Big data grace: Implementations of the feature engineering and data science algorithms for environmental protection law
This study is intended to predict CO2 emissions using a set of features. With this aim, three machine learning (ML) algorithms have been used, namely, support vector regression (SVR), Long Short Term Memory (LSTM), and multilayer perceptron (MLP). First of all, correlation analysis was performed whi...
Saved in:
| Published in | Alexandria engineering journal Vol. 125; pp. 256 - 264 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2025
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1110-0168 2090-2670 |
| DOI | 10.1016/j.aej.2025.03.121 |
Cover
| Abstract | This study is intended to predict CO2 emissions using a set of features. With this aim, three machine learning (ML) algorithms have been used, namely, support vector regression (SVR), Long Short Term Memory (LSTM), and multilayer perceptron (MLP). First of all, correlation analysis was performed which revealed a low level of multicollinearity among the set of features. Hereafter, moving towards the modeling and compared the ML models, the findings showed that SVR (Linear) is the most reliable one, showing superiority to the rest by having the least Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) values. On the contrary, the Dynamic LSTM model demonstrated the worst performance across all evaluated metrics. Specifically, it showed the highest values for MSE, RMSE, MAE, and MAPE. Static LSTM and SVR (RBF) models performed moderately, with Static LSTM marginally outperforming SVR (RBF) on the evaluation metrics like MAE and MSE. This will provide insight into guiding policy decisions in the future regarding strategies on environmental management and demographics development. This study highlights ML’s role in environmental monitoring, aiding policymakers with data-driven strategies to reduce CO2 emissions and shape sustainable policies. |
|---|---|
| AbstractList | This study is intended to predict CO2 emissions using a set of features. With this aim, three machine learning (ML) algorithms have been used, namely, support vector regression (SVR), Long Short Term Memory (LSTM), and multilayer perceptron (MLP). First of all, correlation analysis was performed which revealed a low level of multicollinearity among the set of features. Hereafter, moving towards the modeling and compared the ML models, the findings showed that SVR (Linear) is the most reliable one, showing superiority to the rest by having the least Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) values. On the contrary, the Dynamic LSTM model demonstrated the worst performance across all evaluated metrics. Specifically, it showed the highest values for MSE, RMSE, MAE, and MAPE. Static LSTM and SVR (RBF) models performed moderately, with Static LSTM marginally outperforming SVR (RBF) on the evaluation metrics like MAE and MSE. This will provide insight into guiding policy decisions in the future regarding strategies on environmental management and demographics development. This study highlights ML’s role in environmental monitoring, aiding policymakers with data-driven strategies to reduce CO2 emissions and shape sustainable policies. |
| Author | Zhao, Yiming Wu, Wenyue |
| Author_xml | – sequence: 1 givenname: Wenyue surname: Wu fullname: Wu, Wenyue email: wenyue211@126.com organization: College of Law, Anhui Medical University, Hefei 230032, Anhui, China – sequence: 2 givenname: Yiming surname: Zhao fullname: Zhao, Yiming email: ming_saul@163.com organization: School of Law, Anhui University, Hefei 230601, Anhui, China |
| BookMark | eNqNkMtO3DAUQL0ACQp8QHf-gUn9SCZ2u2oR0JGQ2MDaumNfB0cZe-QYRvw9HoK6rPDmSrbP0dX5Rk5iikjId84azvj6x9gAjo1gomuYbLjgJ-Scc85W9VGdkat5Hlk9Xa9bvT4nhz9hoA4K0CGDxZ90s9tPuMNYoIQUZ5o8Lc9IPUJ5yUgxDiEi5hAHCtEt6GwDRosUpiHlUJ53M_Up17-vIaf4IZvoPqeC9iilExwuyamHacarz3lBnm5vHq__ru4f7jbXv-9XVihVVoBM8la7rVAopPKSu55ZxFY6azvhAZS2DpzulW-Za7d2K6xWFiTr5FoJeUE2i9clGM0-hx3kN5MgmI-LlAcDuQQ7ofGKa75d99gL3Sq0unOuA8Vl75XqZVddYnG9xD28HWCa_gk5M8f6ZjS1vjnWN0yaWr9CfIFsTvOc0X-J-bUwWMu8Bszms7ALuSasq4f_0O86hKLY |
| Cites_doi | 10.63125/a08zay47 10.1007/BF00994018 10.1186/s40537-024-00942-5 10.1162/neco.1997.9.8.1735 10.3390/en18020290 10.3390/en17174501 10.3390/w12102796 10.3390/app13127082 10.3390/axioms13070418 10.3934/math.2022993 10.1186/s40537-022-00680-6 10.1007/s11356-024-33389-5 10.1016/j.dsm.2023.06.001 10.1093/comjnl/bxy082 10.1016/j.advwatres.2020.103619 10.1016/j.adapen.2025.100211 10.3390/app142210176 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.aej.2025.03.121 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 264 |
| ExternalDocumentID | oai_doaj_org_article_f8191b67e72948ec95dd5a8137f88735 10.1016/j.aej.2025.03.121 10_1016_j_aej_2025_03_121 S1110016825004296 |
| GroupedDBID | --K 0R~ 4.4 457 5VS 6I. AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO AAYWO ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c288t-ae03149db28e238f31d70cee43dcc52faa89cdad978f40d4bcb2c98ca30536823 |
| IEDL.DBID | IXB |
| ISSN | 1110-0168 2090-2670 |
| IngestDate | Fri Oct 03 12:39:42 EDT 2025 Tue Aug 19 23:32:04 EDT 2025 Wed Oct 01 05:55:18 EDT 2025 Sat Jul 19 17:10:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Data science algorithms Big data Environmental protection law Feature engineering Machine learning |
| Language | English |
| License | This is an open access article under the CC BY license. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-ae03149db28e238f31d70cee43dcc52faa89cdad978f40d4bcb2c98ca30536823 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1110016825004296 |
| PageCount | 9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f8191b67e72948ec95dd5a8137f88735 unpaywall_primary_10_1016_j_aej_2025_03_121 crossref_primary_10_1016_j_aej_2025_03_121 elsevier_sciencedirect_doi_10_1016_j_aej_2025_03_121 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2025 2025-06-00 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: June 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | P. (b5) 2023; 6 Olawade, Wada, Ige, Egbewole, Olojo, Oladapo (b6) 2024; 12 Billanes, Ma, Jørgensen (b19) 2025; 18 Anokhina, Musaeva, Grace (b14) 2025; vol. 72 Veres, Ilchuk, Kots (b11) 2021; vol. 2 Rahaman (b20) 2025; 1 Engin, Treleaven (b10) 2019; 62 Ahmad, Almaspoor, Khan, Alhazmi, El-Morshedy, Ababneh, Al-Omari (b24) 2022; 7 Zhang, Zhang, Meng, Wang, Ma, Li, Ma (b15) 2024; 166 Kaur, Sharma (b9) 2023; 10 Abutaleb, Abdelsalam, Khaled (b13) 2025 Hochreiter, Schmidhuber (b22) 1997; 9 Cortes, Vapnik (b23) 1995; 20 Khan, Albalawi (b27) 2024; 13 Arévalo, Jurado (b17) 2024; 17 Dong, Barrett, Patil, Shoda, Battle, Wall (b21) 2025 Patil, Patil, Patil (b16) 2025 Ma, Jørgensen, Ma (b1) 2024; 11 Khan, Urooj, Muhammadullah (b26) 2021; 4 Kumar, Marchena, Awlla, Li, Abdalla (b2) 2024; 14 Tahmasebi, Kamrava, Bai, Sahimi (b8) 2020; 142 Aldoseri, Al-Khalifa, Hamouda (b4) 2023; 13 Gaffoor, Pietersen, Jovanovic, Bagula, Kanyerere (b12) 2020; 12 Shobanke, Bhatt, Shittu (b7) 2025 Sarwar, Khan, Azmat, Khan (b25) 2024; 31 Akter, Islam, Khan, Juthi (b18) 2025; 2 Mouhib, Cherkaoui, Anoun, Ridouani (b3) 2024; 19 Engin (10.1016/j.aej.2025.03.121_b10) 2019; 62 Aldoseri (10.1016/j.aej.2025.03.121_b4) 2023; 13 Cortes (10.1016/j.aej.2025.03.121_b23) 1995; 20 P. (10.1016/j.aej.2025.03.121_b5) 2023; 6 Anokhina (10.1016/j.aej.2025.03.121_b14) 2025; vol. 72 Mouhib (10.1016/j.aej.2025.03.121_b3) 2024; 19 Olawade (10.1016/j.aej.2025.03.121_b6) 2024; 12 Abutaleb (10.1016/j.aej.2025.03.121_b13) 2025 Zhang (10.1016/j.aej.2025.03.121_b15) 2024; 166 Billanes (10.1016/j.aej.2025.03.121_b19) 2025; 18 Kumar (10.1016/j.aej.2025.03.121_b2) 2024; 14 Arévalo (10.1016/j.aej.2025.03.121_b17) 2024; 17 Rahaman (10.1016/j.aej.2025.03.121_b20) 2025; 1 Dong (10.1016/j.aej.2025.03.121_b21) 2025 Khan (10.1016/j.aej.2025.03.121_b26) 2021; 4 Veres (10.1016/j.aej.2025.03.121_b11) 2021; vol. 2 Sarwar (10.1016/j.aej.2025.03.121_b25) 2024; 31 Patil (10.1016/j.aej.2025.03.121_b16) 2025 Tahmasebi (10.1016/j.aej.2025.03.121_b8) 2020; 142 Akter (10.1016/j.aej.2025.03.121_b18) 2025; 2 Shobanke (10.1016/j.aej.2025.03.121_b7) 2025 Khan (10.1016/j.aej.2025.03.121_b27) 2024; 13 Ahmad (10.1016/j.aej.2025.03.121_b24) 2022; 7 Ma (10.1016/j.aej.2025.03.121_b1) 2024; 11 Gaffoor (10.1016/j.aej.2025.03.121_b12) 2020; 12 Hochreiter (10.1016/j.aej.2025.03.121_b22) 1997; 9 Kaur (10.1016/j.aej.2025.03.121_b9) 2023; 10 |
| References_xml | – volume: 11 start-page: 84 year: 2024 ident: b1 article-title: A systematic data characteristic understanding framework towards physical-sensor big data challenges publication-title: J. Big Data – volume: 6 start-page: 144 year: 2023 end-page: 157 ident: b5 article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning publication-title: Data Sci. Manag. – year: 2025 ident: b7 article-title: Advancements and future outlook of artificial intelligence in energy and climate change modeling publication-title: Adv. Appl. Energy – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b22 article-title: Long short-term memory publication-title: Neural Comput. – volume: 4 start-page: 61 year: 2021 end-page: 75 ident: b26 article-title: An ARIMA-ANN hybrid model for monthly gold price forecasting: empirical evidence from Pakistan publication-title: Pak. Econ Rev – volume: 17 start-page: 4501 year: 2024 ident: b17 article-title: Impact of artificial intelligence on the planning and operation of distributed energy systems in smart grids publication-title: Energies – year: 2025 ident: b21 article-title: A design space of behavior change interventions for responsible data science – volume: 62 start-page: 448 year: 2019 end-page: 460 ident: b10 article-title: Algorithmic government: Automating public services and supporting civil servants in using data science technologies publication-title: Comput. J. – volume: vol. 72 start-page: 03004 year: 2025 ident: b14 article-title: Engineering and technological aspects of the application of artificial intelligence models in modern agriculture publication-title: In ITM Web of Conferences – volume: 19 year: 2024 ident: b3 article-title: Unveiling the secrets of big data projects: Harnessing machine learning algorithms and maturity domains to predict success publication-title: Interdiscip. J. Inf. Knowl. Manag. – volume: 12 start-page: 2796 year: 2020 ident: b12 article-title: Big data analytics and its role to support groundwater management in the southern african development community publication-title: Water – year: 2025 ident: b16 article-title: Evolution of technologies: a comprehensive analysis of ai, blockchain, and big data analytics publication-title: AI and Emerging Technologies – volume: 13 start-page: 7082 year: 2023 ident: b4 article-title: Re-thinking data strategy and integration for artificial intelligence: concepts opportunities, and challenges publication-title: Appl. Sci. – start-page: 315 year: 2025 end-page: 354 ident: b13 article-title: Unleashing environmental intelligence through AI, image processing, and big data: Paving the path to a sustainable future publication-title: Modelling and Advanced Earth Observation Technologies for Coastal Zone Management – volume: 12 year: 2024 ident: b6 article-title: Artificial intelligence in environmental monitoring: Advancements challenges, and future directions publication-title: Hyg. Environ. Heal. Adv. – volume: 31 start-page: 33495 year: 2024 end-page: 33514 ident: b25 article-title: A comparative analysis of feature selection models for spatial analysis of floods using hybrid metaheuristic and machine learning models publication-title: Environ. Sci. Pollut. Res. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b23 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 1 start-page: 1 year: 2025 end-page: 22 ident: b20 article-title: Smart environmental monitoring systems for air and water quality management publication-title: Am. J. Adv. Technol. Eng. Solutions – volume: 14 start-page: 10176 year: 2024 ident: b2 article-title: The AI-powered evolution of big data publication-title: Appl. Sci. – volume: 13 start-page: 418 year: 2024 ident: b27 article-title: Analysis of fat big data using factor models and penalization techniques: A Monte Carlo simulation and application publication-title: Axioms – volume: 18 start-page: 290 year: 2025 ident: b19 article-title: Data-driven technologies for energy optimization in smart buildings: A scoping review publication-title: Energies – volume: 10 start-page: 5 year: 2023 ident: b9 article-title: A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis publication-title: J. Big Data – volume: vol. 2 start-page: 411 year: 2021 end-page: 414 ident: b11 article-title: Data science methods in project financing involvement publication-title: 2021 IEEE 16th International Conference on Computer Sciences and Information Technologies – volume: 142 year: 2020 ident: b8 article-title: Machine learning in geo-and environmental sciences: From small to large scale publication-title: Adv. Water Resour. – volume: 2 start-page: 29 year: 2025 end-page: 47 ident: b18 article-title: Big data analytics in healthcare: Tools publication-title: Tech. Applications- A Syst. Rev. J. Next- Gen Eng. Syst. – volume: 7 start-page: 18031 year: 2022 end-page: 18049 ident: b24 article-title: On fitting and forecasting the log-returns of cryptocurrency exchange rates using a new logistic model and machine learning algorithms publication-title: AIMS Math – volume: 166 year: 2024 ident: b15 article-title: Evaluating agricultural non-point source pollution with high-resolution remote sensing technology and SWAT model: A case study in ningxia yellow river irrigation district publication-title: China. Ecol. Indic. – volume: 1 start-page: 1 issue: 1 year: 2025 ident: 10.1016/j.aej.2025.03.121_b20 article-title: Smart environmental monitoring systems for air and water quality management publication-title: Am. J. Adv. Technol. Eng. Solutions doi: 10.63125/a08zay47 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.aej.2025.03.121_b23 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 11 start-page: 84 issue: 1 year: 2024 ident: 10.1016/j.aej.2025.03.121_b1 article-title: A systematic data characteristic understanding framework towards physical-sensor big data challenges publication-title: J. Big Data doi: 10.1186/s40537-024-00942-5 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.aej.2025.03.121_b22 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 4 start-page: 61 issue: 1 year: 2021 ident: 10.1016/j.aej.2025.03.121_b26 article-title: An ARIMA-ANN hybrid model for monthly gold price forecasting: empirical evidence from Pakistan publication-title: Pak. Econ Rev – volume: 18 start-page: 290 issue: 2 year: 2025 ident: 10.1016/j.aej.2025.03.121_b19 article-title: Data-driven technologies for energy optimization in smart buildings: A scoping review publication-title: Energies doi: 10.3390/en18020290 – volume: 17 start-page: 4501 issue: 17 year: 2024 ident: 10.1016/j.aej.2025.03.121_b17 article-title: Impact of artificial intelligence on the planning and operation of distributed energy systems in smart grids publication-title: Energies doi: 10.3390/en17174501 – volume: 12 start-page: 2796 issue: 10 year: 2020 ident: 10.1016/j.aej.2025.03.121_b12 article-title: Big data analytics and its role to support groundwater management in the southern african development community publication-title: Water doi: 10.3390/w12102796 – start-page: 315 year: 2025 ident: 10.1016/j.aej.2025.03.121_b13 article-title: Unleashing environmental intelligence through AI, image processing, and big data: Paving the path to a sustainable future – volume: 166 year: 2024 ident: 10.1016/j.aej.2025.03.121_b15 article-title: Evaluating agricultural non-point source pollution with high-resolution remote sensing technology and SWAT model: A case study in ningxia yellow river irrigation district publication-title: China. Ecol. Indic. – year: 2025 ident: 10.1016/j.aej.2025.03.121_b21 – year: 2025 ident: 10.1016/j.aej.2025.03.121_b16 article-title: Evolution of technologies: a comprehensive analysis of ai, blockchain, and big data analytics – volume: 13 start-page: 7082 issue: 12 year: 2023 ident: 10.1016/j.aej.2025.03.121_b4 article-title: Re-thinking data strategy and integration for artificial intelligence: concepts opportunities, and challenges publication-title: Appl. Sci. doi: 10.3390/app13127082 – volume: 2 start-page: 29 issue: 01 year: 2025 ident: 10.1016/j.aej.2025.03.121_b18 article-title: Big data analytics in healthcare: Tools publication-title: Tech. Applications- A Syst. Rev. J. Next- Gen Eng. Syst. – volume: 12 year: 2024 ident: 10.1016/j.aej.2025.03.121_b6 article-title: Artificial intelligence in environmental monitoring: Advancements challenges, and future directions publication-title: Hyg. Environ. Heal. Adv. – volume: vol. 72 start-page: 03004 year: 2025 ident: 10.1016/j.aej.2025.03.121_b14 article-title: Engineering and technological aspects of the application of artificial intelligence models in modern agriculture – volume: 13 start-page: 418 issue: 7 year: 2024 ident: 10.1016/j.aej.2025.03.121_b27 article-title: Analysis of fat big data using factor models and penalization techniques: A Monte Carlo simulation and application publication-title: Axioms doi: 10.3390/axioms13070418 – volume: 7 start-page: 18031 year: 2022 ident: 10.1016/j.aej.2025.03.121_b24 article-title: On fitting and forecasting the log-returns of cryptocurrency exchange rates using a new logistic model and machine learning algorithms publication-title: AIMS Math doi: 10.3934/math.2022993 – volume: 10 start-page: 5 issue: 1 year: 2023 ident: 10.1016/j.aej.2025.03.121_b9 article-title: A deep learning-based model using hybrid feature extraction approach for consumer sentiment analysis publication-title: J. Big Data doi: 10.1186/s40537-022-00680-6 – volume: 31 start-page: 33495 issue: 23 year: 2024 ident: 10.1016/j.aej.2025.03.121_b25 article-title: A comparative analysis of feature selection models for spatial analysis of floods using hybrid metaheuristic and machine learning models publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-024-33389-5 – volume: 6 start-page: 144 issue: 3 year: 2023 ident: 10.1016/j.aej.2025.03.121_b5 article-title: Systematic review of data-centric approaches in artificial intelligence and machine learning publication-title: Data Sci. Manag. doi: 10.1016/j.dsm.2023.06.001 – volume: 19 issue: 022 year: 2024 ident: 10.1016/j.aej.2025.03.121_b3 article-title: Unveiling the secrets of big data projects: Harnessing machine learning algorithms and maturity domains to predict success publication-title: Interdiscip. J. Inf. Knowl. Manag. – volume: 62 start-page: 448 issue: 3 year: 2019 ident: 10.1016/j.aej.2025.03.121_b10 article-title: Algorithmic government: Automating public services and supporting civil servants in using data science technologies publication-title: Comput. J. doi: 10.1093/comjnl/bxy082 – volume: 142 year: 2020 ident: 10.1016/j.aej.2025.03.121_b8 article-title: Machine learning in geo-and environmental sciences: From small to large scale publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2020.103619 – volume: vol. 2 start-page: 411 year: 2021 ident: 10.1016/j.aej.2025.03.121_b11 article-title: Data science methods in project financing involvement – year: 2025 ident: 10.1016/j.aej.2025.03.121_b7 article-title: Advancements and future outlook of artificial intelligence in energy and climate change modeling publication-title: Adv. Appl. Energy doi: 10.1016/j.adapen.2025.100211 – volume: 14 start-page: 10176 issue: 22 year: 2024 ident: 10.1016/j.aej.2025.03.121_b2 article-title: The AI-powered evolution of big data publication-title: Appl. Sci. doi: 10.3390/app142210176 |
| SSID | ssj0000579496 |
| Score | 2.34403 |
| Snippet | This study is intended to predict CO2 emissions using a set of features. With this aim, three machine learning (ML) algorithms have been used, namely, support... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| StartPage | 256 |
| SubjectTerms | Big data Data science algorithms Environmental protection law Feature engineering Machine learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ07T-QwEIAtRANXnI6XbuFALqhAEYntxM51gEAICSqQ6Kzxa2_Rkl0ti1b8-xs7WQgNNLRR7Ixmxp4ZZfyZkMO6YEFUATJWOsiEMXkGeWkyIwVwIdCtEqz65ra6uhfXD-VD76qv2BPW4oFbxZ2EWFGYSnrMAoXyti6dK0EVXAZcHzzRS3NV94qpluqNfpYu58K1HDuvKrX8pZmau8A_Ym3Iygg4LVjxISgldv-H2LT20kzhdQHjcS_2XP4iP7ukkZ62wm6QFd9skh89lOAWWZyNhjS2e9LhDKz_SxP296k7WdQ800mgmOvR4BPJk_r3wRQa1w7twiGF8XAyG83_PT1TzGlp7zAcStGRHXBSOobFNrm_vLg7v8q6SxUyy5SaZ-AjsL52himP4TrwwskcI6XgztqSBQBVWwcOq8sgcieMNczWygJuDLxSjO-Q1WbS-N-EsiCdDEbKogYRglE-cCGhDligB2vUgBwttaqnLTtDL5vKHjWaQEcT6JxrNMGAnEW9v70YsdfpATqD7pxBf-UMAyKWVtOdytrMAKcaffbt4zcLfy3p7ndIukfW45Rt09kfsjqfvfh9TG_m5iB58n_1ifbd priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3da9swEMDFSB_GHvY9ltINPexpw8WWJUveW1taSqFlDwt0T-b0laVLnZI4hO2v70lWsmSMfbwaSZZPZ90duvuJkHd1wTyvPGRMWMi41nkGudCZlhxKzlGtIqz68qo6H_GLa3GdYNGhFmbn_D7mYYG7wTCOicAiLULJ-F4l0O0ekL3R1aejL_HylJhcFcveWF7nGavk5gTzd2Ps2KCI6t8xRQ-X7R18X8F0umVqzp70SVqLSCgMGSbfDpedPjQ_fuE3_tNXPCWPk8NJj3oNeUYeuPY5ebSFIXxBVseTMQ2ponQ8B-M-0ogMvk1VSe2CzjxFP5F6Fymg1P3sTKG1fddkSilMx7P5pPt6u6DoD9OtQjqcRaJC4KB0CquXZHR2-vnkPEsXMmSGKdVl4ALsvraaKYem3peFlTlaWV5aYwTzAKo2FixGpp7nlmujmamVAdxUykqx8hUZtLPWvSaUeWml11IWNXDvtXK-5BJqj8G9N1oNyfv1EjV3PXejWSek3TQozSZIs8nLBqU5JMdhETcNAzI7PsA1aNIf2PgQmupKOgwnuHKmFtYKUEUpPW60pRgSvlaBJoms9ypwqMmf3v1hoy5_n-n-f7U-IINuvnRv0O3p9Nuk8Pedu_6S priority: 102 providerName: Unpaywall |
| Title | Big data grace: Implementations of the feature engineering and data science algorithms for environmental protection law |
| URI | https://dx.doi.org/10.1016/j.aej.2025.03.121 https://doi.org/10.1016/j.aej.2025.03.121 https://doaj.org/article/f8191b67e72948ec95dd5a8137f88735 |
| UnpaywallVersion | publishedVersion |
| Volume | 125 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1110-0168 databaseCode: KQ8 dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0000579496 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal issn: 1110-0168 databaseCode: IXB dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000579496 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1110-0168 databaseCode: AKRWK dateStart: 20101201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000579496 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELaqcgAOiKcItJEPnECr7K69sbe3pGpVqKgQIiKcVuNX2CrdRGmqqP--Y683JBeQOK7ll2Zm52HPfCbkQ5nljg8dJHlhIOFKpQmkhUqU4MA4R7EKYNVfr4YXE_5lWkwPyGlXC-PTKqPub3V60NaxZRCpOVjW9QD_Q48fNMQQJ2hVD7vNuPTPN3yejrfnLL7Ykodnunz_xA_oLjdDmhfYa4wS88JDnWZ5tmeeAor_npV6fNcs4X4D8_mOFTp_Tp5F95GO2h2-IAe2eUme7oAKviKbcT2jPvGTzlag7QkNAMA3scaouaULR9Hro84GTE9q_wym0Jh2aCQFhflssarXv29uKXq3dKcsDncRMR5wUjqHzWsyOT_7cXqRxOcVEp1LuU7Aeuj60qhcWjTcjmVGpGgzOTNaF7kDkKU2YDDOdDw1XGmV61JqQBXBkOzsDTlsFo19S2juhBFOCZGVwJ1T0jrGBZQOQ3WnleyRjx1Vq2WLolF16WXXFbKg8iyoUlYhC3pk7Om-7egBsEPDYjWrogRUzgeaaigsBgdcWl0WxhQgMyYcqk1W9AjvuFbtyRNOVf9t7U9bDv97p-_-b5H35In_ahPOjsjhenVnj9G1Was-eTS6_P7zsh-OBvpBkrFtcvVt9OsBK5z7tA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbSdEg7BH2ibvrg0KmFYEmkRKlbHSRw2yRTAngjji9XgSMbjgMj_z5HinLtpQWyUjqSuDvdg7r7SMiXOssdLx0keWEg4UqlCaSFSpTgwDhHtQpg1ecX5fiK_5oUkz1y3PfC-LLKaPs7mx6sdRwZRm4OF00zxO_Q4weVmOIEq1o-IU95gdGJ7-KbjDYHLb7bkod7ujxB4in6v5uhzgvsNaaJeeGxTrM82_FPAcZ_x00d3LULuF_DbLblhk5fkMMYP9If3RZfkj3bviLPt1AFX5P1qJlSX_lJp0vQ9jsNCMA3scmovaVzRzHso84GUE9q_xJTaE1HGnlBYTadL5vVn5tbiuEt3eqLw11EkAeclM5g_YZcnZ5cHo-TeL9CovOqWiVgPXZ9bVReWfTcjmVGpOg0OTNaF7kDqGptwGCi6XhquNIq13WlAW0EQ76zt2S_nbf2HaG5E0Y4JURWA3dOVdYxLqB2mKs7raoB-dpzVS46GA3Z15ddSxSB9CKQKZMoggEZeb5vXvQI2GFgvpzKqALS-UxTlcJidsArq-vCmAKqjAmHdpMVA8J7qckdhcKpmn-t_W0j4f_v9P3jFvlMDsaX52fy7OfF7yPyzD_pqs8-kP3V8s5-xDhnpT4FPX4AQBH6kg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3da9swEMDFSB_GHvY9ltINPexpw8WWJUveW1taSqFlDwt0T-b0laVLnZI4hO2v70lWsmSMfbwaSZZPZ90duvuJkHd1wTyvPGRMWMi41nkGudCZlhxKzlGtIqz68qo6H_GLa3GdYNGhFmbn_D7mYYG7wTCOicAiLULJ-F4l0O0ekL3R1aejL_HylJhcFcveWF7nGavk5gTzd2Ps2KCI6t8xRQ-X7R18X8F0umVqzp70SVqLSCgMGSbfDpedPjQ_fuE3_tNXPCWPk8NJj3oNeUYeuPY5ebSFIXxBVseTMQ2ponQ8B-M-0ogMvk1VSe2CzjxFP5F6Fymg1P3sTKG1fddkSilMx7P5pPt6u6DoD9OtQjqcRaJC4KB0CquXZHR2-vnkPEsXMmSGKdVl4ALsvraaKYem3peFlTlaWV5aYwTzAKo2FixGpp7nlmujmamVAdxUykqx8hUZtLPWvSaUeWml11IWNXDvtXK-5BJqj8G9N1oNyfv1EjV3PXejWSek3TQozSZIs8nLBqU5JMdhETcNAzI7PsA1aNIf2PgQmupKOgwnuHKmFtYKUEUpPW60pRgSvlaBJoms9ypwqMmf3v1hoy5_n-n-f7U-IINuvnRv0O3p9Nuk8Pedu_6S |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+grace%3A+Implementations+of+the+feature+engineering+and+data+science+algorithms+for+environmental+protection+law&rft.jtitle=Alexandria+engineering+journal&rft.au=Wu%2C+Wenyue&rft.au=Zhao%2C+Yiming&rft.date=2025-06-01&rft.issn=1110-0168&rft.volume=125&rft.spage=256&rft.epage=264&rft_id=info:doi/10.1016%2Fj.aej.2025.03.121&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aej_2025_03_121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |