Quantum K‐Nearest Neighbor Classification Algorithm via a Divide‐and‐Conquer Strategy

The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based...

Full description

Saved in:
Bibliographic Details
Published inAdvanced quantum technologies (Online) Vol. 7; no. 6
Main Authors Gong, Li‐Hua, Ding, Wei, Li, Zi, Wang, Yuan‐Zhi, Zhou, Nan‐Run
Format Journal Article
LanguageEnglish
Published 01.06.2024
Subjects
Online AccessGet full text
ISSN2511-9044
2511-9044
DOI10.1002/qute.202300221

Cover

Abstract The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based on the divide‐and‐conquer strategy. A quantum circuit is designed to calculate the fidelity between the test sample and each feature vector of the training dataset. The quantum K‐nearest neighbor algorithm has higher classification efficiency in high‐dimensional data processing. The classification accuracy of the proposed algorithm is equivalent to that of the classical K‐nearest neighbor algorithm under the IRIS dataset. In addition, compared with the typical quantum K‐nearest neighbor algorithms, the proposed classification method possesses higher classification accuracy with less calculation time, which has wide applications in the industrial field. An efficient quantum K‐nearest neighbor (QKNN) classification scheme is designed based on a divide‐and‐conquer strategy. The QKNN algorithm makes full use of the ability of parallel computation. The proposed QKNN classification algorithm can provide an accurate approximation to the classical KNN classification algorithm, and has more accurate classification performance with less running time than the typical QKNN classification algorithms.
AbstractList The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based on the divide‐and‐conquer strategy. A quantum circuit is designed to calculate the fidelity between the test sample and each feature vector of the training dataset. The quantum K‐nearest neighbor algorithm has higher classification efficiency in high‐dimensional data processing. The classification accuracy of the proposed algorithm is equivalent to that of the classical K‐nearest neighbor algorithm under the IRIS dataset. In addition, compared with the typical quantum K‐nearest neighbor algorithms, the proposed classification method possesses higher classification accuracy with less calculation time, which has wide applications in the industrial field.
The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based on the divide‐and‐conquer strategy. A quantum circuit is designed to calculate the fidelity between the test sample and each feature vector of the training dataset. The quantum K‐nearest neighbor algorithm has higher classification efficiency in high‐dimensional data processing. The classification accuracy of the proposed algorithm is equivalent to that of the classical K‐nearest neighbor algorithm under the IRIS dataset. In addition, compared with the typical quantum K‐nearest neighbor algorithms, the proposed classification method possesses higher classification accuracy with less calculation time, which has wide applications in the industrial field. An efficient quantum K‐nearest neighbor (QKNN) classification scheme is designed based on a divide‐and‐conquer strategy. The QKNN algorithm makes full use of the ability of parallel computation. The proposed QKNN classification algorithm can provide an accurate approximation to the classical KNN classification algorithm, and has more accurate classification performance with less running time than the typical QKNN classification algorithms.
Author Gong, Li‐Hua
Zhou, Nan‐Run
Ding, Wei
Li, Zi
Wang, Yuan‐Zhi
Author_xml – sequence: 1
  givenname: Li‐Hua
  surname: Gong
  fullname: Gong, Li‐Hua
  organization: Shanghai University of Engineering Science
– sequence: 2
  givenname: Wei
  surname: Ding
  fullname: Ding, Wei
  organization: Nanchang University
– sequence: 3
  givenname: Zi
  surname: Li
  fullname: Li, Zi
  organization: Nanchang University
– sequence: 4
  givenname: Yuan‐Zhi
  surname: Wang
  fullname: Wang, Yuan‐Zhi
  organization: Anqing Normal University
– sequence: 5
  givenname: Nan‐Run
  orcidid: 0000-0002-5080-2189
  surname: Zhou
  fullname: Zhou, Nan‐Run
  email: nrzhou@sues.edu.cn
  organization: Shanghai University of Engineering Science
BookMark eNqFkM1OwkAUhScGExHZup4XKM4_7ZJU_IkEQ4SVi2Zob2FMaWVmCmHnI_iMPolFjBoT4-bee5Lz3ZycU9QqqxIQOqekRwlhF-vaQ48RxhvB6BFqM0lpEBEhWj_uE9R17ok0Hk656PM2epzUuvT1Ct-9vbyOQVtwHo_BLJbzyuK40M6Z3KTam6rEg2JRWeOXK7wxGmt8aTYmgwbUZdbMuCrXNVj84K32sNidoeNcFw66n7uDZlfDaXwTjO6vb-PBKEhZGNFAgRQRUVIqGoaSpxEPWZblVAlJUsKV1CyT4TznEpQUWhFgIaN9yKIoF0wx3kHi8De1lXMW8iQ1_iNxE8QUCSXJvqNk31Hy1VGD9X5hz9astN39DUQHYGsK2P3jTiaz6fCbfQfWcX6A
CitedBy_id crossref_primary_10_1080_10106049_2024_2413549
crossref_primary_10_1016_j_apacoust_2024_110527
crossref_primary_10_1016_j_compbiomed_2025_109676
crossref_primary_10_1088_2058_9565_ad8e80
crossref_primary_10_1088_1612_202X_ad8742
crossref_primary_10_1109_ACCESS_2025_3546259
crossref_primary_10_1109_ACCESS_2024_3463400
crossref_primary_10_1002_qute_202400122
crossref_primary_10_1016_j_future_2024_107586
crossref_primary_10_1080_09540091_2024_2435654
crossref_primary_10_1002_qute_202400700
crossref_primary_10_1109_ACCESS_2025_3531407
crossref_primary_10_3390_electronics13224428
crossref_primary_10_1088_2632_2153_ad7570
crossref_primary_10_1007_s44217_025_00400_1
crossref_primary_10_1109_ACCESS_2024_3418458
crossref_primary_10_1109_ACCESS_2024_3451522
crossref_primary_10_1007_s11227_024_06746_x
crossref_primary_10_3390_app15052555
crossref_primary_10_1109_ACCESS_2025_3532483
crossref_primary_10_1007_s40747_024_01694_8
crossref_primary_10_1016_j_optlastec_2025_112755
crossref_primary_10_1002_advs_202410637
crossref_primary_10_1007_s40747_024_01606_w
crossref_primary_10_1007_s42484_024_00232_6
crossref_primary_10_1007_s11227_024_06615_7
crossref_primary_10_3389_frqst_2024_1462004
crossref_primary_10_1007_s10115_024_02229_w
crossref_primary_10_1002_qute_202400510
crossref_primary_10_3389_fphy_2024_1412664
crossref_primary_10_3389_fphy_2024_1443977
crossref_primary_10_1016_j_image_2025_117261
crossref_primary_10_1088_2058_9565_ad80bd
Cites_doi 10.3390/e24060767
10.1002/andp.202100449
10.1007/s11128-016-1391-z
10.1016/j.csda.2019.106816
10.1007/s10773-022-05263-y
10.1103/PhysRevA.102.042418
10.1016/j.knosys.2016.06.012
10.1016/j.swevo.2021.101006
10.1016/j.techfore.2022.122271
10.1016/j.inffus.2022.10.005
10.1364/OE.431945
10.1016/j.is.2022.102124
10.1007/s00500-019-03935-2
10.1016/S0031-3203(01)00234-5
10.1103/PhysRevLett.79.4709
10.1103/PhysRevLett.88.018702
10.1016/j.neucom.2015.08.112
10.1038/s41598-021-85474-1
10.1109/TIFS.2023.3337940
10.1016/S0031-3203(01)00132-7
10.3389/fphy.2022.1047466
10.1109/TCYB.2020.3010004
10.1038/s41586-022-04725-x
10.1007/s11128-023-03869-7
10.1007/s11128-020-2592-z
10.1016/j.optcom.2023.129993
10.1016/j.neucom.2022.02.003
10.1007/s10773-021-04747-7
10.1007/s11128-021-03361-0
10.1016/j.image.2022.116891
10.1007/s10044-022-01069-0
10.34133/research.0134
10.1007/s00521-019-04114-y
10.1007/s11128-018-2004-9
10.1016/j.ins.2018.08.067
10.1007/s11128-021-03384-7
10.1016/j.physa.2022.126907
10.1038/414883a
10.1016/j.knosys.2022.108451
10.1103/PhysRevA.99.042325
ContentType Journal Article
Copyright 2024 Wiley‐VCH GmbH
Copyright_xml – notice: 2024 Wiley‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/qute.202300221
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2511-9044
EndPage n/a
ExternalDocumentID 10_1002_qute_202300221
QUTE202300221
Genre article
GrantInformation_xml – fundername: Science & Technology Planning Project of Shanghai
  funderid: 23010501800
– fundername: National Key Research and Development Program of China
  funderid: SQ2020YFF0402315
– fundername: National Natural Science Foundation of China
  funderid: 62162041
– fundername: Top Double 1000 Talent Programme of Jiangxi Province
  funderid: JXSQ2019201055
GroupedDBID 0R~
1OC
33P
AAHQN
AAMMB
AAMNL
AANLZ
AAYCA
AAZKR
ABCUV
ABJNI
ACCZN
ACGFS
ACPOU
ACXQS
ADBBV
ADKYN
ADMLS
ADXAS
ADZMN
AEFGJ
AEIGN
AEUYR
AEYWJ
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
ARCSS
BFHJK
DCZOG
EBS
EJD
HGLYW
LATKE
LEEKS
LUTES
LYRES
MEWTI
O9-
P2W
ROL
SUPJJ
WXSBR
ZZTAW
AAYXX
CITATION
ID FETCH-LOGICAL-c2891-6e5490655618853c9382ddf16450c0365a2d58bf35e654a60e28217ed99f42623
ISSN 2511-9044
IngestDate Wed Oct 29 21:22:22 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Sun Jul 06 04:45:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2891-6e5490655618853c9382ddf16450c0365a2d58bf35e654a60e28217ed99f42623
ORCID 0000-0002-5080-2189
PageCount 12
ParticipantIDs crossref_citationtrail_10_1002_qute_202300221
crossref_primary_10_1002_qute_202300221
wiley_primary_10_1002_qute_202300221_QUTE202300221
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Advanced quantum technologies (Online)
PublicationYear 2024
References 2017; 5
2022; 593
2015; 15
2013; 3
2020; 142
2023; 6
2019; 99
2021; 29
2002; 35
2023; 188
2023; 19
2022; 24
2022; 69
2022; 25
2020; 102
2022; 21
2020; 32
2001; 88
2016; 15
2022; 534
2017; 117
2020; 19
2022; 243
2018; 7
2018; 17
2023; 22
2021; 11
2023
2021
2022; 62
2023; 111
1997; 79
2023; 110
2005; 5
2024; 550
2023; 378
2020; 24
2022; 52
2022; 10
2022; 606
2021; 60
2023; 91
2016; 195
2001; 414
2022; 488
2019; 473
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Roy A. (e_1_2_9_46_1) 2013; 3
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
Leng Q. K. (e_1_2_9_17_1) 2023; 378
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
Wiebe N. (e_1_2_9_30_1) 2015; 15
e_1_2_9_24_1
e_1_2_9_43_1
Halakatti S. T. (e_1_2_9_45_1) 2017; 5
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
Mohan P. M. (e_1_2_9_47_1) 2018; 7
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
Mottonen M. (e_1_2_9_40_1) 2005; 5
References_xml – volume: 32
  start-page: 6559
  year: 2020
  publication-title: Neural Comput. Appl.
– volume: 117
  start-page: 3
  year: 2017
  publication-title: Knowl.‐Based Syst.
– volume: 188
  year: 2023
  publication-title: Technol. Forecast. Soc. Change
– volume: 62
  start-page: 4
  year: 2022
  publication-title: Int. J. Theor. Phys.
– volume: 15
  start-page: 4049
  year: 2016
  publication-title: Quantum Inf. Process.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. A
– volume: 15
  start-page: 316
  year: 2015
  publication-title: Quantum Inf. Comput.
– volume: 21
  start-page: 19
  year: 2022
  publication-title: Quantum Inf. Process.
– volume: 17
  start-page: 239
  year: 2018
  publication-title: Quantum Inf. Process.
– year: 2021
– volume: 52
  start-page: 3232
  year: 2022
  publication-title: IEEE Trans. Cybern.
– volume: 19
  start-page: 1326
  year: 2023
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 79
  start-page: 4709
  year: 1997
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 0134
  year: 2023
  publication-title: Research
– volume: 22
  start-page: 123
  year: 2023
  publication-title: Quantum Inf. Process.
– volume: 111
  year: 2023
  publication-title: Inf. Syst.
– volume: 35
  start-page: 2311
  year: 2002
  publication-title: Pattern Recognit.
– volume: 35
  start-page: 2791
  year: 2002
  publication-title: Pattern Recognit.
– volume: 110
  year: 2023
  publication-title: Signal Process‐Image
– volume: 10
  year: 2022
  publication-title: Front. Phys.
– volume: 88
  year: 2001
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 6329
  year: 2021
  publication-title: Sci. Rep.
– volume: 5
  start-page: 59
  year: 2017
  publication-title: Int. J. Comput. Sci. Res.
– volume: 3
  start-page: 430
  year: 2013
  publication-title: Int. J. Adv. Res. Comp. Sci. Softw. Eng.
– volume: 60
  start-page: 1209
  year: 2021
  publication-title: Int. J. Theor. Phys.
– volume: 142
  year: 2020
  publication-title: Comput. Stat. Data Anal.
– volume: 488
  start-page: 271
  year: 2022
  publication-title: Neurocomputing
– volume: 414
  start-page: 883
  year: 2001
  publication-title: Nature
– volume: 24
  start-page: 767
  year: 2022
  publication-title: Entropy
– volume: 21
  start-page: 18
  year: 2022
  publication-title: Quantum Inf. Process.
– volume: 91
  start-page: 80
  year: 2023
  publication-title: Inf. Fusion
– volume: 69
  year: 2022
  publication-title: Swarm Evol. Comput.
– volume: 19
  start-page: 102
  year: 2020
  publication-title: Quantum Inf. Process.
– volume: 25
  start-page: 773
  year: 2022
  publication-title: Pattern Anal. Appl.
– year: 2023
– volume: 606
  start-page: 75
  year: 2022
  publication-title: Nature
– volume: 5
  start-page: 467
  year: 2005
  publication-title: Quantum Inf. Comput.
– volume: 24
  start-page: 965
  year: 2020
  publication-title: Soft Comput.
– volume: 195
  start-page: 143
  year: 2016
  publication-title: Neurocomputing
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 378
  start-page: 739
  year: 2023
  publication-title: Front. Artif. Intell. Appl.
– volume: 534
  year: 2022
  publication-title: Ann. Phys.
– volume: 550
  year: 2024
  publication-title: Opt. Commun.
– volume: 593
  year: 2022
  publication-title: Physica A Stat. Mech. Appl.
– volume: 243
  year: 2022
  publication-title: Knowl.‐Based Syst.
– volume: 7
  start-page: 198
  year: 2018
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
– volume: 102
  year: 2020
  publication-title: Phys. Rev. A
– volume: 473
  start-page: 121
  year: 2019
  publication-title: Inf. Sci.
– ident: e_1_2_9_37_1
  doi: 10.3390/e24060767
– ident: e_1_2_9_48_1
– ident: e_1_2_9_18_1
  doi: 10.1002/andp.202100449
– ident: e_1_2_9_31_1
  doi: 10.1007/s11128-016-1391-z
– ident: e_1_2_9_1_1
  doi: 10.1016/j.csda.2019.106816
– ident: e_1_2_9_36_1
  doi: 10.1007/s10773-022-05263-y
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRevA.102.042418
– ident: e_1_2_9_15_1
  doi: 10.1016/j.knosys.2016.06.012
– ident: e_1_2_9_2_1
  doi: 10.1016/j.swevo.2021.101006
– ident: e_1_2_9_10_1
  doi: 10.1016/j.techfore.2022.122271
– ident: e_1_2_9_3_1
  doi: 10.1016/j.inffus.2022.10.005
– volume: 378
  start-page: 739
  year: 2023
  ident: e_1_2_9_17_1
  publication-title: Front. Artif. Intell. Appl.
– volume: 7
  start-page: 198
  year: 2018
  ident: e_1_2_9_47_1
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
– ident: e_1_2_9_24_1
  doi: 10.1364/OE.431945
– ident: e_1_2_9_9_1
  doi: 10.1016/j.is.2022.102124
– ident: e_1_2_9_4_1
  doi: 10.1007/s00500-019-03935-2
– ident: e_1_2_9_8_1
  doi: 10.1016/S0031-3203(01)00234-5
– ident: e_1_2_9_20_1
  doi: 10.1103/PhysRevLett.79.4709
– ident: e_1_2_9_21_1
  doi: 10.1103/PhysRevLett.88.018702
– ident: e_1_2_9_14_1
  doi: 10.1016/j.neucom.2015.08.112
– volume: 15
  start-page: 316
  year: 2015
  ident: e_1_2_9_30_1
  publication-title: Quantum Inf. Comput.
– ident: e_1_2_9_32_1
– ident: e_1_2_9_43_1
  doi: 10.1038/s41598-021-85474-1
– ident: e_1_2_9_12_1
  doi: 10.1109/TIFS.2023.3337940
– ident: e_1_2_9_13_1
  doi: 10.1016/S0031-3203(01)00132-7
– ident: e_1_2_9_35_1
  doi: 10.3389/fphy.2022.1047466
– ident: e_1_2_9_42_1
  doi: 10.1109/TCYB.2020.3010004
– ident: e_1_2_9_28_1
  doi: 10.1038/s41586-022-04725-x
– ident: e_1_2_9_44_1
  doi: 10.1007/s11128-023-03869-7
– ident: e_1_2_9_26_1
  doi: 10.1007/s11128-020-2592-z
– ident: e_1_2_9_7_1
  doi: 10.1016/j.optcom.2023.129993
– ident: e_1_2_9_5_1
  doi: 10.1016/j.neucom.2022.02.003
– ident: e_1_2_9_33_1
  doi: 10.1007/s10773-021-04747-7
– ident: e_1_2_9_34_1
  doi: 10.1007/s11128-021-03361-0
– volume: 3
  start-page: 430
  year: 2013
  ident: e_1_2_9_46_1
  publication-title: Int. J. Adv. Res. Comp. Sci. Softw. Eng.
– volume: 5
  start-page: 59
  year: 2017
  ident: e_1_2_9_45_1
  publication-title: Int. J. Comput. Sci. Res.
– ident: e_1_2_9_22_1
  doi: 10.1016/j.image.2022.116891
– ident: e_1_2_9_39_1
  doi: 10.1007/s10044-022-01069-0
– ident: e_1_2_9_25_1
  doi: 10.34133/research.0134
– ident: e_1_2_9_11_1
  doi: 10.1007/s00521-019-04114-y
– volume: 5
  start-page: 467
  year: 2005
  ident: e_1_2_9_40_1
  publication-title: Quantum Inf. Comput.
– ident: e_1_2_9_38_1
  doi: 10.1007/s11128-018-2004-9
– ident: e_1_2_9_23_1
  doi: 10.1016/j.ins.2018.08.067
– ident: e_1_2_9_27_1
  doi: 10.1007/s11128-021-03384-7
– ident: e_1_2_9_29_1
  doi: 10.1016/j.physa.2022.126907
– ident: e_1_2_9_19_1
  doi: 10.1038/414883a
– ident: e_1_2_9_16_1
  doi: 10.1016/j.knosys.2022.108451
– ident: e_1_2_9_41_1
  doi: 10.1103/PhysRevA.99.042325
SSID ssj0002313473
Score 2.4695692
Snippet The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms divide‐and‐conquer strategy
Fidelity
majority voting method
Quantum K‐nearest neighbor classification algorithm
quantum machine learning
Title Quantum K‐Nearest Neighbor Classification Algorithm via a Divide‐and‐Conquer Strategy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300221
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2511-9044
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0002313473
  issn: 2511-9044
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLZKJyRuEEcxBsgXSFxUGYkTp8lltQ1V7CBNtNoYF1XiOFukrd26hAuueAQehKfiSfgcO24ixmk3Ueracev_039wfn8_Ia_zKM0ywVPHZ0nqBFkYOymHMvS8MAU-mGB1bcD9g3A8Dd4f8-Ne73sra6kq003x5cZzJbeRKtogV3VK9j8kax-KBtxDvrhCwrj-k4wPK6xLdTHYtSkLB4qS9rqE7kLQDfHqopcqHUgLenR-ulgW5dnF4LM6jQWNp87h2eEqy7G531rMYTOWA8Nf23n9O2oyB67MLyibHfpCb-O2GUwN_75WKnuFnWBcWZOwbSqrHMnCZgjVaQYn9vOR2dj-iBntI07Oiva2BQtW6VVau6nQxoldTf64KW9oM-p52EJh2LLT1or9YgQ0qexVVdOgIsSCm-KtzF3zit_25H_uW9v6w-lkx35_h6wx2BC3T9ZG2_t7H-yeHnxlP6iTGuw_aXhCXfa2O0nHD2rHRbVjM3lA7puIhI40vB6Snpw_InfrzGBx_Zh8MiCjuz--fjPwog28aBde1MKLAl40oRpeGAhg4WogRRtIPSHTdzuTrbFjKnI4AoG554SSBzGcVjjdEfw8EfsRy7IcITd3BXwhnrCMR2nucxnyIAldiYjeG8osjnNV-sB_SvrzxVw-IzT3ZYJoWYQ5PMyhLxIPxiAbupiBuVHurxOnWZ-ZMHT1qmrK-UwTbbOZWs-ZXc918sb2v9RELb_tyerl_ku3WUfmz28zaIPcW0H_BemXy0q-hA9bpq8MdH4CIICQcg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+K%E2%80%90Nearest+Neighbor+Classification+Algorithm+via+a+Divide%E2%80%90and%E2%80%90Conquer+Strategy&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Gong%2C+Li%E2%80%90Hua&rft.au=Ding%2C+Wei&rft.au=Li%2C+Zi&rft.au=Wang%2C+Yuan%E2%80%90Zhi&rft.date=2024-06-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202300221&rft.externalDBID=10.1002%252Fqute.202300221&rft.externalDocID=QUTE202300221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon