Canonical Artin stacks over log smooth schemes

We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our...

Full description

Saved in:
Bibliographic Details
Published inMathematische Zeitschrift Vol. 274; no. 3-4; pp. 779 - 804
Main Author Satriano, Matthew
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.08.2013
Subjects
Online AccessGet full text
ISSN0025-5874
1432-1823
DOI10.1007/s00209-012-1096-7

Cover

Abstract We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of .
AbstractList We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and Iwanari. We also generalize the Chevalley–Shephard–Todd theorem to the case of diagonalizable group schemes. These are both applications of our main theorem which shows that a toroidal embedding is canonically the good moduli space (in the sense of Alper) of a smooth log smooth Artin stack whose stacky structure is supported on the singular locus of .
Author Satriano, Matthew
Author_xml – sequence: 1
  givenname: Matthew
  surname: Satriano
  fullname: Satriano, Matthew
  email: satriano@umich.edu
  organization: Department of Mathematics, University of Michigan
BookMark eNp9j8tOwzAQRS1UJNLCB7DLD7jM2E6cLKuKl1SJDawt4zhtSmIj2yDx97gKKxZdjUb3niudJVk47ywhtwhrBJB3EYBBSwEZRWhrKi9IgYLnr2F8QYocV7RqpLgiyxiPADmUoiDrrc5Lg9FjuQlpcGVM2nzE0n_bUI5-X8bJ-3QooznYycZrctnrMdqbv7sibw_3r9snunt5fN5udtSwpknUVLq3vMK-Zu9cI7MdR9NpXnEGglnTGOyZAURgrahF12puOeqay5a1jQC-InLeNcHHGGyvzJB0GrxLQQ-jQlAnbTVrq6ytTtpKZhL_kZ9hmHT4OcuwmYm56_Y2qKP_Ci4LnoF-AQH9ans
CitedBy_id crossref_primary_10_1016_j_aim_2021_107945
crossref_primary_10_1090_S0002_9947_2014_06063_7
crossref_primary_10_1090_S0002_9947_2014_06064_9
crossref_primary_10_1017_fms_2022_3
Cites_doi 10.1007/BF02567695
10.1090/S0894-0347-04-00471-0
10.1007/s002220100174
10.1515/9781400882526
10.1112/S0010437X09003911
10.5802/aif.2741
10.1215/ijm/1248355346
10.1007/BF01388892
10.2977/prims/1260476654
10.5802/aif.2378
10.2140/ant.2012.6.1
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2012
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2012
DBID AAYXX
CITATION
DOI 10.1007/s00209-012-1096-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-1823
EndPage 804
ExternalDocumentID 10_1007_s00209_012_1096_7
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
41~
5GY
5QI
5VS
67Z
692
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ3
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
LPU
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OHT
OK1
P19
P2P
P9R
PF-
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RIG
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XJT
XOL
Y6R
YLTOR
YNT
YQT
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADXHL
AETEA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
DARCH
ID FETCH-LOGICAL-c288t-c5afe351f62b3a12ed31cda3532042ec8c1f2c011029464d9a3e31a6379298403
IEDL.DBID AGYKE
ISSN 0025-5874
IngestDate Tue Jul 01 03:46:09 EDT 2025
Thu Apr 24 23:02:20 EDT 2025
Fri Feb 21 02:36:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Stacky fan
14D23
Log structure
14M25
Chevalley–Shephard–Todd
Toric stack
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-c5afe351f62b3a12ed31cda3532042ec8c1f2c011029464d9a3e31a6379298403
PageCount 26
ParticipantIDs crossref_citationtrail_10_1007_s00209_012_1096_7
crossref_primary_10_1007_s00209_012_1096_7
springer_journals_10_1007_s00209_012_1096_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130800
2013-8-00
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 8
  year: 2013
  text: 20130800
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Mathematische Zeitschrift
PublicationTitleAbbrev Math. Z
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References VistoliAIntersection theory on algebraic stacks and on their moduli spacesInvent. Math.198997361367010050080694.1400110.1007/BF01388892
Satriano, M.: de Rham Theory for tame stacks and schemes with linearly reductive singularities. Ann. l’Institut Fourier. http://arxiv.org/abs/0911.2056 (2012, to appear)
SatrianoMThe Chevalley–Shephard–Todd Theorem for finite linearly reductive group schemes Algebra Number Theory20126–1126295015910.2140/ant.2012.6.1
JiangYThe orbifold cohomology ring of simplicial toric stack bundlesIll. J. Math.2008522493514
WehlauDWhen is a ring of torus invariants a polynomial ring?Manuscr. Math.19948216117012561570809.1400810.1007/BF02567695
OlssonM.Logarithmic geometry and algebraic stacksAnn. Sci. École Norm. Sup. (4)2003365747791
IwanariIThe category of toric stacksCompos. Math.2009145371874625077461177.1402410.1112/S0010437X09003911
IwanariILogarithmic geometry, minimal free resolutions and toric algebraic stacksPubl. Res. Inst. Math. Sci.20094541095114025971301203.1405810.2977/prims/1260476654
FantechiBMannENironiFSmooth toric Deligne–Mumford stacksJ. Reine Angew. Math.201064820124427743101211.14009
WehlauD.A proof of the Popov conjecture for toriProc. Am. Math. Soc.19921143839845
FultonWIntroduction to Toric Varieties1993PrincetonPrinceton University Press0813.14039
AbramovichDOlssonMVistoliATame stacks in positive characteristicAnn. Inst. Fourier2008581057109124279541222.1400410.5802/aif.2378
Ogus, A.: Lectures on Logarithmic Algebraic Geometry (unpublished notes). http://math.berkeley.edu/~ogus/preprints/log-book/logbook.pdf
Alper, J.: Good Moduli Spaces for Artin Stacks. http://arxiv.org/abs/0804.2242 (2009)
Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory (Baltimore, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)
LafforgueLChtoucas de Drinfeld et correspondance de LanglandsInvent. Math.2002147124118751841038.1107510.1007/s002220100174
BourbakiNGroupes et algèbres de Lie1968ParisCh. V. Hermann0186.33001
BorisovLChenLSmithGThe orbifold Chow ring of toric Deligne–Mumford stacksJ. Am. Math. Soc.200518119321521148201178.1405710.1090/S0894-0347-04-00471-0
KatoF.Log smooth deformation theoryTohoku Math. J. (2)1996483317354
B Fantechi (1096_CR5) 2010; 648
1096_CR13
1096_CR14
1096_CR16
I Iwanari (1096_CR7) 2009; 145
N Bourbaki (1096_CR4) 1968
1096_CR10
1096_CR11
W Fulton (1096_CR6) 1993
L Borisov (1096_CR3) 2005; 18
1096_CR18
A Vistoli (1096_CR19) 1989; 97
D Wehlau (1096_CR17) 1994; 82
L Lafforgue (1096_CR12) 2002; 147
1096_CR1
D Abramovich (1096_CR2) 2008; 58
M Satriano (1096_CR15) 2012; 6–1
I Iwanari (1096_CR8) 2009; 45
Y Jiang (1096_CR9) 2008; 52
References_xml – reference: FantechiBMannENironiFSmooth toric Deligne–Mumford stacksJ. Reine Angew. Math.201064820124427743101211.14009
– reference: OlssonM.Logarithmic geometry and algebraic stacksAnn. Sci. École Norm. Sup. (4)2003365747791
– reference: Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Algebraic analysis, geometry, and number theory (Baltimore, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)
– reference: JiangYThe orbifold cohomology ring of simplicial toric stack bundlesIll. J. Math.2008522493514
– reference: WehlauD.A proof of the Popov conjecture for toriProc. Am. Math. Soc.19921143839845
– reference: WehlauDWhen is a ring of torus invariants a polynomial ring?Manuscr. Math.19948216117012561570809.1400810.1007/BF02567695
– reference: Satriano, M.: de Rham Theory for tame stacks and schemes with linearly reductive singularities. Ann. l’Institut Fourier. http://arxiv.org/abs/0911.2056 (2012, to appear)
– reference: SatrianoMThe Chevalley–Shephard–Todd Theorem for finite linearly reductive group schemes Algebra Number Theory20126–1126295015910.2140/ant.2012.6.1
– reference: FultonWIntroduction to Toric Varieties1993PrincetonPrinceton University Press0813.14039
– reference: AbramovichDOlssonMVistoliATame stacks in positive characteristicAnn. Inst. Fourier2008581057109124279541222.1400410.5802/aif.2378
– reference: IwanariILogarithmic geometry, minimal free resolutions and toric algebraic stacksPubl. Res. Inst. Math. Sci.20094541095114025971301203.1405810.2977/prims/1260476654
– reference: Alper, J.: Good Moduli Spaces for Artin Stacks. http://arxiv.org/abs/0804.2242 (2009)
– reference: IwanariIThe category of toric stacksCompos. Math.2009145371874625077461177.1402410.1112/S0010437X09003911
– reference: Ogus, A.: Lectures on Logarithmic Algebraic Geometry (unpublished notes). http://math.berkeley.edu/~ogus/preprints/log-book/logbook.pdf
– reference: KatoF.Log smooth deformation theoryTohoku Math. J. (2)1996483317354
– reference: VistoliAIntersection theory on algebraic stacks and on their moduli spacesInvent. Math.198997361367010050080694.1400110.1007/BF01388892
– reference: BourbakiNGroupes et algèbres de Lie1968ParisCh. V. Hermann0186.33001
– reference: LafforgueLChtoucas de Drinfeld et correspondance de LanglandsInvent. Math.2002147124118751841038.1107510.1007/s002220100174
– reference: BorisovLChenLSmithGThe orbifold Chow ring of toric Deligne–Mumford stacksJ. Am. Math. Soc.200518119321521148201178.1405710.1090/S0894-0347-04-00471-0
– volume: 82
  start-page: 161
  year: 1994
  ident: 1096_CR17
  publication-title: Manuscr. Math.
  doi: 10.1007/BF02567695
– volume: 18
  start-page: 193
  issue: 1
  year: 2005
  ident: 1096_CR3
  publication-title: J. Am. Math. Soc.
  doi: 10.1090/S0894-0347-04-00471-0
– volume: 147
  start-page: 1
  year: 2002
  ident: 1096_CR12
  publication-title: Invent. Math.
  doi: 10.1007/s002220100174
– volume-title: Groupes et algèbres de Lie
  year: 1968
  ident: 1096_CR4
– volume-title: Introduction to Toric Varieties
  year: 1993
  ident: 1096_CR6
  doi: 10.1515/9781400882526
– ident: 1096_CR18
– volume: 145
  start-page: 718
  issue: 3
  year: 2009
  ident: 1096_CR7
  publication-title: Compos. Math.
  doi: 10.1112/S0010437X09003911
– ident: 1096_CR16
  doi: 10.5802/aif.2741
– volume: 52
  start-page: 493
  issue: 2
  year: 2008
  ident: 1096_CR9
  publication-title: Ill. J. Math.
  doi: 10.1215/ijm/1248355346
– volume: 97
  start-page: 613
  issue: 3
  year: 1989
  ident: 1096_CR19
  publication-title: Invent. Math.
  doi: 10.1007/BF01388892
– volume: 45
  start-page: 1095
  issue: 4
  year: 2009
  ident: 1096_CR8
  publication-title: Publ. Res. Inst. Math. Sci.
  doi: 10.2977/prims/1260476654
– volume: 648
  start-page: 201
  year: 2010
  ident: 1096_CR5
  publication-title: J. Reine Angew. Math.
– ident: 1096_CR13
– volume: 58
  start-page: 1057
  year: 2008
  ident: 1096_CR2
  publication-title: Ann. Inst. Fourier
  doi: 10.5802/aif.2378
– ident: 1096_CR14
– ident: 1096_CR11
– ident: 1096_CR10
– volume: 6–1
  start-page: 1
  year: 2012
  ident: 1096_CR15
  publication-title: Algebra Number Theory
  doi: 10.2140/ant.2012.6.1
– ident: 1096_CR1
SSID ssj0014374
Score 2.0200632
Snippet We develop a theory of toric Artin stacks extending the theories of toric Deligne–Mumford stacks developed by Borisov–Chen–Smith, Fantechi–Mann–Nironi, and...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 779
SubjectTerms Mathematics
Mathematics and Statistics
Title Canonical Artin stacks over log smooth schemes
URI https://link.springer.com/article/10.1007/s00209-012-1096-7
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-1823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014374
  issn: 0025-5874
  databaseCode: AFBBN
  dateStart: 19180101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-1823
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014374
  issn: 0025-5874
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-1823
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014374
  issn: 0025-5874
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgu8CBN2I8ph44gTK1Sdo0x23amEDstEnjVKVpehnbEO0u_Hqcrq00BEi7Vm5lOY7zpbY_A9xjTDSxVIJY9izCwyQhMjWC2CZNwZQXx7pg-xwHoyl_nvmzso87q6rdq5RkEanrZjeLbGxtD8XQIQMi9qHp2_tJA5rdp7eXQZ084KwiX_aJHwpeJTN_-8j2cbSdCy2OmOExTCrlNpUl8846jzv66wdv447an8BRCTmd7sZHTmHPLM_g8LXma83OodNXy1XRIVmILR3EjHqeOba-00EFnGyxwiV18CpsFia7gOlwMOmPSDlJgWgahjnRvkoN8700oDEuADUJ83SimJ0KwanRofZSqi0UoJIHPJHK_htVAROIntDE7BIaqIa5AsdNND5EoBdIZunCJNV-qkLmKldqT6ctcCuDRrqkGbfTLt6jmiC5MEWEprDp7yASLXioX_nYcGz8J_xYGTgqt1v2t_T1TtI3cECLaRe2vu8WGvnn2twh5sjjNvrYsNcbt0tfa8P-lHa_AQpmy0c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5emACuUpsJ7HHqmop9DG1Upkix3GW0haRdOHXY6dJpCJA6hpdrNPZPn_23X0H8GB8oo6EDLBlz8KMxzEWiQ6wLdIMqHSjSOVsnyO_N2GvU29a1HGnZbZ7GZLMPXVV7GaRjc3tIcZ1CB8Hu1BnLuesBvXW81u_UwUPGC3Jlz3s8YCVwczfBtk8jjZjofkR0z2CcancOrNk1lxlUVN9_eBt3FL7YzgsICdqrdfICezoxSkcDCu-1vQMmm25WOYVkrnYAhnMqGYpsvmdyCiA0vnSTCkyV2E91-k5TLqdcbuHi04KWBHOM6w8mWjquYlPIjMBRMfUVbGktisEI1px5SZEWShABPNZLKR9G5U-DQx6MldAegE1o4a-BOTEynw0QM8X1NKFCaK8RHLqSEcoVyUNcEqDhqqgGbfdLt7DiiA5N0VoTGHD334YNOCx-uVjzbHxn_BTaeCw2G7p39JXW0nfw15vPByEg5dR_xr2Sd75wub63UAt-1zpW4M_suiuWG_fmeLL0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgSAgOiKcYzx44gcLaJE2a4zSYxmviwKTdqjRNL7BuouX_43RtpUmAxLVyq9Rp7M-1_RngCm2iTZSWxLFnER6lKVGZlcQ1aUqmgyQxFdvnWIwm_HEaTus5p0VT7d6kJJc9DY6lKS97izTrtY1vDuW4Oh-KZkQJItdhg6OrdtHXhPbbNAJnDQ1zSMJI8iat-dMjVh3Tala0cjbDXdipUaLXX27rHqzZfB-2X1qK1eIAbgc6n1dNjZVY7iHMM--F50oyPTRoXjGb4y54GL3amS0OYTK8fxuMSD38gBgaRSUxoc4sC4NM0AR1Rm3KApNq5gY5cGpNZIKMGue9qeKCp0q735laMImAB6M2dgQdXIY9Bs9PDV5EbCYUcwxfipow0xHzta9MYLIu-M2bx6ZmBncDKj7iltO4UlaMynIZaxHLLly3tyyWtBh_Cd806ozrE1L8Ln3yL-lL2Hy9G8bPD-OnU9ii1awKV513Bp3y88ueI2Iok4vqq_gG7jOzUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+Artin+stacks+over+log+smooth+schemes&rft.jtitle=Mathematische+Zeitschrift&rft.au=Satriano%2C+Matthew&rft.date=2013-08-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0025-5874&rft.eissn=1432-1823&rft.volume=274&rft.issue=3-4&rft.spage=779&rft.epage=804&rft_id=info:doi/10.1007%2Fs00209-012-1096-7&rft.externalDocID=10_1007_s00209_012_1096_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5874&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5874&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5874&client=summon