A-ComVar: A Flexible Extension of Common Variance Designs
We consider nonregular fractions of factorial experiments for a class of linear models. These models have a common general mean and main effects; however, they may have different 2-factor interactions. Here we assume for simplicity that 3-factor and higher-order interactions are negligible. In the a...
Saved in:
Published in | Journal of statistical theory and practice Vol. 14; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1559-8608 1559-8616 |
DOI | 10.1007/s42519-019-0079-y |
Cover
Abstract | We consider nonregular fractions of factorial experiments for a class of linear models. These models have a common general mean and main effects; however, they may have different 2-factor interactions. Here we assume for simplicity that 3-factor and higher-order interactions are negligible. In the absence of a priori knowledge about which interactions are important, it is reasonable to prefer a design that results in equal variance for the estimates of all interaction effects to aid in model discrimination. Such designs are called common variance designs and can be quite challenging to identify without performing an exhaustive search of possible designs. In this work, we introduce an extension of common variance designs called approximate common variance or A-ComVar designs. We develop a numerical approach to finding A-ComVar designs that is much more efficient than an exhaustive search. We present the types of A-ComVar designs that can be found for different number of factors, runs, and interactions. We further demonstrate the competitive performance of both common variance and A-ComVar designs using several comparisons to other popular designs in the literature. |
---|---|
AbstractList | We consider nonregular fractions of factorial experiments for a class of linear models. These models have a common general mean and main effects; however, they may have different 2-factor interactions. Here we assume for simplicity that 3-factor and higher-order interactions are negligible. In the absence of a priori knowledge about which interactions are important, it is reasonable to prefer a design that results in equal variance for the estimates of all interaction effects to aid in model discrimination. Such designs are called common variance designs and can be quite challenging to identify without performing an exhaustive search of possible designs. In this work, we introduce an extension of common variance designs called approximate common variance or A-ComVar designs. We develop a numerical approach to finding A-ComVar designs that is much more efficient than an exhaustive search. We present the types of A-ComVar designs that can be found for different number of factors, runs, and interactions. We further demonstrate the competitive performance of both common variance and A-ComVar designs using several comparisons to other popular designs in the literature. |
ArticleNumber | 16 |
Author | Chowdhury, Shrabanti Lukemire, Joshua Mandal, Abhyuday |
Author_xml | – sequence: 1 givenname: Shrabanti surname: Chowdhury fullname: Chowdhury, Shrabanti organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 2 givenname: Joshua surname: Lukemire fullname: Lukemire, Joshua organization: Department of Biostatistics and Bioinformatics, Emory University – sequence: 3 givenname: Abhyuday surname: Mandal fullname: Mandal, Abhyuday email: amandal@stat.uga.edu organization: Department of Statistics, University of Georgia |
BookMark | eNp9j81KAzEQgINUsK0-gLd9gWhm_7LxVmpbhYIX9Rqy2UlJ2c1KskL37U1Z8eChh_mBmW-Gb0FmrndIyD2wB2CMP4Y8LUBQdg7GBR2vyByKQtCqhHL217PqhixCODJWAsuyOREruu67T-WfklWybfFk6xaTzWlAF2zvkt4kcd7FLu5Y5TQmzxjswYVbcm1UG_Duty7Jx3bzvn6h-7fd63q1pzqtqoEqjY0xBjMuioxjXXOT65graMA0kKsUmlJplacV1gIFFzkKpYssNyBUWWdLAtNd7fsQPBr55W2n_CiBybO7nNwlO0d0l2Nk-D9G20ENUWjwyrYXyXQiQ_ziDujlsf_2LgpegH4ApadxCg |
CitedBy_id | crossref_primary_10_61186_jss_17_1_9 |
Cites_doi | 10.1080/00031305.2019.1585287 10.1198/004017007000000038 10.1080/01621459.1989.10478830 10.1016/0378-3758(82)90086-6 10.1214/009053606000001523 10.1016/j.jspi.2017.03.004 10.1016/0378-3758(79)90017-X 10.1093/biomet/72.1.165 10.1093/biomet/70.2.433 10.1002/qre.1591 10.1016/j.jmva.2005.09.005 10.1214/09-AOAS254 10.1016/j.jspi.2013.06.008 10.1198/004017007000000173 10.1016/0378-3758(86)90162-X 10.1080/00401706.1995.10484371 10.1093/biomet/73.3.695 10.1080/00401706.2000.10485707 10.1007/978-3-0348-5513-6_26 |
ContentType | Journal Article |
Copyright | Grace Scientific Publishing 2020 |
Copyright_xml | – notice: Grace Scientific Publishing 2020 |
DBID | AAYXX CITATION |
DOI | 10.1007/s42519-019-0079-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1559-8616 |
ExternalDocumentID | 10_1007_s42519_019_0079_y |
GroupedDBID | -EM .7F 0R~ 4.4 406 8UJ AACDK AAHNG AAJBT AASML AATNV AAUYE ABAKF ABECU ABFIM ABFTV ABJNI ABKCH ABMQK ABPEM ABTAI ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACTIO ACZOJ ADCVX ADKNI ADTPH ADURQ ADYFF AEFQL AEJRE AEMSY AESKC AFBBN AFQWF AGDGC AGJBK AGMZJ AGQEE AIGIU AIJEM AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AQRUH AVBZW AXYYD BGNMA CCCUG CSCUP DKSSO DPUIP EBLON EBS EJD E~A E~B F5P FIGPU FINBP FNLPD FSGXE GGCAI GTTXZ H13 HZ~ H~P IKXTQ IWAJR J9A JZLTJ J~4 KOV LLZTM M4Y M4Z NPVJJ NQJWS NU0 O9- P2P PT4 ROL RSV S-T SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW STPWE TDBHL TFL TFT TFW TSG UOJIU UT5 UTJUX UU3 VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION |
ID | FETCH-LOGICAL-c288t-acedfffe379537ebb7f4cbb781d1fd14a21d6aca428eb9e9794e9ac534f19a6b3 |
ISSN | 1559-8608 |
IngestDate | Tue Jul 01 00:35:14 EDT 2025 Thu Apr 24 23:13:28 EDT 2025 Fri Feb 21 02:31:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Adaptive lasso Approximate common variance Genetic algorithm Model identification Common variance Class of models Plackett–Burman |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c288t-acedfffe379537ebb7f4cbb781d1fd14a21d6aca428eb9e9794e9ac534f19a6b3 |
ParticipantIDs | crossref_primary_10_1007_s42519_019_0079_y crossref_citationtrail_10_1007_s42519_019_0079_y springer_journals_10_1007_s42519_019_0079_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Journal of statistical theory and practice |
PublicationTitleAbbrev | J Stat Theory Pract |
PublicationYear | 2020 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | Mandal, Wong, Yu, Dean, Morris, Stufken, Bingham (CR16) 2015 Mukerjee, Kageyama (CR17) 1985; 72 Srivastava, Gupta (CR20) 1979; 3 Bingham, Chipman (CR1) 2007; 49 Ghosh, Flores (CR8) 2013; 143 Khatri (CR13) 1982; 6 CR6 Ghosh, Tian (CR9) 2006; 97 Hedayat, Stufken (CR11) 1989; 84 CR18 Calvin (CR3) 1986; 14 Lin, Anderson-Cook, Hamada, Moore, Sitter (CR15) 2015; 31 Candes, Tao (CR4) 2007; 35 Yuan, Joseph, Lin (CR21) 2007; 49 Li, Nachtsheim (CR14) 2000; 42 Gupta, Jones (CR10) 1983; 70 Cheng (CR5) 1986; 73 Breiman (CR2) 1995; 37 Yuan, Joseph, Zou (CR22) 2009; 3 Ghosh, Chowdhury (CR7) 2017; 188 Kane, Mandal (CR12) 2019 Srivastava, Ghosh (CR19) 1976; 38 CD Lin (79_CR15) 2015; 31 J Srivastava (79_CR19) 1976; 38 79_CR6 S Ghosh (79_CR8) 2013; 143 79_CR18 M Yuan (79_CR22) 2009; 3 E Candes (79_CR4) 2007; 35 C Khatri (79_CR13) 1982; 6 W Li (79_CR14) 2000; 42 DR Bingham (79_CR1) 2007; 49 L Breiman (79_CR2) 1995; 37 A Kane (79_CR12) 2019 S Ghosh (79_CR9) 2006; 97 A Mandal (79_CR16) 2015 J Srivastava (79_CR20) 1979; 3 C-S Cheng (79_CR5) 1986; 73 R Mukerjee (79_CR17) 1985; 72 S Ghosh (79_CR7) 2017; 188 M Yuan (79_CR21) 2007; 49 A Hedayat (79_CR11) 1989; 84 JA Calvin (79_CR3) 1986; 14 S Gupta (79_CR10) 1983; 70 |
References_xml | – year: 2019 ident: CR12 article-title: A new analysis strategy for designs with complex aliasing publication-title: Am Stat doi: 10.1080/00031305.2019.1585287 – ident: CR18 – volume: 49 start-page: 155 issue: 2 year: 2007 end-page: 163 ident: CR1 article-title: Incorporating prior information in optimal design for model selection publication-title: Technometrics doi: 10.1198/004017007000000038 – volume: 84 start-page: 753 issue: 407 year: 1989 end-page: 755 ident: CR11 article-title: A relation between pairwise balanced and variance balanced block designs publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478830 – volume: 6 start-page: 173 issue: 2 year: 1982 end-page: 177 ident: CR13 article-title: A note on variance balanced designs publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(82)90086-6 – volume: 35 start-page: 2313 issue: 6 year: 2007 end-page: 2351 ident: CR4 article-title: The Dantzig selector: statistical estimation when p is much larger than n publication-title: Ann Stat doi: 10.1214/009053606000001523 – volume: 188 start-page: 1 year: 2017 end-page: 7 ident: CR7 article-title: CV, ECV, and robust CV designs for replications under a class of linear models in factorial experiments publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2017.03.004 – volume: 3 start-page: 259 issue: 3 year: 1979 end-page: 265 ident: CR20 article-title: Main effect plan for 2m factorials which allow search and estimation of one unknown effect publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(79)90017-X – volume: 72 start-page: 165 issue: 1 year: 1985 end-page: 172 ident: CR17 article-title: On resolvable and affine resolvable variance-balanced designs publication-title: Biometrika doi: 10.1093/biomet/72.1.165 – volume: 70 start-page: 433 issue: 2 year: 1983 end-page: 440 ident: CR10 article-title: Equireplicate balanced block designs with unequal block sizes publication-title: Biometrika doi: 10.1093/biomet/70.2.433 – ident: CR6 – volume: 31 start-page: 155 issue: 2 year: 2015 end-page: 167 ident: CR15 article-title: Using genetic algorithms to design experiments: a review publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1591 – start-page: 755 year: 2015 end-page: 783 ident: CR16 article-title: Algorithmic searches for optimal designs publication-title: Handbook of design and analysis of experiments – volume: 97 start-page: 1437 issue: 6 year: 2006 end-page: 1450 ident: CR9 article-title: Optimum two level fractional factorial plans for model identification and discrimination publication-title: J Multivar Anal doi: 10.1016/j.jmva.2005.09.005 – volume: 3 start-page: 1738 issue: 4 year: 2009 end-page: 1757 ident: CR22 article-title: Structured variable selection and estimation publication-title: Ann Appl Stat doi: 10.1214/09-AOAS254 – volume: 143 start-page: 1807 issue: 10 year: 2013 end-page: 1815 ident: CR8 article-title: Common variance fractional factorial designs and their optimality to identify a class of models publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2013.06.008 – volume: 38 start-page: 280 year: 1976 end-page: 289 ident: CR19 article-title: A series of balanced factorial designs of resolution v which allow search and estimation of one extra unknown effect publication-title: Sankhyā Indian J Stat Ser B – volume: 49 start-page: 430 issue: 4 year: 2007 end-page: 439 ident: CR21 article-title: An efficient variable selection approach for analyzing designed experiments publication-title: Technometrics doi: 10.1198/004017007000000173 – volume: 14 start-page: 251 issue: 2–3 year: 1986 end-page: 254 ident: CR3 article-title: A new class of variance balanced designs publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(86)90162-X – volume: 37 start-page: 373 issue: 4 year: 1995 end-page: 384 ident: CR2 article-title: Better subset regression using the nonnegative garrote publication-title: Technometrics doi: 10.1080/00401706.1995.10484371 – volume: 73 start-page: 695 issue: 3 year: 1986 end-page: 700 ident: CR5 article-title: A method for constructing balanced incomplete-block designs with nested rows and columns publication-title: Biometrika doi: 10.1093/biomet/73.3.695 – volume: 42 start-page: 345 issue: 4 year: 2000 end-page: 352 ident: CR14 article-title: Model-robust factorial designs publication-title: Technometrics doi: 10.1080/00401706.2000.10485707 – volume: 3 start-page: 259 issue: 3 year: 1979 ident: 79_CR20 publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(79)90017-X – volume: 49 start-page: 430 issue: 4 year: 2007 ident: 79_CR21 publication-title: Technometrics doi: 10.1198/004017007000000173 – volume: 38 start-page: 280 year: 1976 ident: 79_CR19 publication-title: Sankhyā Indian J Stat Ser B – volume: 3 start-page: 1738 issue: 4 year: 2009 ident: 79_CR22 publication-title: Ann Appl Stat doi: 10.1214/09-AOAS254 – volume: 35 start-page: 2313 issue: 6 year: 2007 ident: 79_CR4 publication-title: Ann Stat doi: 10.1214/009053606000001523 – volume: 73 start-page: 695 issue: 3 year: 1986 ident: 79_CR5 publication-title: Biometrika doi: 10.1093/biomet/73.3.695 – volume: 6 start-page: 173 issue: 2 year: 1982 ident: 79_CR13 publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(82)90086-6 – volume: 42 start-page: 345 issue: 4 year: 2000 ident: 79_CR14 publication-title: Technometrics doi: 10.1080/00401706.2000.10485707 – ident: 79_CR18 doi: 10.1007/978-3-0348-5513-6_26 – volume: 188 start-page: 1 year: 2017 ident: 79_CR7 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2017.03.004 – year: 2019 ident: 79_CR12 publication-title: Am Stat doi: 10.1080/00031305.2019.1585287 – volume: 84 start-page: 753 issue: 407 year: 1989 ident: 79_CR11 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1989.10478830 – volume: 14 start-page: 251 issue: 2–3 year: 1986 ident: 79_CR3 publication-title: J Stat Plan Inference doi: 10.1016/0378-3758(86)90162-X – volume: 143 start-page: 1807 issue: 10 year: 2013 ident: 79_CR8 publication-title: J Stat Plan Inference doi: 10.1016/j.jspi.2013.06.008 – volume: 37 start-page: 373 issue: 4 year: 1995 ident: 79_CR2 publication-title: Technometrics doi: 10.1080/00401706.1995.10484371 – ident: 79_CR6 – volume: 31 start-page: 155 issue: 2 year: 2015 ident: 79_CR15 publication-title: Qual Reliab Eng Int doi: 10.1002/qre.1591 – volume: 70 start-page: 433 issue: 2 year: 1983 ident: 79_CR10 publication-title: Biometrika doi: 10.1093/biomet/70.2.433 – volume: 49 start-page: 155 issue: 2 year: 2007 ident: 79_CR1 publication-title: Technometrics doi: 10.1198/004017007000000038 – start-page: 755 volume-title: Handbook of design and analysis of experiments year: 2015 ident: 79_CR16 – volume: 97 start-page: 1437 issue: 6 year: 2006 ident: 79_CR9 publication-title: J Multivar Anal doi: 10.1016/j.jmva.2005.09.005 – volume: 72 start-page: 165 issue: 1 year: 1985 ident: 79_CR17 publication-title: Biometrika doi: 10.1093/biomet/72.1.165 |
SSID | ssj0061033 |
Score | 2.1246784 |
Snippet | We consider nonregular fractions of factorial experiments for a class of linear models. These models have a common general mean and main effects; however, they... |
SourceID | crossref springer |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Analysis and Advanced Methodologies in the Design of Experiments Mathematics and Statistics Original Article Probability Theory and Stochastic Processes Statistical Theory and Methods Statistics |
Title | A-ComVar: A Flexible Extension of Common Variance Designs |
URI | https://link.springer.com/article/10.1007/s42519-019-0079-y |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu4zDBAPE-JIPnEBBaezGMbcOVk2Tuss2tFtkO7Y6AS1aUo3y1_P8mbVQxDjEiqyXxMp7eX5-_v1eEHpTGG1gpiFZrpTMaENEJkRJMlPAfFIpGxRYcvL0tDy-oCeXo8t-R9exSzr5Xv38I6_kf7QKfaBXy5K9g2bTTaEDzkG_0IKGof0nHY8z-Jw_i2tPL5_Y2paWCHX0w8HSfSRoGSBwBlJXjh3wyUE22i1BqeUXudLNFoPuaPuhkoDnUvVggMVNMwtb8GcziwuYd1cJ3LP8or-FnPfJop0tk-uf2ryFhwXI2WoZETwh6wBLzAS7Wss6buQt-9TZbZdqE41l7r2svt3nWZbJD9NNe_vNvXtER0st3RaGA0fOeLbq57KEMEzVmJ1sndsDZOvVfbRTMAizBmhnPDk8PI3TNoSRxLEx4nDjFrjlWW4-cD2IWd9Bd4HJ-UO0F5SHx948HqF7er6PHkxTOd52H-2eRbW2jxGPVvMBj3G0GZxsBi8M9jaDo83gYDNP0MXk6PzjcRZ-oJGpoqq6TCjdGGM0YXxEmJaSGaqghTXK0DRDKophUwolYAmqJdccfLPmQo0INUMuSkmeosF8MdfPEM65qgrJG13mlLKKSkFGjCkjmTa6rNgByuMbqVWoLm9_cvK13qqJA_Q2XfLdl1b5m_C7-Jrr8AW226Wf30n6BdrtTfwlGnTXS_0KQs1Ovg5G8gtQTHz3 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A-ComVar%3A+A+Flexible+Extension+of+Common+Variance+Designs&rft.jtitle=Journal+of+statistical+theory+and+practice&rft.au=Chowdhury%2C+Shrabanti&rft.au=Lukemire%2C+Joshua&rft.au=Mandal%2C+Abhyuday&rft.date=2020-03-01&rft.pub=Springer+International+Publishing&rft.issn=1559-8608&rft.eissn=1559-8616&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1007%2Fs42519-019-0079-y&rft.externalDocID=10_1007_s42519_019_0079_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1559-8608&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1559-8608&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1559-8608&client=summon |