A parallel immune optimization algorithm for numeric function optimization

Immune optimization algorithms show good performance in obtaining optimal solutions especially in dealing with numeric optimization problems where such solutions are often difficult to determine by traditional techniques. This article presents the parallel suppression control algorithm (PSCA), a par...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary intelligence Vol. 1; no. 3; pp. 171 - 185
Main Authors Lau, Henry Y. K., Tsang, Wilburn W. P.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.10.2008
Subjects
Online AccessGet full text
ISSN1864-5909
1864-5917
DOI10.1007/s12065-008-0014-8

Cover

Abstract Immune optimization algorithms show good performance in obtaining optimal solutions especially in dealing with numeric optimization problems where such solutions are often difficult to determine by traditional techniques. This article presents the parallel suppression control algorithm (PSCA), a parallel algorithm for optimization based on artificial immune systems (AIS). PSCA is implemented in a parallel platform where the corresponding population of antibodies is partitioned into subpopulations that are distributed among the processes. Each process executes the immunity-based algorithm for optimizing its subpopulation. In the process of evolving the solutions, the activities of antibodies and the activities of the computation agents are regulated by the general suppression control framework (GSCF) which maintains and controls the interactions between the populations and processes. The proposed algorithm is evaluated with benchmark problems, and its performance is measured and compared with other conventional optimization approaches.
AbstractList Immune optimization algorithms show good performance in obtaining optimal solutions especially in dealing with numeric optimization problems where such solutions are often difficult to determine by traditional techniques. This article presents the parallel suppression control algorithm (PSCA), a parallel algorithm for optimization based on artificial immune systems (AIS). PSCA is implemented in a parallel platform where the corresponding population of antibodies is partitioned into subpopulations that are distributed among the processes. Each process executes the immunity-based algorithm for optimizing its subpopulation. In the process of evolving the solutions, the activities of antibodies and the activities of the computation agents are regulated by the general suppression control framework (GSCF) which maintains and controls the interactions between the populations and processes. The proposed algorithm is evaluated with benchmark problems, and its performance is measured and compared with other conventional optimization approaches.
Author Lau, Henry Y. K.
Tsang, Wilburn W. P.
Author_xml – sequence: 1
  givenname: Henry Y. K.
  surname: Lau
  fullname: Lau, Henry Y. K.
  email: hyklau@hku.hk, h0246582@hkusua.hku.hk
  organization: Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong
– sequence: 2
  givenname: Wilburn W. P.
  surname: Tsang
  fullname: Tsang, Wilburn W. P.
  organization: Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong
BookMark eNp9kM9OAyEQxompiW31AbzxAqsDy7L02DT-qWniRc-EZaHS7EIDuwd9emlrjPHQw2RmMt9vBr4ZmvjgDUK3BO4IQH2fCAVeFQAiB2GFuEBTIjgrqgWpJ781LK7QLKUdAKdQsyl6WeK9iqrrTIdd34_e4LAfXO--1OCCx6rbhuiGjx7bELEfexOdxnb0-jj-q71Gl1Z1ydz85Dl6f3x4Wz0Xm9en9Wq5KTQVYihUmS9Du1C8bnjTtKoFypu2BaVzUzWUtVwpoawVWnBgpipZUxIqLKtoFpVzVJ_26hhSisZK7YbjC4aoXCcJyIMl8mSJzJbIgyVSZJL8I_fR9Sp-nmXoiUlZ67cmyl0Yo88fPAN9A43Sd9Q
CitedBy_id crossref_primary_10_3390_app142412044
crossref_primary_10_1016_j_ijepes_2010_12_036
crossref_primary_10_20965_jaciii_2010_p0110
crossref_primary_10_1016_j_jocs_2017_04_015
crossref_primary_10_1007_s00500_015_1724_3
crossref_primary_10_1007_s00521_016_2507_1
Cites_doi 10.1007/3-540-45712-7_39
10.1007/11539117_126
10.1109/CEC.2002.1004472
10.1007/978-3-540-30220-9_34
10.1016/j.asoc.2006.12.004
10.2514/1.17873
10.1007/3-540-33521-8_51
10.1007/978-3-540-30220-9_22
10.1007/978-3-662-06369-9_4
10.1007/11536444_12
10.1007/978-3-540-30220-9_8
10.1007/11536444_2
10.5962/bhl.title.8281
10.1109/CEC.2004.1331139
10.1006/jpdc.2002.1854
10.1109/MCI.2006.329705
10.1109/TEVC.2002.1011539
10.1109/CEC.2003.1299565
10.1109/ICSMC.2004.1400870
10.1109/CEC.2004.1330978
10.1007/3-540-45105-6_26
10.1016/j.cageo.2006.09.002
ContentType Journal Article
Copyright Springer-Verlag 2008
Copyright_xml – notice: Springer-Verlag 2008
DBID AAYXX
CITATION
DOI 10.1007/s12065-008-0014-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1864-5917
EndPage 185
ExternalDocumentID 10_1007_s12065_008_0014_8
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
203
29G
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
875
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-a32070d9a67b6bbdad026bdd0acbda5b24d6aa8aff8c8604e534b3128f4520ac3
IEDL.DBID U2A
ISSN 1864-5909
IngestDate Thu Apr 24 23:00:14 EDT 2025
Wed Oct 01 03:33:18 EDT 2025
Fri Feb 21 02:33:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Parallel implementation
Artificial immune systems
Function optimization
Immune optimization algorithm
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-a32070d9a67b6bbdad026bdd0acbda5b24d6aa8aff8c8604e534b3128f4520ac3
PageCount 15
ParticipantIDs crossref_citationtrail_10_1007_s12065_008_0014_8
crossref_primary_10_1007_s12065_008_0014_8
springer_journals_10_1007_s12065_008_0014_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20081000
2008-10-00
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 20081000
PublicationDecade 2000
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Evolutionary intelligence
PublicationTitleAbbrev Evol. Intel
PublicationYear 2008
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References Kelsey J, Timmis J (2003) Immune inspired somatic contiguous hypermutation for function optimisation. In: Genetic and evolutionary computation conference (GECCO 2003), Chicago, USA, pp 207–218
Zhu C, Zhao B, Ye B, Yijia C (2005) An improved immune algorithm and its evaluation of optimization efficiency. In: International conference on natural computation (ICNC 2005), Changsha, China, pp 895–904
Ko AWY, Lau HYK, Lau TL (2005) General suppression control framework: application in selfbalancing robots. In: Fourth international conference on artificial immune systems (ICARIS-2005), Banff, Canada, pp 375–388
Cutello V, Nicosia G, Pavone M (2004) Exploring the capability of immune algorithms: a characterization of hypermutation operators. In: Third international conference on artificial immune systems (ICARIS-2004), Catania, Italy, pp 263–276
DasguptaDAdvances in artificial immune systemsIEEE Comput Intell Mag200614049
Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: 2004 Congress on evolutionary computation (CEC 2004), Portland, USA
de CastroLNVon ZubenFJlearning and optimization using the clonal selection principleIEEE Trans Evol Comput2002623925110.1109/TEVC.2002.1011539
Brownlee J (2007) Optimization Algorithm Toolkit (optalgtoolkit) Version 1.4. In: Optimization Algorithm Toolkit (OAT). Available via Sourceforge.net. http://sourceforge.net/projects/optalgtoolkit. Accessed on 12 February 2008
Kim J, Bentley PJ (1999) The human immune system and network intrusion detection. In: Seventh European congress on intelligent techniques and soft computing (EUFIT’99), Aachen, Germany
Wang X, Gao XZ, Ovaska SJ (2004) Artificial immune optimization methods and applications—a survey. In: IEEE international conference on systems, man and cybernetics, 2004, Hague, The Netherlands, pp 3415–3420
Garrett SM (2004) Parameter-free, adaptive clonal selection. In: 2004 Congress on evolutionary computation (CEC 2004), Portland, USA, pp 1052–1058
Male D, Brostoff J, Roitt I, Rotth DB (2006) Immunolohy, 7th edn. Mosby
HartETimmisJApplication areas of AIS: the past, the present and the futureAppl Soft Comput2008819120110.1016/j.asoc.2006.12.004
PlayfairJHLChainBMImmunology at a Glance2001CornwallBlackwell
Luo Y, Li R, Tian F (2004) Application of artificial immune algorithm to multimodal function optimization. In: Fifth world congress on intelligent control and automation, 2004 (WCICA 2004), Hangzhou, China, pp 2248–2252
Ko AWY, Lau HYK, Lau TL (2004) A general suppression framework for distributed control. In: Tenth IEEE international conference on methods and models in automation and robotics, Miedzyzdroje, Poland
JerneNKTowards a network theory of the immune systemAnnu Immunol1974125C373389
HeKZhengLDongSTangLWuJZhengCPGO: a parallel computing platform for global optimization based on genetic algorithmComput Geosci200633357366
CutelloVNicosiaGPaviaEA parallel immune algorithm for global optimizationAdv Soft Comput2006546747510.1007/3-540-33521-8_51
Ko AWY, Lau HYK, Lau TL (2004) An immuno control framework for decentralized mechatronic control. In: Third international conference on artificial immune systems (ICARIS-2004), Catania, Italy, pp 91–105
Cutello V, Nicosia G (2004) The clonal selection principle for in silico and in vitro computing. In: de Castro LN, Von Zuben FJ (eds) Recent developments in biologically inspired computing. Idea Group Publishing, pp 104–145
Watkins A, Timmis J (2004) Exploiting parallelism inherent in AIRS, an artificial immune classifier. In: Third international conference on artificial immune systems (ICARIS-2004), Catania, Italy, pp 427–438
Watkins A, Bi X, Phadke A (2003) Parallelizing an immune-inspired algorithm for efficient pattern recognition. intelligent engineering systems through artificial Neural Networks: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life 13: 225–230
de Castro LN (2001) Demo file for Matlab. In: Artificial immune systems. Available via Department of Computer Engineering and Industrial Automation, State University of Campinas. http://www.dca.fee.unicamp.br/~lnunes/immune.html. Accessed on 1 April 2007
Greensmith J, Aickelin U, Cayzer S (2005) Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Fourth international conference on artificial immune systems (ICARIS-2005), Banff, Canada, pp 153–167
Timmis J, Knight T, de Castro LN, Hart E (2004) An overview of artificial immune systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in cells and tissues: perspectives and tools of thought. Springer, Heidelberg, pp 51–86
Sompayrac L (1999) How the immune system works. Blackwell, Cornwall
VenterGSobieszczanski-SobieskiJA parallel particle swarm optimization algorithm accelerated by asynchronous evaluationsJ Aerosp Comput Inf Commun20063312313710.2514/1.17873
Kepner J (2001) MatlabMPI. In: Parallel programming with MatlabMPI. Available via Lincoln Laboratory, Massachusetts Institute of Technology. http://www.ll.mit.edu/MatlabMPI. Accessed on 1 April 2007
Liu P, Lau F, Lewis MJ, Wang C-L (2002) A new asynchronous parallel evolutionary algorithm for function optimization. In: Seventh international conference on parallel problem solving from nature, Granada, Spain, pp 401–410
Cutello V, Narzisi G, Nicosia G, Pavone M (2005) Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Fourth international conference on artificial immune systems (ICARIS-2005), Banff, Canada, pp 13–28
MakKLLauPSKOrder pickings in an AS/RS with multiple I/O stations using an artificial immune system with aging antibodiesEng Lett200816122130
Watkins A (2005) Exploiting immunological metaphors in the development of serial, parallel, and distributed learning algorithms. University of Kent, Canterbury
Dasgupta D, Zhou J (2003) Artificial immune system (AIS) research in the last five years. In: 2003 congress on evolutionary computation (CEC 2003). IEEE, Canberra, pp 123–130
Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge
Lau HYK, Wong VWK (2004) A strategic behavior-based intelligent transport system with artificial immune system. In: IEEE international conference on systems, man and cybernetics, 2004, Hague, The Netherlands, pp 3909–3914
de Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, Heidelberg
Watkins A, Boggess L (2002) A new classifier based on resource limited artificial immune systems. In: 2002 IEEE world congress on computational intelligence, Honolulu, USA, pp 225–230
de Castro LN, Von Zuben FJ (2002) An artificial immune network for multimodal function optimization on dynamic environments. In: 2002 congress on evolutionary computation (CEC 2002), Honolulu, USA, pp 289–296
RandallMLewisAA parallel implementation of ant colony optimizationParallel Distrib Comput200262142114321063.6809510.1006/jpdc.2002.1854
14_CR15
14_CR37
14_CR36
14_CR13
14_CR35
14_CR12
14_CR34
14_CR33
14_CR10
14_CR32
14_CR30
D Dasgupta (14_CR4) 2006; 1
V Cutello (14_CR31) 2006; 5
JHL Playfair (14_CR11) 2001
14_CR19
14_CR18
14_CR17
14_CR39
14_CR16
14_CR38
14_CR1
14_CR40
14_CR2
LN Castro de (14_CR6) 2002; 6
K He (14_CR27) 2006; 33
14_CR9
E Hart (14_CR5) 2008; 8
14_CR25
14_CR7
M Randall (14_CR24) 2002; 62
14_CR8
14_CR23
G Venter (14_CR26) 2006; 3
14_CR21
14_CR3
14_CR20
KL Mak (14_CR22) 2008; 16
NK Jerne (14_CR14) 1974; 125
14_CR29
14_CR28
References_xml – reference: de CastroLNVon ZubenFJlearning and optimization using the clonal selection principleIEEE Trans Evol Comput2002623925110.1109/TEVC.2002.1011539
– reference: Dasgupta D, Zhou J (2003) Artificial immune system (AIS) research in the last five years. In: 2003 congress on evolutionary computation (CEC 2003). IEEE, Canberra, pp 123–130
– reference: Luo Y, Li R, Tian F (2004) Application of artificial immune algorithm to multimodal function optimization. In: Fifth world congress on intelligent control and automation, 2004 (WCICA 2004), Hangzhou, China, pp 2248–2252
– reference: Watkins A, Boggess L (2002) A new classifier based on resource limited artificial immune systems. In: 2002 IEEE world congress on computational intelligence, Honolulu, USA, pp 225–230
– reference: HeKZhengLDongSTangLWuJZhengCPGO: a parallel computing platform for global optimization based on genetic algorithmComput Geosci200633357366
– reference: de Castro LN, Timmis J (2002) Artificial immune systems: a new computational intelligence approach. Springer, Heidelberg
– reference: PlayfairJHLChainBMImmunology at a Glance2001CornwallBlackwell
– reference: Cutello V, Narzisi G, Nicosia G, Pavone M (2005) Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Fourth international conference on artificial immune systems (ICARIS-2005), Banff, Canada, pp 13–28
– reference: Cutello V, Nicosia G (2004) The clonal selection principle for in silico and in vitro computing. In: de Castro LN, Von Zuben FJ (eds) Recent developments in biologically inspired computing. Idea Group Publishing, pp 104–145
– reference: Male D, Brostoff J, Roitt I, Rotth DB (2006) Immunolohy, 7th edn. Mosby
– reference: Garrett SM (2004) Parameter-free, adaptive clonal selection. In: 2004 Congress on evolutionary computation (CEC 2004), Portland, USA, pp 1052–1058
– reference: Sompayrac L (1999) How the immune system works. Blackwell, Cornwall
– reference: Watkins A, Timmis J (2004) Exploiting parallelism inherent in AIRS, an artificial immune classifier. In: Third international conference on artificial immune systems (ICARIS-2004), Catania, Italy, pp 427–438
– reference: Watkins A (2005) Exploiting immunological metaphors in the development of serial, parallel, and distributed learning algorithms. University of Kent, Canterbury
– reference: Ko AWY, Lau HYK, Lau TL (2005) General suppression control framework: application in selfbalancing robots. In: Fourth international conference on artificial immune systems (ICARIS-2005), Banff, Canada, pp 375–388
– reference: Greensmith J, Aickelin U, Cayzer S (2005) Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Fourth international conference on artificial immune systems (ICARIS-2005), Banff, Canada, pp 153–167
– reference: Ko AWY, Lau HYK, Lau TL (2004) An immuno control framework for decentralized mechatronic control. In: Third international conference on artificial immune systems (ICARIS-2004), Catania, Italy, pp 91–105
– reference: Vesterstrom J, Thomsen R (2004) A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: 2004 Congress on evolutionary computation (CEC 2004), Portland, USA
– reference: Burnet FM (1959) The clonal selection theory of acquired immunity. Cambridge University Press, Cambridge
– reference: VenterGSobieszczanski-SobieskiJA parallel particle swarm optimization algorithm accelerated by asynchronous evaluationsJ Aerosp Comput Inf Commun20063312313710.2514/1.17873
– reference: Brownlee J (2007) Optimization Algorithm Toolkit (optalgtoolkit) Version 1.4. In: Optimization Algorithm Toolkit (OAT). Available via Sourceforge.net. http://sourceforge.net/projects/optalgtoolkit. Accessed on 12 February 2008
– reference: DasguptaDAdvances in artificial immune systemsIEEE Comput Intell Mag200614049
– reference: Kim J, Bentley PJ (1999) The human immune system and network intrusion detection. In: Seventh European congress on intelligent techniques and soft computing (EUFIT’99), Aachen, Germany
– reference: MakKLLauPSKOrder pickings in an AS/RS with multiple I/O stations using an artificial immune system with aging antibodiesEng Lett200816122130
– reference: Liu P, Lau F, Lewis MJ, Wang C-L (2002) A new asynchronous parallel evolutionary algorithm for function optimization. In: Seventh international conference on parallel problem solving from nature, Granada, Spain, pp 401–410
– reference: JerneNKTowards a network theory of the immune systemAnnu Immunol1974125C373389
– reference: Timmis J, Knight T, de Castro LN, Hart E (2004) An overview of artificial immune systems. In: Paton R, Bolouri H, Holcombe M, Parish JH, Tateson R (eds) Computation in cells and tissues: perspectives and tools of thought. Springer, Heidelberg, pp 51–86
– reference: HartETimmisJApplication areas of AIS: the past, the present and the futureAppl Soft Comput2008819120110.1016/j.asoc.2006.12.004
– reference: Lau HYK, Wong VWK (2004) A strategic behavior-based intelligent transport system with artificial immune system. In: IEEE international conference on systems, man and cybernetics, 2004, Hague, The Netherlands, pp 3909–3914
– reference: de Castro LN, Von Zuben FJ (2002) An artificial immune network for multimodal function optimization on dynamic environments. In: 2002 congress on evolutionary computation (CEC 2002), Honolulu, USA, pp 289–296
– reference: CutelloVNicosiaGPaviaEA parallel immune algorithm for global optimizationAdv Soft Comput2006546747510.1007/3-540-33521-8_51
– reference: Kepner J (2001) MatlabMPI. In: Parallel programming with MatlabMPI. Available via Lincoln Laboratory, Massachusetts Institute of Technology. http://www.ll.mit.edu/MatlabMPI. Accessed on 1 April 2007
– reference: RandallMLewisAA parallel implementation of ant colony optimizationParallel Distrib Comput200262142114321063.6809510.1006/jpdc.2002.1854
– reference: Ko AWY, Lau HYK, Lau TL (2004) A general suppression framework for distributed control. In: Tenth IEEE international conference on methods and models in automation and robotics, Miedzyzdroje, Poland
– reference: Watkins A, Bi X, Phadke A (2003) Parallelizing an immune-inspired algorithm for efficient pattern recognition. intelligent engineering systems through artificial Neural Networks: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life 13: 225–230
– reference: Wang X, Gao XZ, Ovaska SJ (2004) Artificial immune optimization methods and applications—a survey. In: IEEE international conference on systems, man and cybernetics, 2004, Hague, The Netherlands, pp 3415–3420
– reference: Zhu C, Zhao B, Ye B, Yijia C (2005) An improved immune algorithm and its evaluation of optimization efficiency. In: International conference on natural computation (ICNC 2005), Changsha, China, pp 895–904
– reference: Cutello V, Nicosia G, Pavone M (2004) Exploring the capability of immune algorithms: a characterization of hypermutation operators. In: Third international conference on artificial immune systems (ICARIS-2004), Catania, Italy, pp 263–276
– reference: Kelsey J, Timmis J (2003) Immune inspired somatic contiguous hypermutation for function optimisation. In: Genetic and evolutionary computation conference (GECCO 2003), Chicago, USA, pp 207–218
– reference: de Castro LN (2001) Demo file for Matlab. In: Artificial immune systems. Available via Department of Computer Engineering and Industrial Automation, State University of Campinas. http://www.dca.fee.unicamp.br/~lnunes/immune.html. Accessed on 1 April 2007
– ident: 14_CR25
  doi: 10.1007/3-540-45712-7_39
– ident: 14_CR19
– ident: 14_CR10
  doi: 10.1007/11539117_126
– ident: 14_CR29
  doi: 10.1109/CEC.2002.1004472
– ident: 14_CR36
– volume: 16
  start-page: 122
  year: 2008
  ident: 14_CR22
  publication-title: Eng Lett
– ident: 14_CR13
– ident: 14_CR16
  doi: 10.1007/978-3-540-30220-9_34
– ident: 14_CR7
– volume: 8
  start-page: 191
  year: 2008
  ident: 14_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2006.12.004
– volume: 3
  start-page: 123
  issue: 3
  year: 2006
  ident: 14_CR26
  publication-title: J Aerosp Comput Inf Commun
  doi: 10.2514/1.17873
– ident: 14_CR33
– volume: 5
  start-page: 467
  year: 2006
  ident: 14_CR31
  publication-title: Adv Soft Comput
  doi: 10.1007/3-540-33521-8_51
– ident: 14_CR8
  doi: 10.1007/978-3-540-30220-9_22
– ident: 14_CR21
– ident: 14_CR2
  doi: 10.1007/978-3-662-06369-9_4
– ident: 14_CR17
  doi: 10.1007/11536444_12
– ident: 14_CR34
  doi: 10.1007/978-3-540-30220-9_8
– ident: 14_CR38
  doi: 10.1007/11536444_2
– ident: 14_CR15
  doi: 10.5962/bhl.title.8281
– ident: 14_CR18
– ident: 14_CR39
– ident: 14_CR37
– ident: 14_CR35
– ident: 14_CR12
– ident: 14_CR40
  doi: 10.1109/CEC.2004.1331139
– ident: 14_CR9
– volume: 125
  start-page: 373
  issue: C
  year: 1974
  ident: 14_CR14
  publication-title: Annu Immunol
– volume: 62
  start-page: 1421
  year: 2002
  ident: 14_CR24
  publication-title: Parallel Distrib Comput
  doi: 10.1006/jpdc.2002.1854
– volume: 1
  start-page: 40
  year: 2006
  ident: 14_CR4
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2006.329705
– volume: 6
  start-page: 239
  year: 2002
  ident: 14_CR6
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.1011539
– ident: 14_CR1
  doi: 10.1109/CEC.2003.1299565
– ident: 14_CR30
– ident: 14_CR32
– ident: 14_CR28
– ident: 14_CR3
  doi: 10.1109/ICSMC.2004.1400870
– ident: 14_CR20
  doi: 10.1109/CEC.2004.1330978
– ident: 14_CR23
  doi: 10.1007/3-540-45105-6_26
– volume: 33
  start-page: 357
  year: 2006
  ident: 14_CR27
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2006.09.002
– volume-title: Immunology at a Glance
  year: 2001
  ident: 14_CR11
SSID ssj0062074
Score 1.8179138
Snippet Immune optimization algorithms show good performance in obtaining optimal solutions especially in dealing with numeric optimization problems where such...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 171
SubjectTerms Applications of Mathematics
Artificial Intelligence
Bioinformatics
Control
Engineering
Mathematical and Computational Engineering
Mechatronics
Research Paper
Robotics
Statistical Physics and Dynamical Systems
Title A parallel immune optimization algorithm for numeric function optimization
URI https://link.springer.com/article/10.1007/s12065-008-0014-8
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: AFBBN
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1864-5917
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062074
  issn: 1864-5909
  databaseCode: U2A
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66XfTgj6k4f4wcPCmBNk2z5Fhkc0z05GCeStIkKsxO3Pb_-5o1bgMVPJa-FvqavO89Xr7vIXRlTSy1dY5wFyeE8UIQ1bWK0MSy2BmmpayIwg-PfDBiw3E6rnncs3DaPbQkfaRekd0owCXx7XrI64nYRs20UvOCRTyiWQi_nEZeejkWnJFURjK0Mn96xSYYbXZCPcD0D9BenRnibPkrD9GWLVtoP0xdwPUmbKHdNQnBIzTMcKXeDdX_BL9VXA-LpxAF3mt6JVaTlynU_6_vGLJTXC58gwZXaOZvr9seo1G_93Q7IPV8BFJQIeZEJfCtkZGKdzXX2igDBZU2JlIFXKSaMsOVEso5UQgeMZsmTCcASI6lFIySE9Qop6U9RVhBFSZcF5BLGUaN0lCGFcJJaRikWI61URQclRe1eHg1w2KSr2SPK9_mfqgl-DYXbXT9_cjHUjnjL-Ob4P283kSz363P_mV9jnZoELGNL1Bj_rmwl5BJzHUHNbO75_tex6-gL7HDwrg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMDAo4AoTw9MIEuJ47jOWCGqUtpOrdQtsmMbkPpAtP3_nN2YthIgMUa-WMolvu8-Xe47hO6MjjNlrCXcxglhvBBE1o0kNDEstpqpLHONwt0ebw1Ye5gOyz7uWfjbPZQkfaReNbtRgEviy_WQ1xOxjXacfpUTzB_QRgi_nEZeejkWnJE0i7JQyvxpi00w2qyEeoBpHqGDMjPEjeWrPEZbZlJFh2HqAi4PYRXtr0kInqB2Azv1bmD_I_zuej0MnkIUGJftlViOXqfA_9_GGLJTPFn4Ag12aOaX121P0aD51H9skXI-AimoEHMiE3jWSGeS1xVXSksNhEppHckCLlJFmeZSCmmtKASPmEkTphIAJMtSCkbJGapMphNzjrAEFiZsHZBLaka1VEDDCmGzTDNIsSyroSg4Ki9K8XA3w2KUr2SPnW9zP9QSfJuLGrr_vuVjqZzxl_FD8H5eHqLZ79YX_7K-RbutfreTd557L5dojwZB2_gKVeafC3MNWcVc3fiv6AvVfsQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46QfTBy1Sc1zz4pIS1aZolj0Mdc17wwcHeStIkOui6sXX_36RrnAMVfCw5DfQ0yXcOJ-f7ALjSKuRSG4OoCSNEaMqQaGmBcKRJaBSRnLtG4ecX2u2T3iAeVDqnM3_b3ZckFz0NjqUpL5oTZZrLxjdsoROVpXsb4yO2DjaI40mwC7qP2_4opjgoaZhDRgmKecB9WfOnKVaBabUqWoJNZw_sVFEibC9-6z5Y03kd7HoFBlhtyDrY_kYneAB6beiYvLNMZ3Do-j40HNsTYVS1WkKRvY-nw-JjBG2kCvN5WayBDtnK4e-2h6DfuX-77aJKKwGlmLECich-a6C4oC1JpVRC2eRKKhWI1D7EEhNFhWDCGJYyGhAdR0RGFpwMibE1io5ALR_n-hhAYTMyZloWxYQiWAlpU7KUGc4VseGWIQ0QeEclaUUk7vQssmRJgex8m5QCl9a3CWuA669XJgsWjb-Mb7z3k2pDzX63PvmX9SXYfL3rJE8PL4-nYAt7btvwDNSK6Vyf2wCjkBflIvoEZJ7ITA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+parallel+immune+optimization+algorithm+for+numeric+function+optimization&rft.jtitle=Evolutionary+intelligence&rft.au=Lau%2C+Henry+Y.+K.&rft.au=Tsang%2C+Wilburn+W.+P.&rft.date=2008-10-01&rft.pub=Springer-Verlag&rft.issn=1864-5909&rft.eissn=1864-5917&rft.volume=1&rft.issue=3&rft.spage=171&rft.epage=185&rft_id=info:doi/10.1007%2Fs12065-008-0014-8&rft.externalDocID=10_1007_s12065_008_0014_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5909&client=summon