A numerical method for solving an inverse thermoacoustic problem
In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the s...
Saved in:
| Published in | Numerical analysis and applications Vol. 6; no. 1; pp. 34 - 39 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
SP MAIK Nauka/Interperiodica
01.01.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1995-4239 1995-4247 |
| DOI | 10.1134/S1995423913010047 |
Cover
| Abstract | In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the solution domain. The purpose of our paper is to construct a numerical algorithm for solving the inverse problem by an iterative method called a method of simple iteration (MSI) and to study the resolution quality of the inverse problem as a function of the number and location of measurement points. Three two-dimensional inverse problem formulations are considered. The results of our numerical calculations are presented. It is shown that the MSI decreases the objective functional at each iteration step. However, due to the ill-posedness of the inverse problem the difference between the exact and approximate solutions decreases up to some fixed number
k
min
, and then monotonically increases. This shows the regularizing properties of the MSI, and the iteration number can be considered a regularization parameter. |
|---|---|
| AbstractList | In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the solution domain. The purpose of our paper is to construct a numerical algorithm for solving the inverse problem by an iterative method called a method of simple iteration (MSI) and to study the resolution quality of the inverse problem as a function of the number and location of measurement points. Three two-dimensional inverse problem formulations are considered. The results of our numerical calculations are presented. It is shown that the MSI decreases the objective functional at each iteration step. However, due to the ill-posedness of the inverse problem the difference between the exact and approximate solutions decreases up to some fixed number
k
min
, and then monotonically increases. This shows the regularizing properties of the MSI, and the iteration number can be considered a regularization parameter. |
| Author | Krivorot’ko, O. I. Kabanikhin, S. I. Shishlenin, M. A. |
| Author_xml | – sequence: 1 givenname: S. I. surname: Kabanikhin fullname: Kabanikhin, S. I. email: kabanikhin@sscc.nsc.ru organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk State University – sequence: 2 givenname: O. I. surname: Krivorot’ko fullname: Krivorot’ko, O. I. organization: Novosibirsk State University – sequence: 3 givenname: M. A. surname: Shishlenin fullname: Shishlenin, M. A. organization: S. L. Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences |
| BookMark | eNp9kM1qwzAQhEVJoWmaB-hNL-BW0sqWdGsI_YNAD83dyLKcKNhSkJRA374OKT20kLnsMOy3sHOLJj54i9A9JQ-UAn_8pEqVnIGiQCghXFyh6SkqOONi8utB3aB5SjsyCpiQvJqipwX2h8FGZ3SPB5u3ocVdiDiF_uj8BmuPnT_amCzOWxuHoE04pOwM3sfQ9Ha4Q9ed7pOd_8wZWr88r5dvxerj9X25WBWGSZmLxorGchBGExCybdqqaksJglBOWWekZaQTIBsBlRISSmIU1wYqKZQhsoEZEuezJoaUou1q47LOLvgctetrSupTFfW_KkaS_iH30Q06fl1k2JlJ467f2FjvwiH68b8L0Dc_onB3 |
| CitedBy_id | crossref_primary_10_1016_j_mex_2023_102210 crossref_primary_10_1016_j_jmaa_2022_126920 crossref_primary_10_1088_1742_6596_2092_1_012010 crossref_primary_10_3390_a16010033 crossref_primary_10_3390_math10152802 crossref_primary_10_1051_bioconf_20249700039 crossref_primary_10_1088_1742_6596_2092_1_012015 crossref_primary_10_1016_j_mex_2022_101887 crossref_primary_10_3390_math10152798 |
| ContentType | Journal Article |
| Copyright | Pleiades Publishing, Ltd. 2013 |
| Copyright_xml | – notice: Pleiades Publishing, Ltd. 2013 |
| DBID | AAYXX CITATION |
| DOI | 10.1134/S1995423913010047 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics |
| EISSN | 1995-4247 |
| EndPage | 39 |
| ExternalDocumentID | 10_1134_S1995423913010047 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C 06D 0R~ 0VY 123 1N0 29N 2JN 2JY 2KG 2VQ 2~H 30V 4.4 408 409 40D 5VS 6NX 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD B-. BA0 BAPOH BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PT4 QOS R89 RLLFE ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION |
| ID | FETCH-LOGICAL-c288t-be7be437ca0378dbd66d583701412fc8e20f738b736978350c94ac36879c08b3 |
| IEDL.DBID | AGYKE |
| ISSN | 1995-4239 |
| IngestDate | Thu Apr 24 23:07:24 EDT 2025 Wed Oct 01 05:08:28 EDT 2025 Fri Feb 21 02:33:27 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | thermoacoustic problem method of simple iteration inverse and ill-posed problems wave equation |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-be7be437ca0378dbd66d583701412fc8e20f738b736978350c94ac36879c08b3 |
| PageCount | 6 |
| ParticipantIDs | crossref_citationtrail_10_1134_S1995423913010047 crossref_primary_10_1134_S1995423913010047 springer_journals_10_1134_S1995423913010047 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20130100 2013-1-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 1 year: 2013 text: 20130100 |
| PublicationDecade | 2010 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationTitle | Numerical analysis and applications |
| PublicationTitleAbbrev | Numer. Analys. Appl |
| PublicationYear | 2013 |
| Publisher | SP MAIK Nauka/Interperiodica |
| Publisher_xml | – name: SP MAIK Nauka/Interperiodica |
| References | KabanikhinSIObratnye i nekorrektnye zadachi2009NovosibirskSibirskoe Nauchnoe Izdatel’svo(Inverse and Ill-PosedProblems) KrugerRAKiserJrReieneckeDRKrugerGAApplication of Thermoacoustic Computed Tomography to Breast Imaging, Preprint of Indiana University Medical Center, Indianapolis2001 VladimirovVSUravneniya matematicheskoi fiziki19814th ed.MoscowNauka RomanovVGOn Local Solvability of Some Multidimensional Inverse Problems for Hyperbolic Type EquationsDiff. Urav.1989252275283994711 KabanikhinSIShishleninMAKrivorot’koOIAn Optimization Method to Solve an Inverse Problem of ThermoacousticsSib. El. Mat. Izv.20118263292 RA Kruger (4148_CR1) 2001 VG Romanov (4148_CR5) 1989; 25 SI Kabanikhin (4148_CR3) 2011; 8 VS Vladimirov (4148_CR4) 1981 SI Kabanikhin (4148_CR2) 2009 |
| References_xml | – reference: KabanikhinSIObratnye i nekorrektnye zadachi2009NovosibirskSibirskoe Nauchnoe Izdatel’svo(Inverse and Ill-PosedProblems) – reference: VladimirovVSUravneniya matematicheskoi fiziki19814th ed.MoscowNauka – reference: KrugerRAKiserJrReieneckeDRKrugerGAApplication of Thermoacoustic Computed Tomography to Breast Imaging, Preprint of Indiana University Medical Center, Indianapolis2001 – reference: RomanovVGOn Local Solvability of Some Multidimensional Inverse Problems for Hyperbolic Type EquationsDiff. Urav.1989252275283994711 – reference: KabanikhinSIShishleninMAKrivorot’koOIAn Optimization Method to Solve an Inverse Problem of ThermoacousticsSib. El. Mat. Izv.20118263292 – volume-title: Application of Thermoacoustic Computed Tomography to Breast Imaging, Preprint of Indiana University Medical Center, Indianapolis year: 2001 ident: 4148_CR1 – volume-title: Obratnye i nekorrektnye zadachi year: 2009 ident: 4148_CR2 – volume: 8 start-page: 263 year: 2011 ident: 4148_CR3 publication-title: Sib. El. Mat. Izv. – volume: 25 start-page: 275 issue: 2 year: 1989 ident: 4148_CR5 publication-title: Diff. Urav. – volume-title: Uravneniya matematicheskoi fiziki year: 1981 ident: 4148_CR4 |
| SSID | ssj0000327846 |
| Score | 1.8908006 |
| Snippet | In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 34 |
| SubjectTerms | Mathematics Mathematics and Statistics Numerical Analysis |
| Title | A numerical method for solving an inverse thermoacoustic problem |
| URI | https://link.springer.com/article/10.1134/S1995423913010047 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1995-4247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327846 issn: 1995-4239 databaseCode: AFBBN dateStart: 20080101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1995-4247 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327846 issn: 1995-4239 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOhBFDXiB-nBk2ZY124tN8GIRAMXMcETabsuMeIwblz86223DoNfCbcdXputfX19ex-_H8Cp4H6M44CaHSDKoxoHxg5S4oVRpKRkQaSpbU4eDMP-I70bB2PXx52W1e5lSjK31AXvCL14sM3EFq7OWF0Lc8bWoZrDbVWg2rl9uv8KrWBis2l5X5HtP7ZjXD7z13mWb6TldGh-y_RqMCrfrygueWnNM9lSH9-gG1f8gG3Ycl4n6hRqsgNrOqlDzXmgyJ3vtA6bgwWKa7oLVx2UzIuMzhQVVNPI-LjIqKsNQyCRoOfElnVoZN3I15mxrjk5GHI0NXsw6t2MrvueY1zwlM955knNpKaEKYEJ45GMwjAKLDzOJb30Y8W1j2NGuGQkzENGWLWpUCTkrK0wl2QfKsks0QeAlNKkHQtCuWBU8VAamyrMIxaURCKIGoDLRZ8oh0ZuSTGmk_yvhNDJj-VqwNliyFsBxfGf8Hm5CRN3KtO_pQ9Xkj6CDT8nxbCBmGOoZO9zfWJck0w2jSr2ut1h06nkJ9EN1ws |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiPD0wgQJu7MTuRoUohT4WilSmyHYcCVFSRNuFX4-dOEXlJbFlOEeJfT6f7_F9ACeC-wlOAmpWgCiPahwYO0iJF8axkpIFsaa2ObnXD9sP9G4YDF0f96Sodi9SkpmlznlH6MW9bSa2cHXG6lqYM7YMZWruJ34Jys2bx85naAUTm03L-ops_7Ed4_KZP75n8URaTIdmp0yrAoPi-_Likufz2VSeq_cv0I3__IENWHdeJ2rmarIJSzqtQsV5oMjt70kV1npzFNfJFlw2UTrLMzojlFNNI-PjIqOuNgyBRIqeUlvWoZF1I1_Gxrpm5GDI0dRsw6B1Pbhqe45xwVM-51NPaiY1JUwJTBiPZRyGcWDhceq07ieKax8njHDJSJiFjLBqUKFIyFlDYS7JDpTScap3ASmlSSMRhHLBqOKhNDZVmEcsKIlFENcAF5MeKYdGbkkxRlF2KyE0-jZdNTidD3nNoTj-Ej4rFiFyu3Lyu_Tev6SPYaU96HWj7m2_sw-rfkaQYYMyB1Cavs30oXFTpvLIqeUHJk3Ybg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAcWAqIHR84gQJu7MTujQooe4VEkeAUvEVCQKhoeuHrsRMHVDYJccvBtpLMeDye5T2ATcHDFKcRtRIgKqAGR9YOUhLEWispWaQNdc3JF534-Jqe3kQ3nue0X1W7VynJsqfBoTRl-W5Pp56DhO5eucZiB11nLbCDPGOjMGZvJswq-ljr6PbsI8yCicusFT1GrhfZzfG5zW_XGT6dhlOjxYnTnoa76l3LQpOHnUEud9TrJxjHf3zMDEx5bxS1SvWZhRGT1WHae6bI7_t-HSYv3tFd-3Ow10LZoMz0PKKSghpZ3xdZNXbhCSQydJ-5cg-DnHv59GytbkEahjx9zTx024fd_ePAMzEEKuQ8D6Rh0lDClMCEcS11HOvIweY0aCNMFTchThnhkpG4CCVh1aRCkZizpsJckgWoZc-ZWQSklCHNVBDKBaOKx9LaWmEfsaBEi0gvAa4EkCiPUu7IMh6T4rZCaPLldy3B1vuUXgnR8dvg7Uogid-t_Z9HL_9p9AaMXx60k_OTztkKTIQFb4aL1axCLX8ZmDXrveRy3WvoGw4S4VI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+solving+an+inverse+thermoacoustic+problem&rft.jtitle=Numerical+analysis+and+applications&rft.au=Kabanikhin%2C+S.+I.&rft.au=Krivorot%E2%80%99ko%2C+O.+I.&rft.au=Shishlenin%2C+M.+A.&rft.date=2013-01-01&rft.pub=SP+MAIK+Nauka%2FInterperiodica&rft.issn=1995-4239&rft.eissn=1995-4247&rft.volume=6&rft.issue=1&rft.spage=34&rft.epage=39&rft_id=info:doi/10.1134%2FS1995423913010047&rft.externalDocID=10_1134_S1995423913010047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-4239&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-4239&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-4239&client=summon |