Switchable Two‐Terminal Transparent Optoelectronic Devices Based on 2D Perovskite

A switch‐like structure that can be turned on/off with photons is considered necessary for most optoelectronic devices, such as phototransistors and photodetectors. However, developing a single device whose photoresponse can be modulated without changing the measuring voltage or illuminating light i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced electronic materials Vol. 5; no. 2
Main Authors Kumar, Mohit, Patel, Malkeshkumar, Park, Dae Young, Kim, Hong‐Sik, Jeong, Mun Seok, Kim, Joondong
Format Journal Article
LanguageEnglish
Published 01.02.2019
Subjects
Online AccessGet full text
ISSN2199-160X
2199-160X
DOI10.1002/aelm.201800662

Cover

Abstract A switch‐like structure that can be turned on/off with photons is considered necessary for most optoelectronic devices, such as phototransistors and photodetectors. However, developing a single device whose photoresponse can be modulated without changing the measuring voltage or illuminating light is challenging, and yet to be achieved. In this work, a conceptually new 2D perovskite‐based fully transparent two‐terminal optoelectronic device that can be turned on/off with a short electric pulse without any further change in the measuring conditions, such as the illuminating photon or applied voltage is proposed and demonstrated. The device exhibits loop opening in the current–voltage characteristics, which is utilized to design the novel electrically triggered optoelectronic device. The photocurrent of the device can be modulated from zero to 2.2 mA using a simple voltage pulse. Further, a responsivity of 550 mA W−1 and detectivity of 2.16 × 1010 Jones are measured in the on‐state. Potentially, the approach opens a new avenue for the design of two‐terminal advanced highly transparent optoelectronic devices, such as smart windows and transparent image sensors. A conceptually new 2D perovskite‐based fully transparent two‐terminal optoelectronic device is proposed and demonstrated, which can be turned on/off with a short electric pulse without any additional change in the measuring conditions. The photocurrent of the device can modulate from zero to 2.2 mA. Further, a responsivity of 550 mA W−1 and detectivity of 2.16 × 1010 Jones are measured in the on‐state.
AbstractList A switch‐like structure that can be turned on / off with photons is considered necessary for most optoelectronic devices, such as phototransistors and photodetectors. However, developing a single device whose photoresponse can be modulated without changing the measuring voltage or illuminating light is challenging, and yet to be achieved. In this work, a conceptually new 2D perovskite‐based fully transparent two‐terminal optoelectronic device that can be turned on / off with a short electric pulse without any further change in the measuring conditions, such as the illuminating photon or applied voltage is proposed and demonstrated. The device exhibits loop opening in the current–voltage characteristics, which is utilized to design the novel electrically triggered optoelectronic device. The photocurrent of the device can be modulated from zero to 2.2 mA using a simple voltage pulse. Further, a responsivity of 550 mA W −1 and detectivity of 2.16 × 10 10 Jones are measured in the on ‐state. Potentially, the approach opens a new avenue for the design of two‐terminal advanced highly transparent optoelectronic devices, such as smart windows and transparent image sensors.
A switch‐like structure that can be turned on/off with photons is considered necessary for most optoelectronic devices, such as phototransistors and photodetectors. However, developing a single device whose photoresponse can be modulated without changing the measuring voltage or illuminating light is challenging, and yet to be achieved. In this work, a conceptually new 2D perovskite‐based fully transparent two‐terminal optoelectronic device that can be turned on/off with a short electric pulse without any further change in the measuring conditions, such as the illuminating photon or applied voltage is proposed and demonstrated. The device exhibits loop opening in the current–voltage characteristics, which is utilized to design the novel electrically triggered optoelectronic device. The photocurrent of the device can be modulated from zero to 2.2 mA using a simple voltage pulse. Further, a responsivity of 550 mA W−1 and detectivity of 2.16 × 1010 Jones are measured in the on‐state. Potentially, the approach opens a new avenue for the design of two‐terminal advanced highly transparent optoelectronic devices, such as smart windows and transparent image sensors. A conceptually new 2D perovskite‐based fully transparent two‐terminal optoelectronic device is proposed and demonstrated, which can be turned on/off with a short electric pulse without any additional change in the measuring conditions. The photocurrent of the device can modulate from zero to 2.2 mA. Further, a responsivity of 550 mA W−1 and detectivity of 2.16 × 1010 Jones are measured in the on‐state.
Author Park, Dae Young
Kumar, Mohit
Kim, Hong‐Sik
Kim, Joondong
Patel, Malkeshkumar
Jeong, Mun Seok
Author_xml – sequence: 1
  givenname: Mohit
  surname: Kumar
  fullname: Kumar, Mohit
  organization: Incheon National University
– sequence: 2
  givenname: Malkeshkumar
  surname: Patel
  fullname: Patel, Malkeshkumar
  organization: Incheon National University
– sequence: 3
  givenname: Dae Young
  surname: Park
  fullname: Park, Dae Young
  organization: Sungkyunkwan University
– sequence: 4
  givenname: Hong‐Sik
  surname: Kim
  fullname: Kim, Hong‐Sik
  organization: Sungkyunkwan University
– sequence: 5
  givenname: Mun Seok
  surname: Jeong
  fullname: Jeong, Mun Seok
  organization: Sungkyunkwan University
– sequence: 6
  givenname: Joondong
  orcidid: 0000-0002-9159-0733
  surname: Kim
  fullname: Kim, Joondong
  email: joonkim@incheon.ac.kr
  organization: Incheon National University
BookMark eNqF0M1KAzEQwPEgCtbaq-e8wNZJuk02x9rWD6hU6Arelmw2weg2KUlo6c1H8Bl9Ei0VFUE8zVx-M_A_QYfOO43QGYE-AaDnUrfLPgVSADBGD1CHEiEywuDh8Md-jHoxPgEA4WyQDwcdtFhsbFKPsm41Ljf-7eW11GFpnWxxGaSLKxm0S3i-Sl63WqXgnVV4otdW6YgvZNQN9g7TCb7Twa_js036FB0Z2Ubd-5xddH85LcfX2Wx-dTMezTJFC0EzVTTAGyMoHRZU5pRzJmrOCGMMhiIXmhuoBavBNFQZRg3jjPLcNHzAa6jzQRf193dV8DEGbapVsEsZthWBalel2lWpvqp8gPwXUDbJZL1LQdr2byb2bGNbvf3nSTWazm6_7Tvk7HpE
CitedBy_id crossref_primary_10_1016_j_mssp_2023_107489
crossref_primary_10_1002_aenm_202300760
crossref_primary_10_1016_j_mssp_2019_104910
crossref_primary_10_1002_advs_202105577
crossref_primary_10_1038_s41467_019_11823_4
crossref_primary_10_1021_acsaelm_3c01323
crossref_primary_10_1007_s10853_021_06038_2
crossref_primary_10_1002_admi_202100664
crossref_primary_10_1007_s11467_023_1344_9
crossref_primary_10_1088_2634_4386_ac5086
crossref_primary_10_1016_j_nanoen_2020_104756
crossref_primary_10_1016_j_nanoen_2020_105240
crossref_primary_10_1039_D1TC04072C
crossref_primary_10_1088_2634_4386_ad7755
crossref_primary_10_1002_admi_201900471
crossref_primary_10_1002_smll_202203311
crossref_primary_10_1021_acsnano_0c06874
crossref_primary_10_1080_14686996_2022_2162323
crossref_primary_10_1002_adfm_202101201
crossref_primary_10_1016_j_apsusc_2022_155991
crossref_primary_10_1038_s43246_024_00632_y
crossref_primary_10_1002_admt_201900914
crossref_primary_10_1016_j_optmat_2023_114671
crossref_primary_10_1088_1361_6528_ab82d6
crossref_primary_10_1039_D4NR00904E
crossref_primary_10_1002_advs_202203889
crossref_primary_10_1002_adfm_202110976
crossref_primary_10_1016_j_apmt_2022_101728
crossref_primary_10_1016_j_nanoen_2020_105014
crossref_primary_10_1088_1361_6463_acca8d
Cites_doi 10.1016/j.solmat.2017.06.006
10.1038/s41560-017-0016-9
10.1021/acsami.7b14745
10.1021/acsnano.6b01643
10.1021/acsnano.6b08668
10.1002/adfm.201606584
10.1002/adfm.201707099
10.1088/0957-4484/26/34/345702
10.1021/acs.jpclett.7b00993
10.1002/aelm.201500232
10.1021/acsami.7b19406
10.1002/adma.201603994
10.1039/C7NR09699B
10.1002/advs.201700256
10.1002/smll.201800492
10.1038/nmat4599
10.1002/adma.201702838
10.1002/adfm.201600405
10.1038/ncomms12725
10.1038/nature06932
10.1002/adma.201702759
10.1038/srep25461
10.1039/C4TA07036D
10.1016/j.nanoen.2017.08.059
10.1021/acsnano.7b05726
10.1021/jacs.6b11683
10.1021/acsnano.7b05762
10.1021/acsnano.6b03104
10.1038/nnano.2015.230
10.1126/science.aac7660
10.1002/aelm.201600100
10.1038/ncomms5007
10.1021/nl504701y
10.1002/adma.201601196
10.1002/adfm.201603653
10.1038/ncomms8497
10.1021/acsami.8b07850
10.1021/acsnano.8b01999
10.1021/acsami.7b03229
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
DOI 10.1002/aelm.201800662
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
EISSN 2199-160X
EndPage n/a
ExternalDocumentID 10_1002_aelm_201800662
AELM201800662
Genre article
GrantInformation_xml – fundername: National Research Foundation
  funderid: NRF‐2018R1D1A1B07049871; NRF‐2018R1D1A1B07049483; NRF‐2018R1D1A1B07045336
– fundername: MSIP
  funderid: 2016R1A2B2015581
– fundername: Ministry of Education
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAFWJ
AAMMB
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AFBPY
AFPKN
AGXDD
AIACR
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BFHJK
BMXJE
BRXPI
DCZOG
EBS
EJD
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
M~E
O9-
P2W
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
ID FETCH-LOGICAL-c2892-c8d07df922582a427769b76166605949e7f0b96b0fd2cf62f676274fd737b0b43
ISSN 2199-160X
IngestDate Tue Jul 01 00:35:15 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Wed Aug 20 07:27:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2892-c8d07df922582a427769b76166605949e7f0b96b0fd2cf62f676274fd737b0b43
ORCID 0000-0002-9159-0733
PageCount 7
ParticipantIDs crossref_primary_10_1002_aelm_201800662
crossref_citationtrail_10_1002_aelm_201800662
wiley_primary_10_1002_aelm_201800662_AELM201800662
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationTitle Advanced electronic materials
PublicationYear 2019
References 2017; 40
2015; 1
2015; 15
2018; 28
2017; 8
2015; 6
2017; 2
2017; 3
2015; 3
2017; 27
2016; 10
2017; 170
2017; 29
2015; 349
2016; 15
2017; 9
2016; 11
2015; 26
2016; 6
2016; 7
2014; 5
2018; 5
2016; 2
2017; 14
2017; 11
2016; 138
2008; 453
2018; 12
2016; 28
2018; 10
2016; 26
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_1_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
Lin Y. (e_1_2_7_7_1) 2017; 14
e_1_2_7_29_1
Guan X. (e_1_2_7_28_1) 2017; 3
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 26
  start-page: 345702
  year: 2015
  publication-title: Nanotechnology
– volume: 2
  start-page: 1600100
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 28
  start-page: 1707099
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 383
  year: 2016
  publication-title: Nat. Mater.
– volume: 453
  start-page: 80
  year: 2008
  publication-title: Nature
– volume: 28
  start-page: 7264
  year: 2016
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2565
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 11298
  year: 2017
  publication-title: ACS Nano
– volume: 27
  start-page: 1606584
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 6
  start-page: 7497
  year: 2015
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1702759
  year: 2017
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1700256
  year: 2018
  publication-title: Adv. Sci.
– volume: 26
  start-page: 4213
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 5413
  year: 2016
  publication-title: ACS Nano
– volume: 3
  start-page: 9249
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 2801
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 540
  year: 2017
  publication-title: Nano Energy
– volume: 11
  start-page: 12247
  year: 2017
  publication-title: ACS Nano
– volume: 14
  start-page: 1705589
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 170
  start-page: 246
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 29
  start-page: 1
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4919
  year: 2018
  publication-title: ACS Nano
– volume: 138
  start-page: 16612
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 19176
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 1500232
  year: 2015
  publication-title: Adv. Electron. Mater.
– volume: 10
  start-page: 6928
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 12725
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 12768
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 2
  start-page: 849
  year: 2017
  publication-title: Nat. Energy
– volume: 14
  start-page: 1800492
  year: 2018
  publication-title: Small
– volume: 6
  start-page: 25461
  year: 2016
  publication-title: Sci. Rep.
– volume: 349
  start-page: 1518
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 1704665
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 2402
  year: 2015
  publication-title: Nano Lett.
– volume: 5
  start-page: 4007
  year: 2014
  publication-title: Nat. Commun.
– volume: 27
  start-page: 1603653
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 21755
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 29
  start-page: 1702838
  year: 2017
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3010
  year: 2017
  publication-title: ACS Nano
– volume: 10
  start-page: 7031
  year: 2016
  publication-title: ACS Nano
– ident: e_1_2_7_41_1
  doi: 10.1016/j.solmat.2017.06.006
– ident: e_1_2_7_2_1
  doi: 10.1038/s41560-017-0016-9
– ident: e_1_2_7_5_1
  doi: 10.1021/acsami.7b14745
– ident: e_1_2_7_19_1
  doi: 10.1021/acsnano.6b01643
– ident: e_1_2_7_6_1
  doi: 10.1021/acsnano.6b08668
– ident: e_1_2_7_16_1
  doi: 10.1002/adfm.201606584
– ident: e_1_2_7_8_1
  doi: 10.1002/adfm.201707099
– volume: 14
  start-page: 1705589
  year: 2017
  ident: e_1_2_7_7_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_26_1
  doi: 10.1088/0957-4484/26/34/345702
– ident: e_1_2_7_37_1
  doi: 10.1021/acs.jpclett.7b00993
– ident: e_1_2_7_40_1
  doi: 10.1002/aelm.201500232
– ident: e_1_2_7_14_1
  doi: 10.1021/acsami.7b19406
– ident: e_1_2_7_31_1
  doi: 10.1002/adma.201603994
– ident: e_1_2_7_25_1
  doi: 10.1039/C7NR09699B
– ident: e_1_2_7_22_1
  doi: 10.1002/advs.201700256
– ident: e_1_2_7_32_1
  doi: 10.1002/smll.201800492
– ident: e_1_2_7_1_1
  doi: 10.1038/nmat4599
– ident: e_1_2_7_4_1
  doi: 10.1002/adma.201702838
– ident: e_1_2_7_15_1
  doi: 10.1002/adfm.201600405
– ident: e_1_2_7_9_1
  doi: 10.1038/ncomms12725
– ident: e_1_2_7_29_1
  doi: 10.1038/nature06932
– ident: e_1_2_7_35_1
  doi: 10.1002/adma.201702759
– ident: e_1_2_7_39_1
  doi: 10.1038/srep25461
– ident: e_1_2_7_23_1
  doi: 10.1039/C4TA07036D
– ident: e_1_2_7_11_1
  doi: 10.1016/j.nanoen.2017.08.059
– ident: e_1_2_7_17_1
  doi: 10.1021/acsnano.7b05726
– ident: e_1_2_7_24_1
  doi: 10.1021/jacs.6b11683
– ident: e_1_2_7_3_1
  doi: 10.1021/acsnano.7b05762
– ident: e_1_2_7_18_1
  doi: 10.1021/acsnano.6b03104
– ident: e_1_2_7_30_1
  doi: 10.1038/nnano.2015.230
– ident: e_1_2_7_13_1
  doi: 10.1126/science.aac7660
– ident: e_1_2_7_27_1
  doi: 10.1002/aelm.201600100
– ident: e_1_2_7_34_1
  doi: 10.1038/ncomms5007
– ident: e_1_2_7_10_1
  doi: 10.1021/nl504701y
– ident: e_1_2_7_12_1
  doi: 10.1002/adma.201601196
– volume: 3
  start-page: 1704665
  year: 2017
  ident: e_1_2_7_28_1
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_21_1
  doi: 10.1002/adfm.201603653
– ident: e_1_2_7_20_1
  doi: 10.1038/ncomms8497
– ident: e_1_2_7_33_1
  doi: 10.1021/acsami.8b07850
– ident: e_1_2_7_38_1
  doi: 10.1021/acsnano.8b01999
– ident: e_1_2_7_36_1
  doi: 10.1021/acsami.7b03229
SSID ssj0001763453
Score 2.2659109
Snippet A switch‐like structure that can be turned on/off with photons is considered necessary for most optoelectronic devices, such as phototransistors and...
A switch‐like structure that can be turned on / off with photons is considered necessary for most optoelectronic devices, such as phototransistors and...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms 2D perovskite
memristors
optoelectronics
transparent electronics
two‐terminal devices
Title Switchable Two‐Terminal Transparent Optoelectronic Devices Based on 2D Perovskite
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faelm.201800662
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd-GChgAxGJMPSBwmQ-omdnIs61CFKBzaoopLZMe2VrVqJpYxwYk_gb-Rv4RnOz9cVMTgErWOEyV-X56f7e99Ruj50BQyyhQnWoqY2ORHIgDHZMCVEibVhWE233n6nk0W8dtlsuz1vgaspetKviy-7c0r-R-rQhnY1WbJ_oNl25tCAfwG-8IRLAzHW9l4drOCRnfJT_ObsuUtzD3BZVMrlwsnwPThsiqDPW_G2rmI09fQiym7YkDHlg1ffrmy07lhyDpqWALB1RDm-vfrVoJqpva0vFgFKdWVJwFMxWatry7WtlZ30rO0x0KfOp_T0QEcRieWLNy80my1DucnbEpUy_VwbgxcYkYGLFr6HmdPWe2HkwBudK9392qxQm-shMAgder1XT_WrN3_1r21pEMv0Exze33eXn8HHVAOYVcfHYw-Lj4tugk68LyxUzFtn7YR_Yzoq92H2AlqwkGOi1Lmh-hePbzAI4-V-6intw_QrMMJBpz8_P6jQQgOEIJ3EYJrhGCHEFxuMR3jDiEP0eLN-fxsQurNNEgBY2pKilRFXJkM_HdKRUw5Z5nkzK4aW8meTHMTyYzJyCgKHyg1jNttmYziQy4jGQ8fof623OrHCBtj7GJ2QuHLjkUiMxizF9lAJoaljEfqCJGmNfKiVpq3G55s8v0mOEIv2vqXXmPljzWpa9y_VMtH5--m7b8nt779U3S3Q_Ax6lefr_UziDkreVKj4xdSVX6e
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV29TsMwELagHWBBIECUXw9ITFYTN7HjsdBWBdqC1ARVLFEc2xJSlVQl0JVH4Bl5EuwkTemAkBgTXTKc73zn833fAXDZUjG3mKBI8shBBvyIIm3HyKZCRMqTsSIG7zwckX7g3E3cZTehwcIU_BBVwc14Rr5fGwc3BenmijU0klMDJbe9nMV8E9RdHU61kdfbT8FzsCq0aA9ycjZK7ZwM2cSaLMkbLdxc_8lacPqZrObRprcLdso0EbaLdd0DGzLZB-Px4kUr2YCdoL9Ivz4-_aKVZQoLjnID7MrgwyxLV9NtYEfmmwG81vFKwDSBuAMf5Tx9fzWF2wMQ9Lr-TR-VQxFQrM9GGMWesKhQTPuhhyMHU0oYp8Tc_hnqFSapsjgj3FICa0VjRagZr6MEbVFucad1CGpJmsgjAJVS5lLSxXqFnMjlTJ-9YmZzVxGPUEs0AFpqI4xLxnAzuGIaFlzHODTaCyvtNcBVJT8ruDJ-lcS5cv8QC9vdwbB6Ov7PRxdgq-8PB-HgdnR_Arb1e1b0XJ-CWjZ_k2c6pcj4eWk03-4_wy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA66gXgRRcX5mYPgKazN2qQ5TrcxdZuDrTK8lKZJQBjtmNVd_Qn-Rn-JSdt120EEjy1pD0_y5v1InucF4LqhIm4xQZHkoYMM-RGFeh0jmwoRKk9Gihi-c39Aur7zMHEnayz-XB-iLLgZy8j2a2PgM6HqK9HQUE4Nk9z2MhHzbVDVvtzR6Ve1-ey_-Ks6izYgJxOj1LbJkE2syVK70cL1zZ9s-Kb1WDVzNp19sFdEibCZT-sB2JLxIRiNFq8aY8N1guNF8v35Nc5vskxhLlFueF0pfJqlyaq5DWzJbC-At9pdCZjEELfgUM6TjzdTtz0Cfqc9vuuioicCinRqhFHkCYsKxbQZejh0MKWEcUrM4Z9RXmGSKoszwi0lsMYZK0JNdx0laINyizuNY1CJk1ieAKiUMmeSLtYT5IQuZzr1ipjNXUU8Qi1RA2iJRhAVguGmb8U0yKWOcWDQC0r0auCmHD_LpTJ-HYkzcP8YFjTbvX75dPqfj67AzrDVCXr3g8czsKtfs_zG9TmopPN3eaEDipRfFmvmB-Xiwlg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Switchable+Two%E2%80%90Terminal+Transparent+Optoelectronic+Devices+Based+on+2D+Perovskite&rft.jtitle=Advanced+electronic+materials&rft.au=Kumar%2C+Mohit&rft.au=Patel%2C+Malkeshkumar&rft.au=Park%2C+Dae+Young&rft.au=Kim%2C+Hong%E2%80%90Sik&rft.date=2019-02-01&rft.issn=2199-160X&rft.eissn=2199-160X&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1002%2Faelm.201800662&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_aelm_201800662
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2199-160X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2199-160X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2199-160X&client=summon