Quantum K‐Nearest Neighbor Classification Algorithm via a Divide‐and‐Conquer Strategy
The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based...
Saved in:
| Published in | Advanced quantum technologies (Online) Vol. 7; no. 6 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.06.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2511-9044 2511-9044 |
| DOI | 10.1002/qute.202300221 |
Cover
| Abstract | The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based on the divide‐and‐conquer strategy. A quantum circuit is designed to calculate the fidelity between the test sample and each feature vector of the training dataset. The quantum K‐nearest neighbor algorithm has higher classification efficiency in high‐dimensional data processing. The classification accuracy of the proposed algorithm is equivalent to that of the classical K‐nearest neighbor algorithm under the IRIS dataset. In addition, compared with the typical quantum K‐nearest neighbor algorithms, the proposed classification method possesses higher classification accuracy with less calculation time, which has wide applications in the industrial field.
An efficient quantum K‐nearest neighbor (QKNN) classification scheme is designed based on a divide‐and‐conquer strategy. The QKNN algorithm makes full use of the ability of parallel computation. The proposed QKNN classification algorithm can provide an accurate approximation to the classical KNN classification algorithm, and has more accurate classification performance with less running time than the typical QKNN classification algorithms. |
|---|---|
| AbstractList | The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based on the divide‐and‐conquer strategy. A quantum circuit is designed to calculate the fidelity between the test sample and each feature vector of the training dataset. The quantum K‐nearest neighbor algorithm has higher classification efficiency in high‐dimensional data processing. The classification accuracy of the proposed algorithm is equivalent to that of the classical K‐nearest neighbor algorithm under the IRIS dataset. In addition, compared with the typical quantum K‐nearest neighbor algorithms, the proposed classification method possesses higher classification accuracy with less calculation time, which has wide applications in the industrial field. The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the most crucial and time‐consuming step among the classical K‐nearest neighbor algorithm. A quantum K‐nearest neighbor algorithm is proposed based on the divide‐and‐conquer strategy. A quantum circuit is designed to calculate the fidelity between the test sample and each feature vector of the training dataset. The quantum K‐nearest neighbor algorithm has higher classification efficiency in high‐dimensional data processing. The classification accuracy of the proposed algorithm is equivalent to that of the classical K‐nearest neighbor algorithm under the IRIS dataset. In addition, compared with the typical quantum K‐nearest neighbor algorithms, the proposed classification method possesses higher classification accuracy with less calculation time, which has wide applications in the industrial field. An efficient quantum K‐nearest neighbor (QKNN) classification scheme is designed based on a divide‐and‐conquer strategy. The QKNN algorithm makes full use of the ability of parallel computation. The proposed QKNN classification algorithm can provide an accurate approximation to the classical KNN classification algorithm, and has more accurate classification performance with less running time than the typical QKNN classification algorithms. |
| Author | Gong, Li‐Hua Zhou, Nan‐Run Ding, Wei Li, Zi Wang, Yuan‐Zhi |
| Author_xml | – sequence: 1 givenname: Li‐Hua surname: Gong fullname: Gong, Li‐Hua organization: Shanghai University of Engineering Science – sequence: 2 givenname: Wei surname: Ding fullname: Ding, Wei organization: Nanchang University – sequence: 3 givenname: Zi surname: Li fullname: Li, Zi organization: Nanchang University – sequence: 4 givenname: Yuan‐Zhi surname: Wang fullname: Wang, Yuan‐Zhi organization: Anqing Normal University – sequence: 5 givenname: Nan‐Run orcidid: 0000-0002-5080-2189 surname: Zhou fullname: Zhou, Nan‐Run email: nrzhou@sues.edu.cn organization: Shanghai University of Engineering Science |
| BookMark | eNqFkM1OwkAUhScGExHZup4XKM4_7ZJU_IkEQ4SVi2Zob2FMaWVmCmHnI_iMPolFjBoT4-bee5Lz3ZycU9QqqxIQOqekRwlhF-vaQ48RxhvB6BFqM0lpEBEhWj_uE9R17ok0Hk656PM2epzUuvT1Ct-9vbyOQVtwHo_BLJbzyuK40M6Z3KTam6rEg2JRWeOXK7wxGmt8aTYmgwbUZdbMuCrXNVj84K32sNidoeNcFw66n7uDZlfDaXwTjO6vb-PBKEhZGNFAgRQRUVIqGoaSpxEPWZblVAlJUsKV1CyT4TznEpQUWhFgIaN9yKIoF0wx3kHi8De1lXMW8iQ1_iNxE8QUCSXJvqNk31Hy1VGD9X5hz9astN39DUQHYGsK2P3jTiaz6fCbfQfWcX6A |
| CitedBy_id | crossref_primary_10_1080_10106049_2024_2413549 crossref_primary_10_1016_j_apacoust_2024_110527 crossref_primary_10_1016_j_compbiomed_2025_109676 crossref_primary_10_1088_2058_9565_ad8e80 crossref_primary_10_1088_1612_202X_ad8742 crossref_primary_10_1109_ACCESS_2025_3546259 crossref_primary_10_1109_ACCESS_2024_3463400 crossref_primary_10_1002_qute_202400122 crossref_primary_10_1016_j_future_2024_107586 crossref_primary_10_1080_09540091_2024_2435654 crossref_primary_10_1002_qute_202400700 crossref_primary_10_1109_ACCESS_2025_3531407 crossref_primary_10_3390_electronics13224428 crossref_primary_10_1088_2632_2153_ad7570 crossref_primary_10_1007_s44217_025_00400_1 crossref_primary_10_1109_ACCESS_2024_3418458 crossref_primary_10_1109_ACCESS_2024_3451522 crossref_primary_10_1007_s11227_024_06746_x crossref_primary_10_3390_app15052555 crossref_primary_10_1109_ACCESS_2025_3532483 crossref_primary_10_1007_s40747_024_01694_8 crossref_primary_10_1016_j_optlastec_2025_112755 crossref_primary_10_1002_advs_202410637 crossref_primary_10_1007_s40747_024_01606_w crossref_primary_10_1007_s42484_024_00232_6 crossref_primary_10_1007_s11227_024_06615_7 crossref_primary_10_3389_frqst_2024_1462004 crossref_primary_10_1007_s10115_024_02229_w crossref_primary_10_1002_qute_202400510 crossref_primary_10_3389_fphy_2024_1412664 crossref_primary_10_3389_fphy_2024_1443977 crossref_primary_10_1016_j_image_2025_117261 crossref_primary_10_1088_2058_9565_ad80bd |
| Cites_doi | 10.3390/e24060767 10.1002/andp.202100449 10.1007/s11128-016-1391-z 10.1016/j.csda.2019.106816 10.1007/s10773-022-05263-y 10.1103/PhysRevA.102.042418 10.1016/j.knosys.2016.06.012 10.1016/j.swevo.2021.101006 10.1016/j.techfore.2022.122271 10.1016/j.inffus.2022.10.005 10.1364/OE.431945 10.1016/j.is.2022.102124 10.1007/s00500-019-03935-2 10.1016/S0031-3203(01)00234-5 10.1103/PhysRevLett.79.4709 10.1103/PhysRevLett.88.018702 10.1016/j.neucom.2015.08.112 10.1038/s41598-021-85474-1 10.1109/TIFS.2023.3337940 10.1016/S0031-3203(01)00132-7 10.3389/fphy.2022.1047466 10.1109/TCYB.2020.3010004 10.1038/s41586-022-04725-x 10.1007/s11128-023-03869-7 10.1007/s11128-020-2592-z 10.1016/j.optcom.2023.129993 10.1016/j.neucom.2022.02.003 10.1007/s10773-021-04747-7 10.1007/s11128-021-03361-0 10.1016/j.image.2022.116891 10.1007/s10044-022-01069-0 10.34133/research.0134 10.1007/s00521-019-04114-y 10.1007/s11128-018-2004-9 10.1016/j.ins.2018.08.067 10.1007/s11128-021-03384-7 10.1016/j.physa.2022.126907 10.1038/414883a 10.1016/j.knosys.2022.108451 10.1103/PhysRevA.99.042325 |
| ContentType | Journal Article |
| Copyright | 2024 Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2024 Wiley‐VCH GmbH |
| DBID | AAYXX CITATION |
| DOI | 10.1002/qute.202300221 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2511-9044 |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_qute_202300221 QUTE202300221 |
| Genre | article |
| GrantInformation_xml | – fundername: Science & Technology Planning Project of Shanghai funderid: 23010501800 – fundername: National Key Research and Development Program of China funderid: SQ2020YFF0402315 – fundername: National Natural Science Foundation of China funderid: 62162041 – fundername: Top Double 1000 Talent Programme of Jiangxi Province funderid: JXSQ2019201055 |
| GroupedDBID | 0R~ 1OC 33P AAHQN AAMMB AAMNL AANLZ AAYCA AAZKR ABCUV ABJNI ACCZN ACGFS ACPOU ACXQS ADBBV ADKYN ADMLS ADXAS ADZMN AEFGJ AEIGN AEUYR AEYWJ AFFPM AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMYDB ARCSS BFHJK DCZOG EBS EJD HGLYW LATKE LEEKS LUTES LYRES MEWTI O9- P2W ROL SUPJJ WXSBR ZZTAW AAYXX CITATION |
| ID | FETCH-LOGICAL-c2891-6e5490655618853c9382ddf16450c0365a2d58bf35e654a60e28217ed99f42623 |
| ISSN | 2511-9044 |
| IngestDate | Wed Oct 29 21:22:22 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Sun Jul 06 04:45:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2891-6e5490655618853c9382ddf16450c0365a2d58bf35e654a60e28217ed99f42623 |
| ORCID | 0000-0002-5080-2189 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1002_qute_202300221 crossref_primary_10_1002_qute_202300221 wiley_primary_10_1002_qute_202300221_QUTE202300221 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced quantum technologies (Online) |
| PublicationYear | 2024 |
| References | 2017; 5 2022; 593 2015; 15 2013; 3 2020; 142 2023; 6 2019; 99 2021; 29 2002; 35 2023; 188 2023; 19 2022; 24 2022; 69 2022; 25 2020; 102 2022; 21 2020; 32 2001; 88 2016; 15 2022; 534 2017; 117 2020; 19 2022; 243 2018; 7 2018; 17 2023; 22 2021; 11 2023 2021 2022; 62 2023; 111 1997; 79 2023; 110 2005; 5 2024; 550 2023; 378 2020; 24 2022; 52 2022; 10 2022; 606 2021; 60 2023; 91 2016; 195 2001; 414 2022; 488 2019; 473 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Roy A. (e_1_2_9_46_1) 2013; 3 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 Leng Q. K. (e_1_2_9_17_1) 2023; 378 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 Wiebe N. (e_1_2_9_30_1) 2015; 15 e_1_2_9_24_1 e_1_2_9_43_1 Halakatti S. T. (e_1_2_9_45_1) 2017; 5 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 Mohan P. M. (e_1_2_9_47_1) 2018; 7 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 Mottonen M. (e_1_2_9_40_1) 2005; 5 |
| References_xml | – volume: 32 start-page: 6559 year: 2020 publication-title: Neural Comput. Appl. – volume: 117 start-page: 3 year: 2017 publication-title: Knowl.‐Based Syst. – volume: 188 year: 2023 publication-title: Technol. Forecast. Soc. Change – volume: 62 start-page: 4 year: 2022 publication-title: Int. J. Theor. Phys. – volume: 15 start-page: 4049 year: 2016 publication-title: Quantum Inf. Process. – volume: 99 year: 2019 publication-title: Phys. Rev. A – volume: 15 start-page: 316 year: 2015 publication-title: Quantum Inf. Comput. – volume: 21 start-page: 19 year: 2022 publication-title: Quantum Inf. Process. – volume: 17 start-page: 239 year: 2018 publication-title: Quantum Inf. Process. – year: 2021 – volume: 52 start-page: 3232 year: 2022 publication-title: IEEE Trans. Cybern. – volume: 19 start-page: 1326 year: 2023 publication-title: IEEE Trans. Inf. Forensics Secur. – volume: 79 start-page: 4709 year: 1997 publication-title: Phys. Rev. Lett. – volume: 6 start-page: 0134 year: 2023 publication-title: Research – volume: 22 start-page: 123 year: 2023 publication-title: Quantum Inf. Process. – volume: 111 year: 2023 publication-title: Inf. Syst. – volume: 35 start-page: 2311 year: 2002 publication-title: Pattern Recognit. – volume: 35 start-page: 2791 year: 2002 publication-title: Pattern Recognit. – volume: 110 year: 2023 publication-title: Signal Process‐Image – volume: 10 year: 2022 publication-title: Front. Phys. – volume: 88 year: 2001 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 6329 year: 2021 publication-title: Sci. Rep. – volume: 5 start-page: 59 year: 2017 publication-title: Int. J. Comput. Sci. Res. – volume: 3 start-page: 430 year: 2013 publication-title: Int. J. Adv. Res. Comp. Sci. Softw. Eng. – volume: 60 start-page: 1209 year: 2021 publication-title: Int. J. Theor. Phys. – volume: 142 year: 2020 publication-title: Comput. Stat. Data Anal. – volume: 488 start-page: 271 year: 2022 publication-title: Neurocomputing – volume: 414 start-page: 883 year: 2001 publication-title: Nature – volume: 24 start-page: 767 year: 2022 publication-title: Entropy – volume: 21 start-page: 18 year: 2022 publication-title: Quantum Inf. Process. – volume: 91 start-page: 80 year: 2023 publication-title: Inf. Fusion – volume: 69 year: 2022 publication-title: Swarm Evol. Comput. – volume: 19 start-page: 102 year: 2020 publication-title: Quantum Inf. Process. – volume: 25 start-page: 773 year: 2022 publication-title: Pattern Anal. Appl. – year: 2023 – volume: 606 start-page: 75 year: 2022 publication-title: Nature – volume: 5 start-page: 467 year: 2005 publication-title: Quantum Inf. Comput. – volume: 24 start-page: 965 year: 2020 publication-title: Soft Comput. – volume: 195 start-page: 143 year: 2016 publication-title: Neurocomputing – volume: 29 year: 2021 publication-title: Opt. Express – volume: 378 start-page: 739 year: 2023 publication-title: Front. Artif. Intell. Appl. – volume: 534 year: 2022 publication-title: Ann. Phys. – volume: 550 year: 2024 publication-title: Opt. Commun. – volume: 593 year: 2022 publication-title: Physica A Stat. Mech. Appl. – volume: 243 year: 2022 publication-title: Knowl.‐Based Syst. – volume: 7 start-page: 198 year: 2018 publication-title: Int. J. Innov. Res. Sci. Eng. Technol. – volume: 102 year: 2020 publication-title: Phys. Rev. A – volume: 473 start-page: 121 year: 2019 publication-title: Inf. Sci. – ident: e_1_2_9_37_1 doi: 10.3390/e24060767 – ident: e_1_2_9_48_1 – ident: e_1_2_9_18_1 doi: 10.1002/andp.202100449 – ident: e_1_2_9_31_1 doi: 10.1007/s11128-016-1391-z – ident: e_1_2_9_1_1 doi: 10.1016/j.csda.2019.106816 – ident: e_1_2_9_36_1 doi: 10.1007/s10773-022-05263-y – ident: e_1_2_9_6_1 doi: 10.1103/PhysRevA.102.042418 – ident: e_1_2_9_15_1 doi: 10.1016/j.knosys.2016.06.012 – ident: e_1_2_9_2_1 doi: 10.1016/j.swevo.2021.101006 – ident: e_1_2_9_10_1 doi: 10.1016/j.techfore.2022.122271 – ident: e_1_2_9_3_1 doi: 10.1016/j.inffus.2022.10.005 – volume: 378 start-page: 739 year: 2023 ident: e_1_2_9_17_1 publication-title: Front. Artif. Intell. Appl. – volume: 7 start-page: 198 year: 2018 ident: e_1_2_9_47_1 publication-title: Int. J. Innov. Res. Sci. Eng. Technol. – ident: e_1_2_9_24_1 doi: 10.1364/OE.431945 – ident: e_1_2_9_9_1 doi: 10.1016/j.is.2022.102124 – ident: e_1_2_9_4_1 doi: 10.1007/s00500-019-03935-2 – ident: e_1_2_9_8_1 doi: 10.1016/S0031-3203(01)00234-5 – ident: e_1_2_9_20_1 doi: 10.1103/PhysRevLett.79.4709 – ident: e_1_2_9_21_1 doi: 10.1103/PhysRevLett.88.018702 – ident: e_1_2_9_14_1 doi: 10.1016/j.neucom.2015.08.112 – volume: 15 start-page: 316 year: 2015 ident: e_1_2_9_30_1 publication-title: Quantum Inf. Comput. – ident: e_1_2_9_32_1 – ident: e_1_2_9_43_1 doi: 10.1038/s41598-021-85474-1 – ident: e_1_2_9_12_1 doi: 10.1109/TIFS.2023.3337940 – ident: e_1_2_9_13_1 doi: 10.1016/S0031-3203(01)00132-7 – ident: e_1_2_9_35_1 doi: 10.3389/fphy.2022.1047466 – ident: e_1_2_9_42_1 doi: 10.1109/TCYB.2020.3010004 – ident: e_1_2_9_28_1 doi: 10.1038/s41586-022-04725-x – ident: e_1_2_9_44_1 doi: 10.1007/s11128-023-03869-7 – ident: e_1_2_9_26_1 doi: 10.1007/s11128-020-2592-z – ident: e_1_2_9_7_1 doi: 10.1016/j.optcom.2023.129993 – ident: e_1_2_9_5_1 doi: 10.1016/j.neucom.2022.02.003 – ident: e_1_2_9_33_1 doi: 10.1007/s10773-021-04747-7 – ident: e_1_2_9_34_1 doi: 10.1007/s11128-021-03361-0 – volume: 3 start-page: 430 year: 2013 ident: e_1_2_9_46_1 publication-title: Int. J. Adv. Res. Comp. Sci. Softw. Eng. – volume: 5 start-page: 59 year: 2017 ident: e_1_2_9_45_1 publication-title: Int. J. Comput. Sci. Res. – ident: e_1_2_9_22_1 doi: 10.1016/j.image.2022.116891 – ident: e_1_2_9_39_1 doi: 10.1007/s10044-022-01069-0 – ident: e_1_2_9_25_1 doi: 10.34133/research.0134 – ident: e_1_2_9_11_1 doi: 10.1007/s00521-019-04114-y – volume: 5 start-page: 467 year: 2005 ident: e_1_2_9_40_1 publication-title: Quantum Inf. Comput. – ident: e_1_2_9_38_1 doi: 10.1007/s11128-018-2004-9 – ident: e_1_2_9_23_1 doi: 10.1016/j.ins.2018.08.067 – ident: e_1_2_9_27_1 doi: 10.1007/s11128-021-03384-7 – ident: e_1_2_9_29_1 doi: 10.1016/j.physa.2022.126907 – ident: e_1_2_9_19_1 doi: 10.1038/414883a – ident: e_1_2_9_16_1 doi: 10.1016/j.knosys.2022.108451 – ident: e_1_2_9_41_1 doi: 10.1103/PhysRevA.99.042325 |
| SSID | ssj0002313473 |
| Score | 2.4695692 |
| Snippet | The K‐nearest neighbor algorithm is one of the most frequently applied supervised machine learning algorithms. Similarity computing is considered to be the... |
| SourceID | crossref wiley |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | divide‐and‐conquer strategy Fidelity majority voting method Quantum K‐nearest neighbor classification algorithm quantum machine learning |
| Title | Quantum K‐Nearest Neighbor Classification Algorithm via a Divide‐and‐Conquer Strategy |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fqute.202300221 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2511-9044 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0002313473 issn: 2511-9044 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtMwGLZKJyRuEEcxBsgXSFxUGYkTp8lltQ1V7CBNtNoYF1XiOFukrd26hAuueAQehKfiSfgcO24ixmk3Ueracev_039wfn8_Ia_zKM0ywVPHZ0nqBFkYOymHMvS8MAU-mGB1bcD9g3A8Dd4f8-Ne73sra6kq003x5cZzJbeRKtogV3VK9j8kax-KBtxDvrhCwrj-k4wPK6xLdTHYtSkLB4qS9rqE7kLQDfHqopcqHUgLenR-ulgW5dnF4LM6jQWNp87h2eEqy7G531rMYTOWA8Nf23n9O2oyB67MLyibHfpCb-O2GUwN_75WKnuFnWBcWZOwbSqrHMnCZgjVaQYn9vOR2dj-iBntI07Oiva2BQtW6VVau6nQxoldTf64KW9oM-p52EJh2LLT1or9YgQ0qexVVdOgIsSCm-KtzF3zit_25H_uW9v6w-lkx35_h6wx2BC3T9ZG2_t7H-yeHnxlP6iTGuw_aXhCXfa2O0nHD2rHRbVjM3lA7puIhI40vB6Snpw_InfrzGBx_Zh8MiCjuz--fjPwog28aBde1MKLAl40oRpeGAhg4WogRRtIPSHTdzuTrbFjKnI4AoG554SSBzGcVjjdEfw8EfsRy7IcITd3BXwhnrCMR2nucxnyIAldiYjeG8osjnNV-sB_SvrzxVw-IzT3ZYJoWYQ5PMyhLxIPxiAbupiBuVHurxOnWZ-ZMHT1qmrK-UwTbbOZWs-ZXc918sb2v9RELb_tyerl_ku3WUfmz28zaIPcW0H_BemXy0q-hA9bpq8MdH4CIICQcg |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+K%E2%80%90Nearest+Neighbor+Classification+Algorithm+via+a+Divide%E2%80%90and%E2%80%90Conquer+Strategy&rft.jtitle=Advanced+quantum+technologies+%28Online%29&rft.au=Gong%2C+Li%E2%80%90Hua&rft.au=Ding%2C+Wei&rft.au=Li%2C+Zi&rft.au=Wang%2C+Yuan%E2%80%90Zhi&rft.date=2024-06-01&rft.issn=2511-9044&rft.eissn=2511-9044&rft.volume=7&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fqute.202300221&rft.externalDBID=10.1002%252Fqute.202300221&rft.externalDocID=QUTE202300221 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2511-9044&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2511-9044&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2511-9044&client=summon |