batteries
lithium‐ion battery
Machine learning
multivariate multioutput regression
Performance prediction
Rechargeable batteries
Regression analysis
Regression models
scikit‐learn
Surface temperature
thermal modeling
Voltage
Title Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high‐capacity lithium‐ion battery
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.7202
https://www.proquest.com/docview/2622271752
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  issn: 0363-907X
  databaseCode: ADMLS
  dateStart: 20050610
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0363-907X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-114X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009917
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xTc5iLeubZJmt0cRZREUEYXFS0nSiYruuuzjoCd_gr_RX-JM2n2oCOKpNE1C2sx0vkky3zC2X0iFepCmkQCrIqVlEhlhXBQbL0WswMuwFXN-oZs36qyVtqZSfZX8EOMFN9KM8L8mBTe2fzghDYVerS4CjWQidXCmribEUYh66qNdSnT_WmW4LLU8rNp9tUMTcDkNUYONOV1kt6PRlUdLHmvDga2512_Ejf8a_hJbqJAnPypFZZnNQGeFzU_xEa6y98sXohL4eHsn41ZwNI-PDwO8DbkleDscvAReZZq44yGNTp8j7uWEI9vYvekUvEytQ7PPu5O4BN7t0aYQCQJ_9px4krFnh8baoSfA0R24fxi2sYgq2ED7-bLGbk5Pro-bUZWyIXLouYkIvEGj2PAWUUnstHNeZiqpg20ALTaB0THoepEqKTJlYxBYDqnOdOrjIoulXGeznecObDDuhW8Yl2YgIFPCNjInEdvYLDGJA2HVJjsYTWDuKj5zSqvxlJdMzCKHXk6feJPxccVuSeHxs8rOSALySof7udAUJ4wvgo_3w1T-1jw_uaLL1t-qbbM5QTEU4ej3Dpsd9Iawi8hmYPeCEH8CB0D7fA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHIADO2LHB8QtJbUdtzkiBCqrEAKpEocodsZQQUtV2kM58Qn9Rr6EGSelLEJCnKI4YyuOx5k3tucNYzuZVDgPoigQYFSgtCwHqUhtEKZOilCBk34r5vxC127UST2qF6cqKRYm54f4WHCjmeH_1zTBaUF6b8QaCp1SRRCP5ITS6KUQILoaUUch7qkM9ynRAaznAbNUda-o-NUSjeDlZ5DqrczRLLsdvl9-uOSh1Ouakn35Rt34vw7MsZkCfPL9XFvm2Ri0Ftj0J0rCRTa47BObwNvrgOxbxtFCPjS6eOvTS_CmP3sJvEg2ccd9Jp1njtCXE5RsYvNpK-N5dh1SAN4ehSbwdof2hUgX-JPjRJWMLVu01xadAY4ewX2j18QiEjCe-bO_xG6ODq8PakGRtSGw6LyJAFyKdrHqDAKT0GprnYxVuQKmCrTeBKkOQVeySEkRKxOCwHKIdKwjF2ZxKOUyG289tWCFcSdcNbVRDAJiJUw1thLhjYnLadmCMGqV7Q5HMLEFpTll1nhMcjJmkUAnoU-8yviHYDtn8fgpsjFUgaSYxs-J0BQqjB3Bxzt-LH-rnhxe0WXtb2LbbLJ2fX6WnB1fnK6zKUEhFf4k-AYb73Z6sIlAp2u2vEa_A65q_50
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIHrwLb7NQbx17SZptzmKuvhGRGHBQ2nSiYruuqy7Bz35E_yN_hJn0q7rA0E8laZJaJpJ55tk5hvGNnKpcB1EUSDAqEDFshpkIrNBmDkpQgVO-qOYk9N4_1IdNqJG6VVJsTAFP8THhhutDP-_pgUO7dxtDVhDoVOpCeKRHFGRTsidb_d8QB2FuKfWP6dEA7BRBMxS062y4VdNNICXn0Gq1zL1SXbVf7_CueSu0uuain3-Rt34vwFMsYkSfPLtQlqm2RC0Ztj4J0rCWfZ69kRsAm8vr6Tfco4a8u62i7c-vQRvet9L4GWyiWvuM-k8coS-nKBkE7vPWjkvsuuQAPD2IDSBtzt0LkSywB8cJ6pk7NmivrZoDHC0CG5ue00sogrGM38-zbHL-t7Fzn5QZm0ILBpvIgCXoV5MnEFgEtrYWie1qtbAJED7TZDFIcS1PFJSaGVCEFgOUazjyIW5DqWcZ8OthxYsMO6ESzIbaRCglTCJthLhjdHVrGpBGLXINvszmNqS0pwya9ynBRmzSKGT0ideZPyjYrtg8fhZZaUvAmm5jB9TEVOoMA4EH2_4ufytebp3Tpelv1VbZ6Nnu_X0-OD0aJmNCYqo8I7gK2y42-nBKuKcrlnzAv0OWRH_IQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python%E2%80%90based+scikit%E2%80%90learn+machine+learning+models+for+thermal+and+electrical+performance+prediction+of+high%E2%80%90capacity+lithium%E2%80%90ion+battery&rft.jtitle=International+journal+of+energy+research&rft.au=Manh%E2%80%90Kien+Tran&rft.au=Panchal%2C+Satyam&rft.au=Chauhan%2C+Vedang&rft.au=Brahmbhatt%2C+Niku&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=2&rft.spage=786&rft.epage=794&rft_id=info:doi/10.1002%2Fer.7202&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon