Image distortion analysis based on normalized perceptual information distance
Image distortion analysis is a fundamental issue in many image processing problems, including compression, restoration, recognition, classification, and retrieval. Traditional image distortion evaluation approaches tend to be heuristic and are often limited to specific application environment. In th...
Saved in:
| Published in | Signal, image and video processing Vol. 7; no. 3; pp. 403 - 410 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Springer-Verlag
01.05.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1863-1703 1863-1711 |
| DOI | 10.1007/s11760-013-0443-4 |
Cover
| Abstract | Image distortion analysis is a fundamental issue in many image processing problems, including compression, restoration, recognition, classification, and retrieval. Traditional image distortion evaluation approaches tend to be heuristic and are often limited to specific application environment. In this work, we investigate the problem of image distortion measurement based on the theory of Kolmogorov complexity, which has rarely been studied in the context of image processing. This work is motivated by the normalized information distance (NID) measure that has been shown to be a valid and universal distance metric applicable to similarity measurement of any two objects (Li et al. in IEEE Trans Inf Theory 50:3250–3264,
2004
). Similar to Kolmogorov complexity, NID is non-computable. A useful practical solution is to approximate it using normalized compression distance (NCD) (Li et al. in IEEE Trans Inf Theory 50:3250–3264,
2004
), which has led to impressive results in many applications such as construction of phylogeny trees using DNA sequences (Li et al. in IEEE Trans Inf Theory 50:3250–3264,
2004
). In our earlier work, we showed that direct use of NCD on image processing problems is difficult and proposed a normalized conditional compression distance (NCCD) measure (Nikvand and Wang,
2010
), which has significantly wider applicability than existing image similarity/distortion measures. To assess the distortions between two images, we first transform them into the wavelet transform domain. Assuming stationarity and good decorrelation of wavelet coefficients beyond local regions and across wavelet subbands, the Kolmogorov complexity may be approximated using Shannon entropy (Cover et al. in Elements of information theory. Wiley-Interscience, New York,
1991
). Inspired by Sheikh and Bovik (IEEE Trans Image Process 15(2):430–444,
2006
), we adopt a Gaussian scale mixture model for clusters of neighboring wavelet coefficients and a Gaussian channel model for the noise distortions in the human visual system. Combining these assumptions with the NID framework, we derive a novel normalized perceptual information distance measure, where maximal likelihood estimation and least square regression are employed for parameter fitting. We validate the proposed distortion measure using three large-scale, publicly available, and subject-rated image databases, which include a wide range of practical image distortion types and levels. Our results demonstrate the good prediction power of the proposed method for perceptual image distortions. |
|---|---|
| AbstractList | Image distortion analysis is a fundamental issue in many image processing problems, including compression, restoration, recognition, classification, and retrieval. Traditional image distortion evaluation approaches tend to be heuristic and are often limited to specific application environment. In this work, we investigate the problem of image distortion measurement based on the theory of Kolmogorov complexity, which has rarely been studied in the context of image processing. This work is motivated by the normalized information distance (NID) measure that has been shown to be a valid and universal distance metric applicable to similarity measurement of any two objects (Li et al. in IEEE Trans Inf Theory 50:3250–3264,
2004
). Similar to Kolmogorov complexity, NID is non-computable. A useful practical solution is to approximate it using normalized compression distance (NCD) (Li et al. in IEEE Trans Inf Theory 50:3250–3264,
2004
), which has led to impressive results in many applications such as construction of phylogeny trees using DNA sequences (Li et al. in IEEE Trans Inf Theory 50:3250–3264,
2004
). In our earlier work, we showed that direct use of NCD on image processing problems is difficult and proposed a normalized conditional compression distance (NCCD) measure (Nikvand and Wang,
2010
), which has significantly wider applicability than existing image similarity/distortion measures. To assess the distortions between two images, we first transform them into the wavelet transform domain. Assuming stationarity and good decorrelation of wavelet coefficients beyond local regions and across wavelet subbands, the Kolmogorov complexity may be approximated using Shannon entropy (Cover et al. in Elements of information theory. Wiley-Interscience, New York,
1991
). Inspired by Sheikh and Bovik (IEEE Trans Image Process 15(2):430–444,
2006
), we adopt a Gaussian scale mixture model for clusters of neighboring wavelet coefficients and a Gaussian channel model for the noise distortions in the human visual system. Combining these assumptions with the NID framework, we derive a novel normalized perceptual information distance measure, where maximal likelihood estimation and least square regression are employed for parameter fitting. We validate the proposed distortion measure using three large-scale, publicly available, and subject-rated image databases, which include a wide range of practical image distortion types and levels. Our results demonstrate the good prediction power of the proposed method for perceptual image distortions. |
| Author | Nikvand, Nima Wang, Zhou |
| Author_xml | – sequence: 1 givenname: Nima surname: Nikvand fullname: Nikvand, Nima email: nnikvand@uwaterloo.ca organization: Department of ECE, University of Waterloo – sequence: 2 givenname: Zhou surname: Wang fullname: Wang, Zhou organization: Department of ECE, University of Waterloo |
| BookMark | eNp9kL1OwzAQgC1UJErpA7DlBQw-O7GdEVX8VCpigdlyHLtylTiVnQ7l6XFaxMDQW-5H951O3y2ahSFYhO6BPAAh4jEBCE4wAYZJWTJcXqE5SM4wCIDZX03YDVqmtCM5GBWSyzl6X_d6a4vWp3GIox9CoYPujsmnotHJtkWehCH2uvPfudvbaOx-POiu8MFN8xMz4ToYe4eune6SXf7mBfp6ef5cveHNx-t69bTBhko5Yidq0fL8hJA1I6wxriotVJTLJlesllyQumaONqYCZjitiGEtbWsmWmdtwxZInO-aOKQUrVPGj6dXxqh9p4CoSYw6i1FZjJrEqDKT8I_cR9_reLzI0DOT8m7Y2qh2wyFmTekC9AOf6ne8 |
| CitedBy_id | crossref_primary_10_3390_e20060393 crossref_primary_10_1007_s11760_017_1184_6 crossref_primary_10_1109_TVCG_2023_3338359 crossref_primary_10_1007_s10851_017_0745_1 crossref_primary_10_3390_e21060612 crossref_primary_10_1109_TSMC_2014_2331217 crossref_primary_10_1109_TCSVT_2015_2477915 |
| Cites_doi | 10.1109/TCOM.1983.1095851 10.1109/TIP.2005.859378 10.1109/TIT.2004.838101 10.1002/0471200611 10.1109/TIP.2003.819861 10.1109/TIP.2007.901820 10.1117/1.3267105 10.1117/12.704334 10.1109/TIP.2010.2092435 10.1007/978-1-4757-2606-0 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag London 2013 |
| Copyright_xml | – notice: Springer-Verlag London 2013 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11760-013-0443-4 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1863-1711 |
| EndPage | 410 |
| ExternalDocumentID | 10_1007_s11760_013_0443_4 |
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 Z5O Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
| ID | FETCH-LOGICAL-c288t-f797d6003789303bcf54e15268bf54398670993f2bc513c6250c3d2d937dfeeb3 |
| IEDL.DBID | AGYKE |
| ISSN | 1863-1703 |
| IngestDate | Thu Apr 24 22:50:09 EDT 2025 Wed Oct 01 04:04:33 EDT 2025 Fri Feb 21 02:32:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | image quality assessment Perceptual information distance Normalized information distance Kolmogorov complexity |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-f797d6003789303bcf54e15268bf54398670993f2bc513c6250c3d2d937dfeeb3 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1007_s11760_013_0443_4 crossref_primary_10_1007_s11760_013_0443_4 springer_journals_10_1007_s11760_013_0443_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20130500 2013-5-00 |
| PublicationDateYYYYMMDD | 2013-05-01 |
| PublicationDate_xml | – month: 5 year: 2013 text: 20130500 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Signal, image and video processing |
| PublicationTitleAbbrev | SIViP |
| PublicationYear | 2013 |
| Publisher | Springer-Verlag |
| Publisher_xml | – name: Springer-Verlag |
| References | CR2 CR4 Wang, Bovik, Sheikh, Simoncelli (CR15) 2004; 13 CR3 CR5 CR8 CR7 Chandler, Hemami (CR16) 2007; 16 CR18 CR17 CR14 CR13 CR12 CR11 Burt, Adelson (CR10) 1983; 31 Li, Chen, Li, Ma, Vitányi (CR1) 2004; 50 Cover, Thomas (CR19) 1991 Sheikh, Bovik (CR6) 2006; 15 Wang, Li (CR9) 2011; 20 443_CR5 443_CR18 443_CR3 Z Wang (443_CR15) 2004; 13 443_CR4 443_CR17 443_CR9 443_CR7 443_CR8 443_CR2 M Li (443_CR1) 2004; 50 DM Chandler (443_CR16) 2007; 16 443_CR11 HR Sheikh (443_CR6) 2006; 15 443_CR14 443_CR12 PJ Burt (443_CR10) 1983; 31 443_CR13 Thomas M Cover (443_CR19) 1991 |
| References_xml | – volume: 31 start-page: 532 year: 1983 end-page: 540 ident: CR10 article-title: The laplacian pyramid as a compact image code publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1983.1095851 – ident: CR18 – volume: 15 start-page: 430 issue: 2 year: 2006 end-page: 444 ident: CR6 article-title: Image information and visual quality publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859378 – volume: 50 start-page: 3250 year: 2004 end-page: 3264 ident: CR1 article-title: The similarity metric publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.838101 – ident: CR3 – ident: CR4 – ident: CR14 – ident: CR2 – ident: CR12 – ident: CR17 – ident: CR13 – year: 1991 ident: CR19 publication-title: Elements of Information Theory doi: 10.1002/0471200611 – ident: CR11 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: CR15 article-title: Image quality assessment: from error visibility to structural similarity publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – volume: 16 start-page: 2284 year: 2007 end-page: 2298 ident: CR16 article-title: Vsnr: a wavelet-based visual signal-to-noise-ratio for natural images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901820 – ident: CR5 – ident: CR7 – ident: CR8 – volume: 20 start-page: 1185 issue: 5 year: 2011 end-page: 1198 ident: CR9 article-title: Information content weighting for perceptual image quality assessment publication-title: IEEE Trans Image Process. – volume-title: Elements of Information Theory year: 1991 ident: 443_CR19 doi: 10.1002/0471200611 – ident: 443_CR11 – ident: 443_CR18 doi: 10.1117/1.3267105 – ident: 443_CR13 – volume: 16 start-page: 2284 year: 2007 ident: 443_CR16 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.901820 – ident: 443_CR12 – volume: 50 start-page: 3250 year: 2004 ident: 443_CR1 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.838101 – ident: 443_CR5 – ident: 443_CR2 – ident: 443_CR8 – ident: 443_CR3 – volume: 15 start-page: 430 issue: 2 year: 2006 ident: 443_CR6 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2005.859378 – ident: 443_CR4 doi: 10.1117/12.704334 – ident: 443_CR9 doi: 10.1109/TIP.2010.2092435 – ident: 443_CR14 – volume: 13 start-page: 600 issue: 4 year: 2004 ident: 443_CR15 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2003.819861 – ident: 443_CR17 – ident: 443_CR7 doi: 10.1007/978-1-4757-2606-0 – volume: 31 start-page: 532 year: 1983 ident: 443_CR10 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1983.1095851 |
| SSID | ssj0000327868 |
| Score | 1.9784778 |
| Snippet | Image distortion analysis is a fundamental issue in many image processing problems, including compression, restoration, recognition, classification, and... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 403 |
| SubjectTerms | Computer Imaging Computer Science Image Processing and Computer Vision Multimedia Information Systems Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Vision |
| Title | Image distortion analysis based on normalized perceptual information distance |
| URI | https://link.springer.com/article/10.1007/s11760-013-0443-4 |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: AFBBN dateStart: 20070401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1863-1711 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327868 issn: 1863-1703 databaseCode: U2A dateStart: 20070401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NT8IwFMBfBC56EEWN-EF28KQZ2daydkcwImrgBAmeln4tMeIkMi789bZbJ2LUhMuyLe269b22r-t7vwJc4YghiSh3Ay4CF3NCXJZwfQiJDJkiVCkTOzwchYMJfpx2pjaOe1F6u5dLknlPvQ5280lonKiQ62GMXFyBWo7bqkKte__8tP614qGA0CIIjoYGwOmhcj3zt-dsjkiby6H5KNOvw7h8v8K55LW9zHhbrH6gG7f8gAPYt1an0y3U5BB2VNqAermjg2MbeAP2vuEJj2D48KZ7G0fmJBEjQIdZhIljBj_p6DupsXlnLyt9NS98ZJa6IItjzfOY7Ea1jmHSvxvfDly7_YIrAkozNyGRlpcB1GibxkNcJB2sfIOH4foMRdSg3yKUaCl3fCT0RMoTSAZSGzwyUXqSfgLV9D1Vp-Ag7rOQE8p87mOFCSO6jyVmriOlYII1wStFEAvLJjdbZMziNVXZVF6sKy82lRfjJlx_ZZkXYI7_Et-UIoltG138nfpsq9TnsBvkMjVOkBdQzT6W6lIbKhlvacXs93qjllXQFlQmQfcTW3jgZg |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMAfOg_qwY-pOD978KQE2iZr0uMQx6bbThvsVvJVEOYcbrv415vXppsDFbyUtiQtvPeSvCTv_QJwx1JJDRWKxErHhCnOicyVuyTcJNJyYS3mDvcHSWfEnsfNsc_jnlfR7tWWZNFTr5PdIp5gEBUlIWOUsG3YQX4VAvNHcWu1sBLSmIsyBU4kiN8MabWb-dNXNsejzc3QYoxpH8GBdw6DVqnNY9iy0zocVgcvBL4d1mH_G0XwBPrdN9cpBKYAfqCcA-lJIwGOUSZwb6bomk5eP93TrAxlWbofeWpqUQerowWcwqj9NHzsEH9KAtGxEAuS89SJFTkyzvUIqdJ5k9kIKS7K3dFUIKEtpblTRjOi2s13Qk1NbJxfYnLr5tJnUJu-T-05BFRFMlFcyEhFzDIuuesKOU5JjNFSywaElawy7RHieJLFJFvDj1G8mRNvhuLNWAPuV1VmJT_jr8IPlQIy35Tmv5e--FfpW9jtDPu9rNcdvFzCXlxYAMYtXkFt8bG01863WKibwpa-AAJGxCc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3NS8MwFMAfOkH04MdUnJ89eFLC2iZr0uNQx6ZueHCwW0maFIRZh9su_vXmtenmQAUvpS1JCy8vyUvy3u8BXLFYUk2FIqFKQ8IU50Rmyl4iriNpuDAGY4f7g6g7ZA-j1sjlOZ1W3u7VkWQZ04CUpnzWnOisuQx8C3iEDlWU-IxRwtZhgyEnwSr0MGwvNll8GnJRhsOJCFGcPq1ONn_6yurctHowWsw3nT3YcYai1y5bdh_WTF6H3SoJg-f6ZB22vxEFD6Dfe7MDhKcL-AfK3JOOOuLhfKU9-yZHM3X8-mmfJqVby9z-yBFUizpYHbXhEIad-5fbLnEZE0gaCjEjGY-tiJEpY80Qn6o0azETINFF2TsaC6S1xTSzDdMKaGrXPn5KdaitjaIzY9fVR1DL33NzDB5VgYwUFzJQATOMS26HRY7LE61TmcoG-JWsktThxDGrxThZgpBRvIkVb4LiTVgDrhdVJiVL46_CN1UDJK5bTX8vffKv0pew-XzXSZ56g8dT2AoLBUAXxjOozT7m5tyaGTN1UajSF6xwyGM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+distortion+analysis+based+on+normalized+perceptual+information+distance&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=Nikvand%2C+Nima&rft.au=Wang%2C+Zhou&rft.date=2013-05-01&rft.pub=Springer-Verlag&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=7&rft.issue=3&rft.spage=403&rft.epage=410&rft_id=info:doi/10.1007%2Fs11760-013-0443-4&rft.externalDocID=10_1007_s11760_013_0443_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |