Canonical Artin stacks over log smooth schemes
We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our...
Saved in:
Published in | Mathematische Zeitschrift Vol. 274; no. 3-4; pp. 779 - 804 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.08.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0025-5874 1432-1823 |
DOI | 10.1007/s00209-012-1096-7 |
Cover
Abstract | We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding
is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of
. |
---|---|
AbstractList | We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding
is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of
. |
Author | Satriano, Matthew |
Author_xml | – sequence: 1 givenname: Matthew surname: Satriano fullname: Satriano, Matthew email: satriano@umich.edu organization: Department of Mathematics, University of Michigan |
BookMark | eNp9j8tOwzAQRS1UJNLCB7DLD7jM2E6cLKuKl1SJDawt4zhtSmIj2yDx97gKKxZdjUb3niudJVk47ywhtwhrBJB3EYBBSwEZRWhrKi9IgYLnr2F8QYocV7RqpLgiyxiPADmUoiDrrc5Lg9FjuQlpcGVM2nzE0n_bUI5-X8bJ-3QooznYycZrctnrMdqbv7sibw_3r9snunt5fN5udtSwpknUVLq3vMK-Zu9cI7MdR9NpXnEGglnTGOyZAURgrahF12puOeqay5a1jQC-InLeNcHHGGyvzJB0GrxLQQ-jQlAnbTVrq6ytTtpKZhL_kZ9hmHT4OcuwmYm56_Y2qKP_Ci4LnoF-AQH9ans |
CitedBy_id | crossref_primary_10_1016_j_aim_2021_107945 crossref_primary_10_1090_S0002_9947_2014_06063_7 crossref_primary_10_1090_S0002_9947_2014_06064_9 crossref_primary_10_1017_fms_2022_3 |
Cites_doi | 10.1007/BF02567695 10.1090/S0894-0347-04-00471-0 10.1007/s002220100174 10.1515/9781400882526 10.1112/S0010437X09003911 10.5802/aif.2741 10.1215/ijm/1248355346 10.1007/BF01388892 10.2977/prims/1260476654 10.5802/aif.2378 10.2140/ant.2012.6.1 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2012 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2012 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00209-012-1096-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-1823 |
EndPage | 804 |
ExternalDocumentID | 10_1007_s00209_012_1096_7 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 41~ 5GY 5QI 5VS 67Z 692 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ3 GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM LPU M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OHT OK1 P19 P2P P9R PF- PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RIG RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XJT XOL Y6R YLTOR YNT YQT Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADXHL AETEA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION DARCH |
ID | FETCH-LOGICAL-c288t-c5afe351f62b3a12ed31cda3532042ec8c1f2c011029464d9a3e31a6379298403 |
IEDL.DBID | AGYKE |
ISSN | 0025-5874 |
IngestDate | Tue Jul 01 03:46:09 EDT 2025 Thu Apr 24 23:02:20 EDT 2025 Fri Feb 21 02:36:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Stacky fan 14D23 Log structure 14M25 Chevalley–Shephard–Todd Toric stack |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-c5afe351f62b3a12ed31cda3532042ec8c1f2c011029464d9a3e31a6379298403 |
PageCount | 26 |
ParticipantIDs | crossref_citationtrail_10_1007_s00209_012_1096_7 crossref_primary_10_1007_s00209_012_1096_7 springer_journals_10_1007_s00209_012_1096_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20130800 2013-8-00 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 8 year: 2013 text: 20130800 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg |
PublicationTitle | Mathematische Zeitschrift |
PublicationTitleAbbrev | Math. Z |
PublicationYear | 2013 |
Publisher | Springer Berlin Heidelberg |
Publisher_xml | – name: Springer Berlin Heidelberg |
References | VistoliAIntersection theory on algebraic stacks and on their moduli spacesInvent. Math.198997361367010050080694.1400110.1007/BF01388892 Satriano, M.: de Rham Theory for tame stacks and schemes with linearly reductive singularities. Ann. l’Institut Fourier. http://arxiv.org/abs/0911.2056 (2012, to appear) SatrianoMThe Chevalley–Shephard–Todd Theorem for finite linearly reductive group schemes Algebra Number Theory20126–1126295015910.2140/ant.2012.6.1 JiangYThe orbifold cohomology ring of simplicial toric stack bundlesIll. J. Math.2008522493514 WehlauDWhen is a ring of torus invariants a polynomial ring?Manuscr. Math.19948216117012561570809.1400810.1007/BF02567695 OlssonM.Logarithmic geometry and algebraic stacksAnn. Sci. École Norm. Sup. (4)2003365747791 IwanariIThe category of toric stacksCompos. Math.2009145371874625077461177.1402410.1112/S0010437X09003911 IwanariILogarithmic geometry, minimal free resolutions and toric algebraic stacksPubl. Res. Inst. Math. Sci.20094541095114025971301203.1405810.2977/prims/1260476654 FantechiBMannENironiFSmooth toric Deligne–Mumford stacksJ. Reine Angew. Math.201064820124427743101211.14009 WehlauD.A proof of the Popov conjecture for toriProc. Am. Math. Soc.19921143839845 FultonWIntroduction to Toric Varieties1993PrincetonPrinceton University Press0813.14039 AbramovichDOlssonMVistoliATame stacks in positive characteristicAnn. Inst. Fourier2008581057109124279541222.1400410.5802/aif.2378 Ogus, A.: Lectures on Logarithmic Algebraic Geometry (unpublished notes). http://math.berkeley.edu/~ogus/preprints/log-book/logbook.pdf Alper, J.: Good Moduli Spaces for Artin Stacks. http://arxiv.org/abs/0804.2242 (2009) Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory (Baltimore, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989) LafforgueLChtoucas de Drinfeld et correspondance de LanglandsInvent. Math.2002147124118751841038.1107510.1007/s002220100174 BourbakiNGroupes et algèbres de Lie1968ParisCh. V. Hermann0186.33001 BorisovLChenLSmithGThe orbifold Chow ring of toric Deligne–Mumford stacksJ. Am. Math. Soc.200518119321521148201178.1405710.1090/S0894-0347-04-00471-0 KatoF.Log smooth deformation theoryTohoku Math. J. (2)1996483317354 B Fantechi (1096_CR5) 2010; 648 1096_CR13 1096_CR14 1096_CR16 I Iwanari (1096_CR7) 2009; 145 N Bourbaki (1096_CR4) 1968 1096_CR10 1096_CR11 W Fulton (1096_CR6) 1993 L Borisov (1096_CR3) 2005; 18 1096_CR18 A Vistoli (1096_CR19) 1989; 97 D Wehlau (1096_CR17) 1994; 82 L Lafforgue (1096_CR12) 2002; 147 1096_CR1 D Abramovich (1096_CR2) 2008; 58 M Satriano (1096_CR15) 2012; 6–1 I Iwanari (1096_CR8) 2009; 45 Y Jiang (1096_CR9) 2008; 52 |
References_xml | – reference: FantechiBMannENironiFSmooth toric Deligne–Mumford stacksJ. Reine Angew. Math.201064820124427743101211.14009 – reference: OlssonM.Logarithmic geometry and algebraic stacksAnn. Sci. École Norm. Sup. (4)2003365747791 – reference: Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory (Baltimore, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989) – reference: JiangYThe orbifold cohomology ring of simplicial toric stack bundlesIll. J. Math.2008522493514 – reference: WehlauD.A proof of the Popov conjecture for toriProc. Am. Math. Soc.19921143839845 – reference: WehlauDWhen is a ring of torus invariants a polynomial ring?Manuscr. Math.19948216117012561570809.1400810.1007/BF02567695 – reference: Satriano, M.: de Rham Theory for tame stacks and schemes with linearly reductive singularities. Ann. l’Institut Fourier. http://arxiv.org/abs/0911.2056 (2012, to appear) – reference: SatrianoMThe Chevalley–Shephard–Todd Theorem for finite linearly reductive group schemes Algebra Number Theory20126–1126295015910.2140/ant.2012.6.1 – reference: FultonWIntroduction to Toric Varieties1993PrincetonPrinceton University Press0813.14039 – reference: AbramovichDOlssonMVistoliATame stacks in positive characteristicAnn. Inst. Fourier2008581057109124279541222.1400410.5802/aif.2378 – reference: IwanariILogarithmic geometry, minimal free resolutions and toric algebraic stacksPubl. Res. Inst. Math. Sci.20094541095114025971301203.1405810.2977/prims/1260476654 – reference: Alper, J.: Good Moduli Spaces for Artin Stacks. http://arxiv.org/abs/0804.2242 (2009) – reference: IwanariIThe category of toric stacksCompos. Math.2009145371874625077461177.1402410.1112/S0010437X09003911 – reference: Ogus, A.: Lectures on Logarithmic Algebraic Geometry (unpublished notes). http://math.berkeley.edu/~ogus/preprints/log-book/logbook.pdf – reference: KatoF.Log smooth deformation theoryTohoku Math. J. (2)1996483317354 – reference: VistoliAIntersection theory on algebraic stacks and on their moduli spacesInvent. Math.198997361367010050080694.1400110.1007/BF01388892 – reference: BourbakiNGroupes et algèbres de Lie1968ParisCh. V. Hermann0186.33001 – reference: LafforgueLChtoucas de Drinfeld et correspondance de LanglandsInvent. Math.2002147124118751841038.1107510.1007/s002220100174 – reference: BorisovLChenLSmithGThe orbifold Chow ring of toric Deligne–Mumford stacksJ. Am. Math. Soc.200518119321521148201178.1405710.1090/S0894-0347-04-00471-0 – volume: 82 start-page: 161 year: 1994 ident: 1096_CR17 publication-title: Manuscr. Math. doi: 10.1007/BF02567695 – volume: 18 start-page: 193 issue: 1 year: 2005 ident: 1096_CR3 publication-title: J. Am. Math. Soc. doi: 10.1090/S0894-0347-04-00471-0 – volume: 147 start-page: 1 year: 2002 ident: 1096_CR12 publication-title: Invent. Math. doi: 10.1007/s002220100174 – volume-title: Groupes et algèbres de Lie year: 1968 ident: 1096_CR4 – volume-title: Introduction to Toric Varieties year: 1993 ident: 1096_CR6 doi: 10.1515/9781400882526 – ident: 1096_CR18 – volume: 145 start-page: 718 issue: 3 year: 2009 ident: 1096_CR7 publication-title: Compos. Math. doi: 10.1112/S0010437X09003911 – ident: 1096_CR16 doi: 10.5802/aif.2741 – volume: 52 start-page: 493 issue: 2 year: 2008 ident: 1096_CR9 publication-title: Ill. J. Math. doi: 10.1215/ijm/1248355346 – volume: 97 start-page: 613 issue: 3 year: 1989 ident: 1096_CR19 publication-title: Invent. Math. doi: 10.1007/BF01388892 – volume: 45 start-page: 1095 issue: 4 year: 2009 ident: 1096_CR8 publication-title: Publ. Res. Inst. Math. Sci. doi: 10.2977/prims/1260476654 – volume: 648 start-page: 201 year: 2010 ident: 1096_CR5 publication-title: J. Reine Angew. Math. – ident: 1096_CR13 – volume: 58 start-page: 1057 year: 2008 ident: 1096_CR2 publication-title: Ann. Inst. Fourier doi: 10.5802/aif.2378 – ident: 1096_CR14 – ident: 1096_CR11 – ident: 1096_CR10 – volume: 6–1 start-page: 1 year: 2012 ident: 1096_CR15 publication-title: Algebra Number Theory doi: 10.2140/ant.2012.6.1 – ident: 1096_CR1 |
SSID | ssj0014374 |
Score | 2.0200632 |
Snippet | We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 779 |
SubjectTerms | Mathematics Mathematics and Statistics |
Title | Canonical Artin stacks over log smooth schemes |
URI | https://link.springer.com/article/10.1007/s00209-012-1096-7 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1432-1823 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014374 issn: 0025-5874 databaseCode: AFBBN dateStart: 19180101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1432-1823 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014374 issn: 0025-5874 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1432-1823 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014374 issn: 0025-5874 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBN2I8ph44gTK1Sdo0x23amEDstEnjVKVpehnbEO0u_Hqcrq00BEi7Vm5lOY7zpbY_A9xjTDSxVIJY9izCwyQhMjWC2CZNwZQXx7pg-xwHoyl_nvmzso87q6rdq5RkEanrZjeLbGxtD8XQIQMi9qHp2_tJA5rdp7eXQZ084KwiX_aJHwpeJTN_-8j2cbSdCy2OmOExTCrlNpUl8846jzv66wdv447an8BRCTmd7sZHTmHPLM_g8LXma83OodNXy1XRIVmILR3EjHqeOba-00EFnGyxwiV18CpsFia7gOlwMOmPSDlJgWgahjnRvkoN8700oDEuADUJ83SimJ0KwanRofZSqi0UoJIHPJHK_htVAROIntDE7BIaqIa5AsdNND5EoBdIZunCJNV-qkLmKldqT6ctcCuDRrqkGbfTLt6jmiC5MEWEprDp7yASLXioX_nYcGz8J_xYGTgqt1v2t_T1TtI3cECLaRe2vu8WGvnn2twh5sjjNvrYsNcbt0tfa8P-lHa_AQpmy0c |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5emACuUpsJ7HHqmop9DG1Upkix3GW0haRdOHXY6dJpCJA6hpdrNPZPn_23X0H8GB8oo6EDLBlz8KMxzEWiQ6wLdIMqHSjSOVsnyO_N2GvU29a1HGnZbZ7GZLMPXVV7GaRjc3tIcZ1CB8Hu1BnLuesBvXW81u_UwUPGC3Jlz3s8YCVwczfBtk8jjZjofkR0z2CcancOrNk1lxlUVN9_eBt3FL7YzgsICdqrdfICezoxSkcDCu-1vQMmm25WOYVkrnYAhnMqGYpsvmdyCiA0vnSTCkyV2E91-k5TLqdcbuHi04KWBHOM6w8mWjquYlPIjMBRMfUVbGktisEI1px5SZEWShABPNZLKR9G5U-DQx6MldAegE1o4a-BOTEynw0QM8X1NKFCaK8RHLqSEcoVyUNcEqDhqqgGbfdLt7DiiA5N0VoTGHD334YNOCx-uVjzbHxn_BTaeCw2G7p39JXW0nfw15vPByEg5dR_xr2Sd75wub63UAt-1zpW4M_suiuWG_fmeLL0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOiKcYzx44gcLaJE2a4zSYxmviwKTdqjRNL7BuouX_43RtpUmAxLVyq9Rp7M-1_RngCm2iTZSWxLFnER6lKVGZlcQ1aUqmgyQxFdvnWIwm_HEaTus5p0VT7d6kJJc9DY6lKS97izTrtY1vDuW4Oh-KZkQJItdhg6OrdtHXhPbbNAJnDQ1zSMJI8iat-dMjVh3Tala0cjbDXdipUaLXX27rHqzZfB-2X1qK1eIAbgc6n1dNjZVY7iHMM--F50oyPTRoXjGb4y54GL3amS0OYTK8fxuMSD38gBgaRSUxoc4sC4NM0AR1Rm3KApNq5gY5cGpNZIKMGue9qeKCp0q735laMImAB6M2dgQdXIY9Bs9PDV5EbCYUcwxfipow0xHzta9MYLIu-M2bx6ZmBncDKj7iltO4UlaMynIZaxHLLly3tyyWtBh_Cd806ozrE1L8Ln3yL-lL2Hy9G8bPD-OnU9ii1awKV513Bp3y88ueI2Iok4vqq_gG7jOzUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+Artin+stacks+over+log+smooth+schemes&rft.jtitle=Mathematische+Zeitschrift&rft.au=Satriano%2C+Matthew&rft.date=2013-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5874&rft.eissn=1432-1823&rft.volume=274&rft.issue=3-4&rft.spage=779&rft.epage=804&rft_id=info:doi/10.1007%2Fs00209-012-1096-7&rft.externalDocID=10_1007_s00209_012_1096_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5874&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5874&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5874&client=summon |