A numerical method for solving an inverse thermoacoustic problem

In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the s...

Full description

Saved in:
Bibliographic Details
Published inNumerical analysis and applications Vol. 6; no. 1; pp. 34 - 39
Main Authors Kabanikhin, S. I., Krivorot’ko, O. I., Shishlenin, M. A.
Format Journal Article
LanguageEnglish
Published Dordrecht SP MAIK Nauka/Interperiodica 01.01.2013
Subjects
Online AccessGet full text
ISSN1995-4239
1995-4247
DOI10.1134/S1995423913010047

Cover

Abstract In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the solution domain. The purpose of our paper is to construct a numerical algorithm for solving the inverse problem by an iterative method called a method of simple iteration (MSI) and to study the resolution quality of the inverse problem as a function of the number and location of measurement points. Three two-dimensional inverse problem formulations are considered. The results of our numerical calculations are presented. It is shown that the MSI decreases the objective functional at each iteration step. However, due to the ill-posedness of the inverse problem the difference between the exact and approximate solutions decreases up to some fixed number k min , and then monotonically increases. This shows the regularizing properties of the MSI, and the iteration number can be considered a regularization parameter.
AbstractList In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some additional information about solving a direct initial boundary value problem. The information is obtained from measurements at the boundary of the solution domain. The purpose of our paper is to construct a numerical algorithm for solving the inverse problem by an iterative method called a method of simple iteration (MSI) and to study the resolution quality of the inverse problem as a function of the number and location of measurement points. Three two-dimensional inverse problem formulations are considered. The results of our numerical calculations are presented. It is shown that the MSI decreases the objective functional at each iteration step. However, due to the ill-posedness of the inverse problem the difference between the exact and approximate solutions decreases up to some fixed number k min , and then monotonically increases. This shows the regularizing properties of the MSI, and the iteration number can be considered a regularization parameter.
Author Krivorot’ko, O. I.
Kabanikhin, S. I.
Shishlenin, M. A.
Author_xml – sequence: 1
  givenname: S. I.
  surname: Kabanikhin
  fullname: Kabanikhin, S. I.
  email: kabanikhin@sscc.nsc.ru
  organization: Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk State University
– sequence: 2
  givenname: O. I.
  surname: Krivorot’ko
  fullname: Krivorot’ko, O. I.
  organization: Novosibirsk State University
– sequence: 3
  givenname: M. A.
  surname: Shishlenin
  fullname: Shishlenin, M. A.
  organization: S. L. Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences
BookMark eNp9kM1qwzAQhEVJoWmaB-hNL-BW0sqWdGsI_YNAD83dyLKcKNhSkJRA374OKT20kLnsMOy3sHOLJj54i9A9JQ-UAn_8pEqVnIGiQCghXFyh6SkqOONi8utB3aB5SjsyCpiQvJqipwX2h8FGZ3SPB5u3ocVdiDiF_uj8BmuPnT_amCzOWxuHoE04pOwM3sfQ9Ha4Q9ed7pOd_8wZWr88r5dvxerj9X25WBWGSZmLxorGchBGExCybdqqaksJglBOWWekZaQTIBsBlRISSmIU1wYqKZQhsoEZEuezJoaUou1q47LOLvgctetrSupTFfW_KkaS_iH30Q06fl1k2JlJ467f2FjvwiH68b8L0Dc_onB3
CitedBy_id crossref_primary_10_1016_j_mex_2023_102210
crossref_primary_10_1016_j_jmaa_2022_126920
crossref_primary_10_1088_1742_6596_2092_1_012010
crossref_primary_10_3390_a16010033
crossref_primary_10_3390_math10152802
crossref_primary_10_1051_bioconf_20249700039
crossref_primary_10_1088_1742_6596_2092_1_012015
crossref_primary_10_1016_j_mex_2022_101887
crossref_primary_10_3390_math10152798
ContentType Journal Article
Copyright Pleiades Publishing, Ltd. 2013
Copyright_xml – notice: Pleiades Publishing, Ltd. 2013
DBID AAYXX
CITATION
DOI 10.1134/S1995423913010047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1995-4247
EndPage 39
ExternalDocumentID 10_1134_S1995423913010047
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
06D
0R~
0VY
123
1N0
29N
2JN
2JY
2KG
2VQ
2~H
30V
4.4
408
409
40D
5VS
6NX
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PT4
QOS
R89
RLLFE
ROL
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XU3
YLTOR
ZMTXR
~A9
AAPKM
AAYXX
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ID FETCH-LOGICAL-c288t-be7be437ca0378dbd66d583701412fc8e20f738b736978350c94ac36879c08b3
IEDL.DBID AGYKE
ISSN 1995-4239
IngestDate Thu Apr 24 23:07:24 EDT 2025
Wed Oct 01 05:08:28 EDT 2025
Fri Feb 21 02:33:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords thermoacoustic problem
method of simple iteration
inverse and ill-posed problems
wave equation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-be7be437ca0378dbd66d583701412fc8e20f738b736978350c94ac36879c08b3
PageCount 6
ParticipantIDs crossref_citationtrail_10_1134_S1995423913010047
crossref_primary_10_1134_S1995423913010047
springer_journals_10_1134_S1995423913010047
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130100
2013-1-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 1
  year: 2013
  text: 20130100
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Numerical analysis and applications
PublicationTitleAbbrev Numer. Analys. Appl
PublicationYear 2013
Publisher SP MAIK Nauka/Interperiodica
Publisher_xml – name: SP MAIK Nauka/Interperiodica
References KabanikhinSIObratnye i nekorrektnye zadachi2009NovosibirskSibirskoe Nauchnoe Izdatel’svo(Inverse and Ill-PosedProblems)
KrugerRAKiserJrReieneckeDRKrugerGAApplication of Thermoacoustic Computed Tomography to Breast Imaging, Preprint of Indiana University Medical Center, Indianapolis2001
VladimirovVSUravneniya matematicheskoi fiziki19814th ed.MoscowNauka
RomanovVGOn Local Solvability of Some Multidimensional Inverse Problems for Hyperbolic Type EquationsDiff. Urav.1989252275283994711
KabanikhinSIShishleninMAKrivorot’koOIAn Optimization Method to Solve an Inverse Problem of ThermoacousticsSib. El. Mat. Izv.20118263292
RA Kruger (4148_CR1) 2001
VG Romanov (4148_CR5) 1989; 25
SI Kabanikhin (4148_CR3) 2011; 8
VS Vladimirov (4148_CR4) 1981
SI Kabanikhin (4148_CR2) 2009
References_xml – reference: KabanikhinSIObratnye i nekorrektnye zadachi2009NovosibirskSibirskoe Nauchnoe Izdatel’svo(Inverse and Ill-PosedProblems)
– reference: VladimirovVSUravneniya matematicheskoi fiziki19814th ed.MoscowNauka
– reference: KrugerRAKiserJrReieneckeDRKrugerGAApplication of Thermoacoustic Computed Tomography to Breast Imaging, Preprint of Indiana University Medical Center, Indianapolis2001
– reference: RomanovVGOn Local Solvability of Some Multidimensional Inverse Problems for Hyperbolic Type EquationsDiff. Urav.1989252275283994711
– reference: KabanikhinSIShishleninMAKrivorot’koOIAn Optimization Method to Solve an Inverse Problem of ThermoacousticsSib. El. Mat. Izv.20118263292
– volume-title: Application of Thermoacoustic Computed Tomography to Breast Imaging, Preprint of Indiana University Medical Center, Indianapolis
  year: 2001
  ident: 4148_CR1
– volume-title: Obratnye i nekorrektnye zadachi
  year: 2009
  ident: 4148_CR2
– volume: 8
  start-page: 263
  year: 2011
  ident: 4148_CR3
  publication-title: Sib. El. Mat. Izv.
– volume: 25
  start-page: 275
  issue: 2
  year: 1989
  ident: 4148_CR5
  publication-title: Diff. Urav.
– volume-title: Uravneniya matematicheskoi fiziki
  year: 1981
  ident: 4148_CR4
SSID ssj0000327846
Score 1.8908006
Snippet In this paper, we consider an inverse problem of determining the initial condition of an initial boundary value problem for the wave equation with some...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 34
SubjectTerms Mathematics
Mathematics and Statistics
Numerical Analysis
Title A numerical method for solving an inverse thermoacoustic problem
URI https://link.springer.com/article/10.1134/S1995423913010047
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1995-4247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: AFBBN
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1995-4247
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327846
  issn: 1995-4239
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9RuOhBFDXiB-nBk2ZY124tN8GIRAMXMcETabsuMeIwblz86223DoNfCbcdXputfX19ex-_H8Cp4H6M44CaHSDKoxoHxg5S4oVRpKRkQaSpbU4eDMP-I70bB2PXx52W1e5lSjK31AXvCL14sM3EFq7OWF0Lc8bWoZrDbVWg2rl9uv8KrWBis2l5X5HtP7ZjXD7z13mWb6TldGh-y_RqMCrfrygueWnNM9lSH9-gG1f8gG3Ycl4n6hRqsgNrOqlDzXmgyJ3vtA6bgwWKa7oLVx2UzIuMzhQVVNPI-LjIqKsNQyCRoOfElnVoZN3I15mxrjk5GHI0NXsw6t2MrvueY1zwlM955knNpKaEKYEJ45GMwjAKLDzOJb30Y8W1j2NGuGQkzENGWLWpUCTkrK0wl2QfKsks0QeAlNKkHQtCuWBU8VAamyrMIxaURCKIGoDLRZ8oh0ZuSTGmk_yvhNDJj-VqwNliyFsBxfGf8Hm5CRN3KtO_pQ9Xkj6CDT8nxbCBmGOoZO9zfWJck0w2jSr2ut1h06nkJ9EN1ws
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADhQKiPD0wgQJu7MTuRoUohT4WilSmyHYcCVFSRNuFX4-dOEXlJbFlOEeJfT6f7_F9ACeC-wlOAmpWgCiPahwYO0iJF8axkpIFsaa2ObnXD9sP9G4YDF0f96Sodi9SkpmlznlH6MW9bSa2cHXG6lqYM7YMZWruJ34Jys2bx85naAUTm03L-ops_7Ed4_KZP75n8URaTIdmp0yrAoPi-_Likufz2VSeq_cv0I3__IENWHdeJ2rmarIJSzqtQsV5oMjt70kV1npzFNfJFlw2UTrLMzojlFNNI-PjIqOuNgyBRIqeUlvWoZF1I1_Gxrpm5GDI0dRsw6B1Pbhqe45xwVM-51NPaiY1JUwJTBiPZRyGcWDhceq07ieKax8njHDJSJiFjLBqUKFIyFlDYS7JDpTScap3ASmlSSMRhHLBqOKhNDZVmEcsKIlFENcAF5MeKYdGbkkxRlF2KyE0-jZdNTidD3nNoTj-Ej4rFiFyu3Lyu_Tev6SPYaU96HWj7m2_sw-rfkaQYYMyB1Cavs30oXFTpvLIqeUHJk3Ybg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1BkRAcWAqIHR84gQJu7MTujQooe4VEkeAUvEVCQKhoeuHrsRMHVDYJccvBtpLMeDye5T2ATcHDFKcRtRIgKqAGR9YOUhLEWispWaQNdc3JF534-Jqe3kQ3nue0X1W7VynJsqfBoTRl-W5Pp56DhO5eucZiB11nLbCDPGOjMGZvJswq-ljr6PbsI8yCicusFT1GrhfZzfG5zW_XGT6dhlOjxYnTnoa76l3LQpOHnUEud9TrJxjHf3zMDEx5bxS1SvWZhRGT1WHae6bI7_t-HSYv3tFd-3Ow10LZoMz0PKKSghpZ3xdZNXbhCSQydJ-5cg-DnHv59GytbkEahjx9zTx024fd_ePAMzEEKuQ8D6Rh0lDClMCEcS11HOvIweY0aCNMFTchThnhkpG4CCVh1aRCkZizpsJckgWoZc-ZWQSklCHNVBDKBaOKx9LaWmEfsaBEi0gvAa4EkCiPUu7IMh6T4rZCaPLldy3B1vuUXgnR8dvg7Uogid-t_Z9HL_9p9AaMXx60k_OTztkKTIQFb4aL1axCLX8ZmDXrveRy3WvoGw4S4VI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+method+for+solving+an+inverse+thermoacoustic+problem&rft.jtitle=Numerical+analysis+and+applications&rft.au=Kabanikhin%2C+S.+I.&rft.au=Krivorot%E2%80%99ko%2C+O.+I.&rft.au=Shishlenin%2C+M.+A.&rft.date=2013-01-01&rft.pub=SP+MAIK+Nauka%2FInterperiodica&rft.issn=1995-4239&rft.eissn=1995-4247&rft.volume=6&rft.issue=1&rft.spage=34&rft.epage=39&rft_id=info:doi/10.1134%2FS1995423913010047&rft.externalDocID=10_1134_S1995423913010047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1995-4239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1995-4239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1995-4239&client=summon