Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high‐capacity lithium‐ion battery
Summary With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and...
Saved in:
| Published in | International journal of energy research Vol. 46; no. 2; pp. 786 - 794 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Inc
01.02.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0363-907X 1099-114X |
| DOI | 10.1002/er.7202 |
Cover
| Abstract | Summary
With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and reliable battery modeling is important for the BMS to function properly. Currently, many BMS applications use the equivalent circuit model due to its simplicity. However, with the development of a cloud BMS, machine learning battery models can be utilized, which can potentially improve the accuracy and reliability of the BMS. This work investigates the performance of four different machine learning models used to predict the thermal (temperature) and electrical (voltage) behaviors of Li‐ion battery cells. A prismatic Li‐ion battery cell with a capacity of 25 Ah was cycled under a constant current profile at three different ambient temperatures, and the surface temperature and voltage of the battery were measured. The four machine learning regression models—linear regression, k‐nearest neighbors, random forest, and decision tree—were developed using the scikit‐learn library in Python and validated with experimental data. The results of their performance were reported and compared using the R2 metric. The decision tree‐based model, with an R2 score of 0.99, was determined to be the best model in this case study. |
|---|---|
| AbstractList | Summary
With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and reliable battery modeling is important for the BMS to function properly. Currently, many BMS applications use the equivalent circuit model due to its simplicity. However, with the development of a cloud BMS, machine learning battery models can be utilized, which can potentially improve the accuracy and reliability of the BMS. This work investigates the performance of four different machine learning models used to predict the thermal (temperature) and electrical (voltage) behaviors of Li‐ion battery cells. A prismatic Li‐ion battery cell with a capacity of 25 Ah was cycled under a constant current profile at three different ambient temperatures, and the surface temperature and voltage of the battery were measured. The four machine learning regression models—linear regression, k‐nearest neighbors, random forest, and decision tree—were developed using the scikit‐learn library in Python and validated with experimental data. The results of their performance were reported and compared using the R2 metric. The decision tree‐based model, with an R2 score of 0.99, was determined to be the best model in this case study. With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have soared. Li‐ion battery systems require the use of a battery management system (BMS) to perform safely and efficiently. Accurate and reliable battery modeling is important for the BMS to function properly. Currently, many BMS applications use the equivalent circuit model due to its simplicity. However, with the development of a cloud BMS, machine learning battery models can be utilized, which can potentially improve the accuracy and reliability of the BMS. This work investigates the performance of four different machine learning models used to predict the thermal (temperature) and electrical (voltage) behaviors of Li‐ion battery cells. A prismatic Li‐ion battery cell with a capacity of 25 Ah was cycled under a constant current profile at three different ambient temperatures, and the surface temperature and voltage of the battery were measured. The four machine learning regression models—linear regression, k‐nearest neighbors, random forest, and decision tree—were developed using the scikit‐learn library in Python and validated with experimental data. The results of their performance were reported and compared using the R2 metric. The decision tree‐based model, with an R2 score of 0.99, was determined to be the best model in this case study. |
| Author | Panchal, Satyam Mevawalla, Anosh Fowler, Michael Tran, Manh‐Kien Fraser, Roydon Chauhan, Vedang Brahmbhatt, Niku |
| Author_xml | – sequence: 1 givenname: Manh‐Kien orcidid: 0000-0001-9937-1749 surname: Tran fullname: Tran, Manh‐Kien email: kmtran@uwaterloo.ca organization: University of Waterloo – sequence: 2 givenname: Satyam orcidid: 0000-0001-8152-0451 surname: Panchal fullname: Panchal, Satyam organization: University of Waterloo – sequence: 3 givenname: Vedang surname: Chauhan fullname: Chauhan, Vedang organization: Western New England University – sequence: 4 givenname: Niku surname: Brahmbhatt fullname: Brahmbhatt, Niku organization: ASIA Campus – sequence: 5 givenname: Anosh surname: Mevawalla fullname: Mevawalla, Anosh organization: University of Waterloo – sequence: 6 givenname: Roydon surname: Fraser fullname: Fraser, Roydon organization: University of Waterloo – sequence: 7 givenname: Michael surname: Fowler fullname: Fowler, Michael organization: University of Waterloo |
| BookMark | eNp1kN9KwzAUxoNMcJviKwS88EI6k7Rr10sZ8w8MFFHYXUnT0zWzTWqSIb3zEfaMPonp5pXo1eE734_v_BmhgdIKEDqnZEIJYddgJgkj7AgNKUnTgNJoNUBDEsZhkJJkdYJG1m4I8R5Nhmj31LlKq6_PXc4tFNgK-SadlzVwo3DDRSUV4L2Sao0bXUBtcakNdhWYhteYqwJDDcIZKbxswXi34UoAbg0UUjipFdYlruS68smCt1xI1-FaukpuG9_qgZw7B6Y7Rcclry2c_dQxer1dvMzvg-Xj3cP8ZhkINktZACWnIZmVOU2mRMRClGEa0QTyGdCIMeAxgTgpplHI0ignwHwfpnEaT0tSpCQMx-jikNsa_b4F67KN3hrlR2YsZowlPph5KjhQwmhrDZSZ35z3BznDZZ1RkvVPz8Bk_dM9f_mLb41suOn-IK8O5IesofsPyxbPe_ob5heX4Q |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_135504 crossref_primary_10_1016_j_egyr_2024_08_042 crossref_primary_10_1109_TASE_2024_3435443 crossref_primary_10_1007_s44163_024_00169_6 crossref_primary_10_1016_j_egyr_2023_08_043 crossref_primary_10_1016_j_cscm_2023_e02254 crossref_primary_10_1016_j_energy_2024_130773 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123486 crossref_primary_10_1016_j_est_2022_105141 crossref_primary_10_1016_j_applthermaleng_2024_123747 crossref_primary_10_1016_j_tsep_2022_101282 crossref_primary_10_1115_1_4066015 crossref_primary_10_1007_s11581_025_06063_0 crossref_primary_10_1109_ACCESS_2025_3532858 crossref_primary_10_1016_j_est_2025_115914 crossref_primary_10_1016_j_rineng_2024_103047 crossref_primary_10_1016_j_rser_2023_113280 crossref_primary_10_3390_batteries9070385 crossref_primary_10_1016_j_molliq_2023_123822 crossref_primary_10_1155_2023_5513446 crossref_primary_10_1007_s12239_023_0122_6 crossref_primary_10_3390_pr9122263 crossref_primary_10_1016_j_est_2023_106904 crossref_primary_10_1063_5_0222001 crossref_primary_10_3390_batteries8110199 crossref_primary_10_1016_j_est_2024_113217 crossref_primary_10_3390_app14093725 crossref_primary_10_1016_j_tws_2023_110947 crossref_primary_10_1016_j_ijleo_2022_170494 crossref_primary_10_1063_5_0230376 crossref_primary_10_1149_1945_7111_acfcdb crossref_primary_10_3390_en15113930 crossref_primary_10_1016_j_egyr_2022_06_028 crossref_primary_10_1016_j_matpr_2023_06_345 crossref_primary_10_3390_genes14010071 crossref_primary_10_1007_s43236_024_00851_z crossref_primary_10_1016_j_est_2022_104624 crossref_primary_10_1021_acs_jced_4c00234 crossref_primary_10_1177_09544070241242825 crossref_primary_10_1016_j_energy_2022_124812 crossref_primary_10_1080_01431161_2024_2409995 crossref_primary_10_1002_est2_70111 crossref_primary_10_1007_s12144_022_04119_2 crossref_primary_10_1016_j_est_2023_106789 crossref_primary_10_1002_aic_18182 crossref_primary_10_1016_j_nantod_2025_102660 crossref_primary_10_1007_s13369_023_08686_9 crossref_primary_10_1021_acs_energyfuels_2c04243 crossref_primary_10_1080_00295639_2024_2437916 crossref_primary_10_1016_j_nxsust_2025_100114 crossref_primary_10_1016_j_nxener_2024_100153 crossref_primary_10_1016_j_applthermaleng_2022_118530 crossref_primary_10_3390_math11173667 crossref_primary_10_47836_pjst_32_2_20 crossref_primary_10_1016_j_est_2025_115656 crossref_primary_10_1016_j_energy_2022_123851 crossref_primary_10_1016_j_energy_2022_123853 crossref_primary_10_3390_en17020535 crossref_primary_10_3390_en17122840 crossref_primary_10_3390_pr13010046 crossref_primary_10_1016_j_trechm_2024_04_007 crossref_primary_10_3390_app14156648 crossref_primary_10_1016_j_energy_2022_125234 crossref_primary_10_1021_acs_jpcc_4c03846 crossref_primary_10_1016_j_est_2023_109248 crossref_primary_10_3390_en16134897 crossref_primary_10_1007_s10836_024_06133_7 crossref_primary_10_1002_er_8665 crossref_primary_10_1016_j_est_2022_104720 crossref_primary_10_1016_j_est_2022_104289 crossref_primary_10_1016_j_est_2022_105059 crossref_primary_10_3390_app14062306 crossref_primary_10_1016_j_nexres_2024_100119 crossref_primary_10_1007_s12598_023_02445_3 crossref_primary_10_1109_TIA_2023_3327227 crossref_primary_10_4108_eetsis_3839 crossref_primary_10_1115_1_4067254 crossref_primary_10_1016_j_jpowsour_2024_234272 crossref_primary_10_1016_j_ijft_2024_100897 crossref_primary_10_1016_j_tws_2023_110574 crossref_primary_10_1109_TEC_2022_3178600 crossref_primary_10_3390_environments11070139 crossref_primary_10_1007_s11581_021_04337_x crossref_primary_10_3390_batteries10030089 crossref_primary_10_1016_j_ces_2023_119553 crossref_primary_10_20964_2022_03_40 crossref_primary_10_1016_j_est_2024_115132 crossref_primary_10_1109_TTE_2022_3170230 crossref_primary_10_1007_s41060_024_00686_8 crossref_primary_10_3390_ai5040120 crossref_primary_10_3390_en16010460 crossref_primary_10_36548_jaicn_2024_1_003 crossref_primary_10_3390_atmos13060897 crossref_primary_10_1002_er_8538 crossref_primary_10_1016_j_cscee_2024_100881 crossref_primary_10_1016_j_est_2023_106688 |
| Cites_doi | 10.1038/s41578-020-0216-y 10.1016/j.pecs.2019.03.002 10.3390/batteries6010001 10.1016/j.jpowsour.2020.227935 10.1016/j.apenergy.2015.03.080 10.3390/vehicles2030021 10.1016/j.enconman.2017.08.016 10.1016/j.est.2020.101557 10.3390/en13071638 10.1007/978-0-387-78189-1 10.1016/j.jpowsour.2012.10.060 10.1016/j.est.2020.101785 10.1155/2013/953792 10.3390/en4111840 10.1016/j.enconman.2012.02.023 10.1016/j.jpowsour.2010.12.107 10.3390/a13030062 10.3390/en11092191 10.3390/a13070158 10.3390/vehicles3010002 10.1109/TTE.2015.2512237 10.3390/wevj12020054 10.1016/j.egypro.2018.12.046 10.1016/j.jpowsour.2018.06.104 10.1016/j.est.2020.101231 10.3390/batteries7030051 10.1016/j.est.2021.102471 10.1016/j.jpowsour.2005.07.014 10.1109/TVT.2010.2089647 10.1016/j.ijhydene.2016.06.243 10.3390/batteries6040061 10.1016/j.eswa.2011.03.063 10.1038/s42256-020-0156-7 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.7202 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 794 |
| ExternalDocumentID | 10_1002_er_7202 ER7202 |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BKSAR BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X H13 HCIFZ HF~ HHY HVGLF HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PATMY PCBAR PIMPY PTHSS PYCSY Q.N Q11 QB0 QRW R.K RHX RIWAO RJQFR RNS ROL RWI RX1 RYL SAMSI SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PQGLB PUEGO 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c2892-efa1308fb1750c6ccf39417eb8e1422ea60e67d543294b0e28e1e56965f0d9033 |
| IEDL.DBID | DR2 |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 07:15:59 EDT 2025 Wed Oct 01 02:18:52 EDT 2025 Thu Apr 24 23:00:06 EDT 2025 Wed Jan 22 16:27:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2892-efa1308fb1750c6ccf39417eb8e1422ea60e67d543294b0e28e1e56965f0d9033 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8152-0451 0000-0001-9937-1749 |
| PQID | 2622271752 |
| PQPubID | 996365 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2622271752 crossref_citationtrail_10_1002_er_7202 crossref_primary_10_1002_er_7202 wiley_primary_10_1002_er_7202_ER7202 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2012; 61 2021; 7 2021; 3 2019; 73 2015; 148 2013; 226 2011; 60 2018; 400 2008 2017; 150 2020; 13 2011; 12 2020; 32 2011; 4 2011; 196 2011; 38 2020; 6 2021; 37 2020; 5 2020; 2 2021; 12 2016; 2 2013; 2013 2020; 30 2020 2020; 28 2019; 159 2006; 162 2016; 41 2017 2020; 455 2018; 11 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Géron A (e_1_2_8_36_1) 2017 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Reback J (e_1_2_8_34_1) 2020 Pedregosa F (e_1_2_8_32_1) 2011; 12 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 11 start-page: 2191 issue: 9 year: 2018 article-title: Li‐ion battery fire hazards and safety strategies publication-title: Energies – volume: 41 issue: 45 year: 2016 article-title: Overview of energy storage in renewable energy systems publication-title: Int J Hydrogen Energy – volume: 32 year: 2020 article-title: Effect of integrating the hysteresis component to the equivalent circuit model of Lithium‐ion battery for dynamic and non‐dynamic applications publication-title: J Energy Storage – volume: 162 start-page: 809 year: 2006 end-page: 812 article-title: Recent developments and likely advances in lithium‐ion batteries publication-title: J Power Sources – volume: 12 start-page: 54 issue: 2 year: 2021 article-title: A review of range extenders in battery electric vehicles: current progress and future perspectives publication-title: World Electr Veh J – volume: 61 start-page: 19 year: 2012 end-page: 30 article-title: A sustainability assessment of electric vehicles as a personal mobility system publication-title: Energy Conver Manage – volume: 2 start-page: 398 issue: 3 year: 2020 end-page: 412 article-title: Environmental and economic benefits of a battery electric vehicle powertrain with a zinc–air range extender in the transition to electric vehicles publication-title: Vehicles – volume: 28 year: 2020 article-title: Strategies to limit degradation and maximize Li‐ion battery service lifetime ‐ critical review and guidance for stakeholders publication-title: J Energy Storage – volume: 6 start-page: 1 issue: 1 year: 2020 end-page: 16 article-title: Sensor fault detection and isolation for degrading lithium‐ion batteries in electric vehicles using parameter estimation with recursive least squares publication-title: Batteries – volume: 6 start-page: 61 issue: 4 year: 2020 article-title: Mathematical heat transfer modeling and experimental validation of lithium‐ion battery considering: tab and surface temperature, separator, electrolyte resistance, anode‐cathode irreversible and reversible heat publication-title: Batteries – volume: 2 start-page: 161 year: 2020 end-page: 170 article-title: Predicting the state of charge and health of batteries using data‐driven machine learning publication-title: Nat Mach Intell – volume: 37 year: 2021 article-title: One dimensional fast computational partial differential model for heat transfer in lithium‐ion batteries publication-title: J Energy Storage – volume: 13 start-page: 158 issue: 7 year: 2020 article-title: Fuzzy C‐means clustering algorithm with multiple fuzzification coefficients publication-title: Algorithms – volume: 13 start-page: 1638 issue: 7 year: 2020 article-title: High Reynold's number turbulent model for micro‐channel cold plate using reverse engineering approach for water‐cooled battery in electric vehicles publication-title: Energies – volume: 38 year: 2011 article-title: Intelligent prognostics for battery health monitoring based on sample entropy publication-title: Expert Syst Appl – volume: 30 year: 2020 article-title: Digital twin for battery systems: cloud battery management system with online state‐of‐charge and state‐of‐health estimation publication-title: J Energy Storage – volume: 60 start-page: 76 issue: 1 year: 2011 end-page: 88 article-title: Battery‐management system (BMS) and SOC development for electrical vehicles publication-title: IEEE Trans Veh Technol – year: 2020 article-title: Pandas‐dev/pandas: Pandas 1.0.5 publication-title: Zenobo – volume: 196 start-page: 4826 issue: 10 year: 2011 end-page: 4831 article-title: Equivalent circuit model parameters of a high‐power Li‐ion battery: thermal and state of charge effects publication-title: J Power Sources – volume: 3 start-page: 20 issue: 1 year: 2021 end-page: 32 article-title: Design of a hybrid electric vehicle powertrain for performance optimization considering various powertrain components and configurations publication-title: Vehicles – volume: 148 start-page: 403 year: 2015 end-page: 409 article-title: A hybrid thermal management system for lithium ion batteries combining phase change materials with forced‐air cooling publication-title: Appl Energy – volume: 4 start-page: 1840 issue: 11 year: 2011 end-page: 1857 article-title: Battery management systems in electric and hybrid vehicles publication-title: Energies – volume: 226 start-page: 272 year: 2013 end-page: 288 article-title: A review on the key issues for lithium‐ion battery management in electric vehicles publication-title: J Power Sources – volume: 2 start-page: 140 issue: 2 year: 2016 end-page: 149 article-title: Advanced machine learning approach for lithium‐ion battery state estimation in electric vehicles publication-title: IEEE Trans Transp Elect – year: 2008 – volume: 5 start-page: 725 year: 2020 end-page: 727 article-title: Machine learning for continuous innovation in battery technologies publication-title: Nat Rev Mater – volume: 159 start-page: 168 year: 2019 end-page: 173 article-title: Lithium‐ion battery modeling based on big data publication-title: Energy Procedia – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – volume: 73 start-page: 95 year: 2019 end-page: 131 article-title: A review of lithium ion battery failure mechanisms and fire prevention strategies publication-title: Prog Energy Combust Sci – volume: 13 start-page: 62 issue: 3 year: 2020 article-title: A review of lithium‐ion battery fault diagnostic algorithms: current progress and future challenges publication-title: Algorithms – volume: 7 start-page: 51 issue: 3 year: 2021 article-title: Comparative study of equivalent circuit models performance in four common lithium‐ion batteries: LFP, NMC, LMO, NCA publication-title: Batteries – volume: 455 year: 2020 article-title: Co‐estimation of lithium‐ion battery state of charge and state of temperature based on a hybrid electrochemical‐thermal‐neural‐network model publication-title: J Power Sources – year: 2017 – volume: 150 start-page: 304 year: 2017 end-page: 330 article-title: Thermal issues about Li‐ion batteries and recent progress in battery thermal management systems: a review publication-title: Energy Conver Manage – volume: 2013 start-page: 1 year: 2013 end-page: 7 article-title: The state of charge estimating methods for battery: a review publication-title: ISRN Appl Math – volume: 400 start-page: 242 year: 2018 end-page: 255 article-title: State‐of‐charge estimation of Li‐ion batteries using deep neural networks: a machine learning approach publication-title: J Power Sources – ident: e_1_2_8_38_1 doi: 10.1038/s41578-020-0216-y – ident: e_1_2_8_12_1 doi: 10.1016/j.pecs.2019.03.002 – ident: e_1_2_8_19_1 doi: 10.3390/batteries6010001 – ident: e_1_2_8_26_1 doi: 10.1016/j.jpowsour.2020.227935 – ident: e_1_2_8_5_1 doi: 10.1016/j.apenergy.2015.03.080 – ident: e_1_2_8_4_1 doi: 10.3390/vehicles2030021 – ident: e_1_2_8_13_1 doi: 10.1016/j.enconman.2017.08.016 – ident: e_1_2_8_33_1 – ident: e_1_2_8_37_1 doi: 10.1016/j.est.2020.101557 – ident: e_1_2_8_10_1 doi: 10.3390/en13071638 – ident: e_1_2_8_35_1 doi: 10.1007/978-0-387-78189-1 – ident: e_1_2_8_18_1 doi: 10.1016/j.jpowsour.2012.10.060 – ident: e_1_2_8_24_1 doi: 10.1016/j.est.2020.101785 – ident: e_1_2_8_22_1 doi: 10.1155/2013/953792 – ident: e_1_2_8_17_1 doi: 10.3390/en4111840 – ident: e_1_2_8_2_1 doi: 10.1016/j.enconman.2012.02.023 – ident: e_1_2_8_23_1 doi: 10.1016/j.jpowsour.2010.12.107 – ident: e_1_2_8_20_1 doi: 10.3390/a13030062 – ident: e_1_2_8_14_1 doi: 10.3390/en11092191 – ident: e_1_2_8_25_1 doi: 10.3390/a13070158 – volume-title: Hands‐on Machine Learning With Scikit‐Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems year: 2017 ident: e_1_2_8_36_1 – ident: e_1_2_8_6_1 doi: 10.3390/vehicles3010002 – ident: e_1_2_8_29_1 doi: 10.1109/TTE.2015.2512237 – ident: e_1_2_8_16_1 doi: 10.3390/wevj12020054 – ident: e_1_2_8_27_1 doi: 10.1016/j.egypro.2018.12.046 – ident: e_1_2_8_30_1 doi: 10.1016/j.jpowsour.2018.06.104 – ident: e_1_2_8_9_1 doi: 10.1016/j.est.2020.101231 – ident: e_1_2_8_8_1 doi: 10.3390/batteries7030051 – ident: e_1_2_8_15_1 doi: 10.1016/j.est.2021.102471 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_32_1 article-title: Scikit‐learn: machine learning in python publication-title: J Mach Learn Res – ident: e_1_2_8_7_1 doi: 10.1016/j.jpowsour.2005.07.014 – year: 2020 ident: e_1_2_8_34_1 article-title: Pandas‐dev/pandas: Pandas 1.0.5 publication-title: Zenobo – ident: e_1_2_8_21_1 doi: 10.1109/TVT.2010.2089647 – ident: e_1_2_8_3_1 doi: 10.1016/j.ijhydene.2016.06.243 – ident: e_1_2_8_11_1 doi: 10.3390/batteries6040061 – ident: e_1_2_8_28_1 doi: 10.1016/j.eswa.2011.03.063 – ident: e_1_2_8_31_1 doi: 10.1038/s42256-020-0156-7 |
| SSID | ssj0009917 |
| Score | 2.6249719 |
| Snippet | Summary
With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion)... With the increasing popularity of electric vehicles (EVs), the demands for rechargeable and high‐performance batteries like lithium‐ion (Li‐ion) batteries have... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 786 |
| SubjectTerms | Ambient temperature Batteries battery modeling Circuits Decision trees Electric potential Electric vehicles Equivalent circuits Learning algorithms Lithium Lithium-ion batteries lithium‐ion battery Machine learning multivariate multioutput regression Performance prediction Rechargeable batteries Regression analysis Regression models scikit‐learn Surface temperature thermal modeling Voltage |
| Title | Python‐based scikit‐learn machine learning models for thermal and electrical performance prediction of high‐capacity lithium‐ion battery |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.7202 https://www.proquest.com/docview/2622271752 |
| Volume | 46 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: ADMLS dateStart: 20050610 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0363-907X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iSQ--xTc5iLeubZJmt0cRZREUEYXFS0nSiYruuuzjoCd_gr_RX-JM2n2oCOKpNE1C2sx0vkky3zC2X0iFepCmkQCrIqVlEhlhXBQbL0WswMuwFXN-oZs36qyVtqZSfZX8EOMFN9KM8L8mBTe2fzghDYVerS4CjWQidXCmribEUYh66qNdSnT_WmW4LLU8rNp9tUMTcDkNUYONOV1kt6PRlUdLHmvDga2512_Ejf8a_hJbqJAnPypFZZnNQGeFzU_xEa6y98sXohL4eHsn41ZwNI-PDwO8DbkleDscvAReZZq44yGNTp8j7uWEI9vYvekUvEytQ7PPu5O4BN7t0aYQCQJ_9px4krFnh8baoSfA0R24fxi2sYgq2ED7-bLGbk5Pro-bUZWyIXLouYkIvEGj2PAWUUnstHNeZiqpg20ALTaB0THoepEqKTJlYxBYDqnOdOrjIoulXGeznecObDDuhW8Yl2YgIFPCNjInEdvYLDGJA2HVJjsYTWDuKj5zSqvxlJdMzCKHXk6feJPxccVuSeHxs8rOSALySof7udAUJ4wvgo_3w1T-1jw_uaLL1t-qbbM5QTEU4ej3Dpsd9Iawi8hmYPeCEH8CB0D7fA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHIADO2LHB8QtJbUdtzkiBCqrEAKpEocodsZQQUtV2kM58Qn9Rr6EGSelLEJCnKI4YyuOx5k3tucNYzuZVDgPoigQYFSgtCwHqUhtEKZOilCBk34r5vxC127UST2qF6cqKRYm54f4WHCjmeH_1zTBaUF6b8QaCp1SRRCP5ITS6KUQILoaUUch7qkM9ynRAaznAbNUda-o-NUSjeDlZ5DqrczRLLsdvl9-uOSh1Ouakn35Rt34vw7MsZkCfPL9XFvm2Ri0Ftj0J0rCRTa47BObwNvrgOxbxtFCPjS6eOvTS_CmP3sJvEg2ccd9Jp1njtCXE5RsYvNpK-N5dh1SAN4ehSbwdof2hUgX-JPjRJWMLVu01xadAY4ewX2j18QiEjCe-bO_xG6ODq8PakGRtSGw6LyJAFyKdrHqDAKT0GprnYxVuQKmCrTeBKkOQVeySEkRKxOCwHKIdKwjF2ZxKOUyG289tWCFcSdcNbVRDAJiJUw1thLhjYnLadmCMGqV7Q5HMLEFpTll1nhMcjJmkUAnoU-8yviHYDtn8fgpsjFUgaSYxs-J0BQqjB3Bxzt-LH-rnhxe0WXtb2LbbLJ2fX6WnB1fnK6zKUEhFf4k-AYb73Z6sIlAp2u2vEa_A65q_50 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIHrwLb7NQbx17SZptzmKuvhGRGHBQ2nSiYruuqy7Bz35E_yN_hJn0q7rA0E8laZJaJpJ55tk5hvGNnKpcB1EUSDAqEDFshpkIrNBmDkpQgVO-qOYk9N4_1IdNqJG6VVJsTAFP8THhhutDP-_pgUO7dxtDVhDoVOpCeKRHFGRTsidb_d8QB2FuKfWP6dEA7BRBMxS062y4VdNNICXn0Gq1zL1SXbVf7_CueSu0uuain3-Rt34vwFMsYkSfPLtQlqm2RC0Ztj4J0rCWfZ69kRsAm8vr6Tfco4a8u62i7c-vQRvet9L4GWyiWvuM-k8coS-nKBkE7vPWjkvsuuQAPD2IDSBtzt0LkSywB8cJ6pk7NmivrZoDHC0CG5ue00sogrGM38-zbHL-t7Fzn5QZm0ILBpvIgCXoV5MnEFgEtrYWie1qtbAJED7TZDFIcS1PFJSaGVCEFgOUazjyIW5DqWcZ8OthxYsMO6ESzIbaRCglTCJthLhjdHVrGpBGLXINvszmNqS0pwya9ynBRmzSKGT0ideZPyjYrtg8fhZZaUvAmm5jB9TEVOoMA4EH2_4ufytebp3Tpelv1VbZ6Nnu_X0-OD0aJmNCYqo8I7gK2y42-nBKuKcrlnzAv0OWRH_IQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Python%E2%80%90based+scikit%E2%80%90learn+machine+learning+models+for+thermal+and+electrical+performance+prediction+of+high%E2%80%90capacity+lithium%E2%80%90ion+battery&rft.jtitle=International+journal+of+energy+research&rft.au=Manh%E2%80%90Kien+Tran&rft.au=Panchal%2C+Satyam&rft.au=Chauhan%2C+Vedang&rft.au=Brahmbhatt%2C+Niku&rft.date=2022-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=46&rft.issue=2&rft.spage=786&rft.epage=794&rft_id=info:doi/10.1002%2Fer.7202&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |