Optimization of closing law of turbine guide vanes based on improved artificial ecosystem algorithm
Optimization of the closing law of the guide vane is the most economical and efficient way to reduce the risk incurred by pressure and speed excursions, thus guaranteeing the security of the hydro-turbine and the whole hydraulic network. In order to optimize the closing law of the guide vane of hydr...
Saved in:
| Published in | Journal of hydrodynamics. Series B Vol. 35; no. 3; pp. 582 - 593 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
Springer Nature Singapore
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1001-6058 1878-0342 |
| DOI | 10.1007/s42241-023-0034-y |
Cover
| Abstract | Optimization of the closing law of the guide vane is the most economical and efficient way to reduce the risk incurred by pressure and speed excursions, thus guaranteeing the security of the hydro-turbine and the whole hydraulic network. In order to optimize the closing law of the guide vane of hydraulic turbine, an improved artificial ecosystem optimization algorithm was proposed (IAEO). The reverse learning was used to initialize the population, multi-strategy bound handing schemes was used to improve the algorithm convergence speed. Twenty-three mathematical benchmark functions were used to test the IAEO. Results showed an improvement in the IAEO algorithm convergence speed and a stronger exploration than other algorithms. IAEO algorithm was used to optimize the closing law of the guide vane of hydraulic turbine based on the hydraulic transient calculation. The results showed that the maximum pressure in the spiral casing inlet, the minimum pressure in the draft tube inlet and the maximum speed all meet the design requirements by use of the closing law of the guide vane optimized by IAEO. Compared with other algorithms such as particle swarm optimization (PSO), artificial ecosystem-based optimization (AEO) and grey wolf optimizer (GWO), the closing law of the guide vane optimized by IAEO algorithm was proved to be of great advantages in distribution of safety margin of each optimization goal. |
|---|---|
| AbstractList | Optimization of the closing law of the guide vane is the most economical and efficient way to reduce the risk incurred by pressure and speed excursions, thus guaranteeing the security of the hydro-turbine and the whole hydraulic network. In order to optimize the closing law of the guide vane of hydraulic turbine, an improved artificial ecosystem optimization algorithm was proposed (IAEO). The reverse learning was used to initialize the population, multi-strategy bound handing schemes was used to improve the algorithm convergence speed. Twenty-three mathematical benchmark functions were used to test the IAEO. Results showed an improvement in the IAEO algorithm convergence speed and a stronger exploration than other algorithms. IAEO algorithm was used to optimize the closing law of the guide vane of hydraulic turbine based on the hydraulic transient calculation. The results showed that the maximum pressure in the spiral casing inlet, the minimum pressure in the draft tube inlet and the maximum speed all meet the design requirements by use of the closing law of the guide vane optimized by IAEO. Compared with other algorithms such as particle swarm optimization (PSO), artificial ecosystem-based optimization (AEO) and grey wolf optimizer (GWO), the closing law of the guide vane optimized by IAEO algorithm was proved to be of great advantages in distribution of safety margin of each optimization goal. |
| Author | Fan, Hong-gang Wang, Li-ying Zhang, Jia-jie |
| Author_xml | – sequence: 1 givenname: Li-ying surname: Wang fullname: Wang, Li-ying organization: College of Water Conservancy and Hydropower, Hebei University of Engineering, Hebei Key Laboratory of Smart Water Conservancy – sequence: 2 givenname: Jia-jie surname: Zhang fullname: Zhang, Jia-jie organization: College of Water Conservancy and Hydropower, Hebei University of Engineering, Hebei Key Laboratory of Smart Water Conservancy – sequence: 3 givenname: Hong-gang surname: Fan fullname: Fan, Hong-gang email: fanhg@tsinghua.edu.cn organization: State Key Laboratory of Hydroscience and Engineering, Department of Energy and Power Engineering, Tsinghua University |
| BookMark | eNp9kM1OAyEUhYmpiW31AdzxAigw04FZmsafJk260TWh_Iw0M9AArRmfXmpduejqnpuc7-aeMwMTH7wB4J7gB4Ixe0w1pTVBmFYI46pG4xWYEs44KgudFI0xQQ1e8BswS2lXPE2L6ylQm312g_uW2QUPg4WqD8n5Dvby67TmQ9w6b2B3cNrAo_Qmwa1MRsNid8M-hmPRMmZnnXKyh0aFNKZsBij7LkSXP4dbcG1ln8zd35yDj5fn9-UbWm9eV8unNVKU84w4o0xzuagkqzSjWmEribUWN62WrNWqNuVnyxcV07RWDZYNNtRS0-rW0qap5oCd76oYUorGCuXyb7AcpesFweLUlTh3JUpX4tSVGAtJ_pH76AYZx4sMPTOpeH1notiFQ_Ql4AXoB0JlgPk |
| CitedBy_id | crossref_primary_10_1007_s42241_024_0019_5 crossref_primary_10_2166_hydro_2024_285 |
| Cites_doi | 10.1016/j.renene.2019.02.016 10.1109/ACCESS.2021.3114435 10.2478/cait-2022-0041 10.1186/s40561-016-0036-0 10.1007/s42241-021-0101-1 10.1007/s00521-019-04452-x 10.1007/s42241-021-0087-8 10.1088/1757-899X/52/7/072004 10.1109/TEVC.2007.894200 10.1007/s11227-022-04754-3 10.3390/su142215419 10.1016/j.renene.2019.10.054 10.1007/s42241-022-0105-5 10.1007/s00500-020-05093-2 10.1016/j.rser.2015.12.312 10.1016/j.asoc.2018.11.039 10.1109/TSMC.2020.3030792 10.3390/en10070911 10.1016/j.cogsys.2018.07.022 10.3390/en13041000 10.1002/jnm.2829 |
| ContentType | Journal Article |
| Copyright | China Ship Scientific Research Center 2023 |
| Copyright_xml | – notice: China Ship Scientific Research Center 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s42241-023-0034-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1878-0342 |
| EndPage | 593 |
| ExternalDocumentID | 10_1007_s42241_023_0034_y |
| GroupedDBID | --K --M -01 -0A -EM -SA -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2C0 4.4 406 457 4G. 5GY 5VR 5VS 5XA 5XB 7-5 71M 8P~ 92H 92I 92M 9D9 9DA AABNK AACDK AACTN AAEDT AAEDW AAHNG AAIAL AAIKJ AAJBT AAKOC AALRI AAOAW AAQFI AASML AATNV AAUYE AAXDM AAXKI AAXUO ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMAC ABMQK ABTEG ABTKH ABWVN ABXDB ABXPI ACAOD ACDAQ ACDTI ACGFS ACHSB ACMLO ACNNM ACOKC ACPIV ACRLP ACRPL ACZOJ ADEZE ADHHG ADKNI ADMLS ADMUD ADNMO ADRFC ADTZH ADURQ ADYFF AEBSH AECPX AEFQL AEIPS AEJRE AEKER AEMSY AENEX AEPYU AESKC AFBBN AFKWA AFQWF AFUIB AGDGC AGHFR AGJBK AGMZJ AGQEE AGRTI AGUBO AGYEJ AHJVU AIAKS AIEXJ AIGIU AIKHN AILAN AITGF AITUG AJOXV AJZVZ AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMKLP AMRAJ AMXSW AMYLF ANKPU AXJTR AXYYD BGNMA BKOJK BLXMC CAJEA CCEZO CCVFK CHBEP CS3 CW9 DPUIP DU5 EBLON EBS EFJIC EJD EO9 EP2 EP3 FA0 FDB FEDTE FIGPU FINBP FIRID FNLPD FNPLU FSGXE FYGXN GBLVA GGCAI GJIRD HVGLF HZ~ IHE IKXTQ IWAJR J-C J1W JJJVA JUIAU JZLTJ KOM KOV LLZTM M41 M4Y MO0 N9A NPVJJ NQJWS NU0 O9- OAUVE OZT P-8 P-9 PC. PT4 Q-- Q-0 Q38 R-A REI RIG RLLFE ROL RPZ RSV RT1 S.. SDC SDF SDG SES SJYHP SNE SNPRN SOHCF SOJ SPC SRMVM SSLCW SST SSZ STPWE T5K T8Q TCJ TGT TSG U1F U1G U5A U5K UOJIU UTJUX VEKWB VFIZW ZMTXR ~LB AATTM AAYWO AAYXX ABBRH ABDBE ABFSG ABRTQ ACLOT ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIIUN AIXLP AKBMS AKYEP ATHPR AYFIA CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c288t-8727d8a53a73d72dc0fa1fff069da79dc4e690f8537d24c60a60e2f2e9d9f2663 |
| ISSN | 1001-6058 |
| IngestDate | Wed Oct 01 03:08:20 EDT 2025 Thu Apr 24 23:07:46 EDT 2025 Fri Feb 21 02:43:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | optimization calculation the closing law of guide vane Hydraulic transient process improved artificial ecosystem-based optimization (IAEO) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c288t-8727d8a53a73d72dc0fa1fff069da79dc4e690f8537d24c60a60e2f2e9d9f2663 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1007_s42241_023_0034_y crossref_primary_10_1007_s42241_023_0034_y springer_journals_10_1007_s42241_023_0034_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20230600 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 6 year: 2023 text: 20230600 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Journal of hydrodynamics. Series B |
| PublicationTitleAbbrev | J Hydrodyn |
| PublicationYear | 2023 |
| Publisher | Springer Nature Singapore |
| Publisher_xml | – name: Springer Nature Singapore |
| References | Rahnamayan, Tizhoosh, Salama (CR16) 2008; 12 Lai, Li, Zhou (CR12) 2019; 139 Wang, Zhao, Tian (CR20) 2018; 52 Rezghi, Riasi, Tazraei (CR11) 2020; 148 Giannakos, Krogstie, Aalberg (CR13) 2016; 3 Ji, Wang, Zhou (CR25) 2022; 14 Yu, Zhao, Lin (CR24) 2023; 79 Chaudhry (CR4) 2013 Fu, Li, Wang (CR2) 2021; 33 Yin, Zeng, Yang (CR3) 2021; 33 Jordehi (CR17) 2020; 24 Zhou, Xu, Zheng (CR9) 2017; 10 Zuo, Fan, Liu (CR1) 2016; 60 Guo, Yang, Chen (CR6) 2016; 49 Cui, Fan, Chen (CR7) 2013; 15 Liu, Tian, Lei (CR21) 2019; 75 Wu, Xu, Gao (CR8) 2022; 52 Zhao, Wang, Zhang (CR14) 2019; 32 Yao, Bi, Huang (CR5) 2013; 52 Lin, Wang, Zhang (CR18) 2020; 34 Wylie, Streeter, Suo (CR15) 1993 Zhang, Liu, Wu (CR22) 2021; 33 Li, Wang, Jiang (CR19) 2021; 9 Tinnathi, Sudhavani (CR23) 2022; 22 Ye, Zhen, Zhao (CR10) 2020; 13 X Yu (34_CR24) 2023; 79 N Li (34_CR19) 2021; 9 X L Fu (34_CR2) 2021; 33 E B Wylie (34_CR15) 1993 W Zhao (34_CR14) 2019; 32 W Guo (34_CR6) 2016; 49 C C Yin (34_CR3) 2021; 33 G Zhang (34_CR22) 2021; 33 S Rahnamayan (34_CR16) 2008; 12 A Rezghi (34_CR11) 2020; 148 X Lai (34_CR12) 2019; 139 X Liu (34_CR21) 2019; 75 P Lin (34_CR18) 2020; 34 J Zhou (34_CR9) 2017; 10 H Cui (34_CR7) 2013; 15 J Ye (34_CR10) 2020; 13 M H Chaudhry (34_CR4) 2013 J Ji (34_CR25) 2022; 14 Z Zuo (34_CR1) 2016; 60 S Tinnathi (34_CR23) 2022; 22 Z Yao (34_CR5) 2013; 52 A R Jordehi (34_CR17) 2020; 24 D Wu (34_CR8) 2022; 52 L Wang (34_CR20) 2018; 52 M N Giannakos (34_CR13) 2016; 3 |
| References_xml | – volume: 139 start-page: 302 year: 2019 end-page: 312 ident: CR12 article-title: Multi-objective optimization of the closure law of guide vanes for pumped storage units [J] publication-title: Renewable Energy doi: 10.1016/j.renene.2019.02.016 – volume: 9 start-page: 131789 year: 2021 end-page: 131805 ident: CR19 article-title: An improved genetic transmission and dynam-ic-opposite learning strategy for multitasking optimization [J] publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2021.3114435 – volume: 22 start-page: 91 issue: 4 year: 2022 end-page: 110 ident: CR23 article-title: Copy-move forgery detection using superpixel clustering algorithm and enhanced GWO based AlexNet model [J] publication-title: Cybernetics and Information Technologies doi: 10.2478/cait-2022-0041 – volume: 3 start-page: 11 issue: 1 year: 2016 end-page: 24 ident: CR13 article-title: Video-based learning ecosystem to support active learning: application to an introductory computer science course [J] publication-title: Smart Learning Environments doi: 10.1186/s40561-016-0036-0 – volume: 33 start-page: 1303 issue: 6 year: 2021 end-page: 1315 ident: CR22 article-title: Identification of pollution sources in river based on particle swarm optimization [J] publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-021-0101-1 – volume: 32 start-page: 9383 issue: 13 year: 2019 end-page: 9425 ident: CR14 article-title: Artificial ecosystem-based optimization: A novel nature-inspired meta-heuristic algorithm [J] publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04452-x – volume: 15 start-page: 052005 year: 2013 ident: CR7 article-title: Optimization of wicket-gate closing law considering different cases [J] publication-title: IOP Conference Series: Earth and Environmental Science – volume: 33 start-page: 979 issue: 5 year: 2021 end-page: 991 ident: CR3 article-title: Transient simulation and analysis of the simultaneous load rejection process in pumped storage power stations using a 1-D-3-D coupling method [J] publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-021-0087-8 – volume: 52 start-page: 072004 year: 2013 ident: CR5 article-title: Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process [J] publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/52/7/072004 – year: 1993 ident: CR15 publication-title: Fluid transients in system [M] – volume: 12 start-page: 64 issue: 1 year: 2008 end-page: 79 ident: CR16 article-title: Opposition-based differential evolution [J] publication-title: IEEE Transactions Evolutionary Computation doi: 10.1109/TEVC.2007.894200 – volume: 79 start-page: 2691 issue: 3 year: 2023 end-page: 2739 ident: CR24 article-title: A grey wolf optimizer-based chaotic gravitational search algorithm for global optimization [J] publication-title: Journal of Supercomput doi: 10.1007/s11227-022-04754-3 – volume: 14 start-page: 15419 issue: 22 year: 2022 ident: CR25 article-title: Evaluation study on a novel structure CCHP system with a new comprehensive index using improved ALO algorithm [J] publication-title: Sustainability doi: 10.3390/su142215419 – volume: 49 start-page: 052016 year: 2016 ident: CR6 article-title: Simulation of the transient processes of load rejection under different accident conditions in a hydroelectric generating set [J] publication-title: IOP Conference Series: Earth and Environmental Science – volume: 148 start-page: 478 year: 2020 end-page: 491 ident: CR11 article-title: Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position [J] publication-title: Renewable Energy doi: 10.1016/j.renene.2019.10.054 – volume: 33 start-page: 1162 issue: 6 year: 2021 end-page: 1175 ident: CR2 article-title: Hydraulic fluctuations during the pump power-off runaway transient process of a pump turbine with consideration of cavitation effects [J] publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-022-0105-5 – volume: 24 start-page: 18573 issue: 24 year: 2020 end-page: 18590 ident: CR17 article-title: Particle swarm optimisation with opposition learning-based strategy: An efficient optimisation algorithm for day-ahead scheduling and reconfiguration in active distribution systems [J] publication-title: Soft Computing doi: 10.1007/s00500-020-05093-2 – volume: 34 start-page: e2829 issue: 2 year: 2020 ident: CR18 article-title: An improved cuckoo search with reverse learning and invasive weed operators for suppressing sidelobe level of antenna arrays [J] publication-title: International Journal of Numerical Modelling: Electronic Networks – volume: 60 start-page: 836 year: 2016 end-page: 851 ident: CR1 article-title: S-shaped characteristics on the performance curves of pump-turbines in turbine mode–A review [J] publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.12.312 – volume: 75 start-page: 476 year: 2019 end-page: 493 ident: CR21 article-title: An improved self-adaptive grey wolf optimizer for the daily optimal operation of cascade pumping stations [J] publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.039 – volume: 52 start-page: 1578 issue: 3 year: 2022 end-page: 1587 ident: CR8 article-title: An enhanced MSIQDE Algorithm with novel multiple strategies for global optimization problems [J] publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Systems doi: 10.1109/TSMC.2020.3030792 – volume: 10 start-page: 911 issue: 7 year: 2017 end-page: 934 ident: CR9 article-title: Optimization of guide vane closing schemes of pumped storage hydro unit using an enhanced multi-objective gravitational search algorithm [J] publication-title: Energies doi: 10.3390/en10070911 – volume: 52 start-page: 301 year: 2018 end-page: 311 ident: CR20 article-title: A bare bones bacterial foraging optimization algorithm [J] publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.07.022 – year: 2013 ident: CR4 publication-title: Applied hydraulic transients [M] – volume: 13 start-page: 1000 issue: 4 year: 2020 end-page: 1018 ident: CR10 article-title: Optimization of pump turbine closing operation to minimize water hammer and pulsating pressures during load rejection [J] publication-title: Energies doi: 10.3390/en13041000 – volume: 24 start-page: 18573 issue: 24 year: 2020 ident: 34_CR17 publication-title: Soft Computing doi: 10.1007/s00500-020-05093-2 – volume: 9 start-page: 131789 year: 2021 ident: 34_CR19 publication-title: IEEE ACCESS doi: 10.1109/ACCESS.2021.3114435 – volume: 22 start-page: 91 issue: 4 year: 2022 ident: 34_CR23 publication-title: Cybernetics and Information Technologies doi: 10.2478/cait-2022-0041 – volume: 33 start-page: 979 issue: 5 year: 2021 ident: 34_CR3 publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-021-0087-8 – volume: 13 start-page: 1000 issue: 4 year: 2020 ident: 34_CR10 publication-title: Energies doi: 10.3390/en13041000 – volume: 14 start-page: 15419 issue: 22 year: 2022 ident: 34_CR25 publication-title: Sustainability doi: 10.3390/su142215419 – volume: 33 start-page: 1162 issue: 6 year: 2021 ident: 34_CR2 publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-022-0105-5 – volume: 15 start-page: 052005 year: 2013 ident: 34_CR7 publication-title: IOP Conference Series: Earth and Environmental Science – volume: 49 start-page: 052016 year: 2016 ident: 34_CR6 publication-title: IOP Conference Series: Earth and Environmental Science – volume: 3 start-page: 11 issue: 1 year: 2016 ident: 34_CR13 publication-title: Smart Learning Environments doi: 10.1186/s40561-016-0036-0 – volume: 60 start-page: 836 year: 2016 ident: 34_CR1 publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.12.312 – volume: 75 start-page: 476 year: 2019 ident: 34_CR21 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.11.039 – volume: 139 start-page: 302 year: 2019 ident: 34_CR12 publication-title: Renewable Energy doi: 10.1016/j.renene.2019.02.016 – volume: 10 start-page: 911 issue: 7 year: 2017 ident: 34_CR9 publication-title: Energies doi: 10.3390/en10070911 – volume: 33 start-page: 1303 issue: 6 year: 2021 ident: 34_CR22 publication-title: Journal of Hydrodynamics doi: 10.1007/s42241-021-0101-1 – volume: 52 start-page: 072004 year: 2013 ident: 34_CR5 publication-title: IOP Conference Series: Materials Science and Engineering doi: 10.1088/1757-899X/52/7/072004 – volume: 52 start-page: 1578 issue: 3 year: 2022 ident: 34_CR8 publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Systems doi: 10.1109/TSMC.2020.3030792 – volume: 148 start-page: 478 year: 2020 ident: 34_CR11 publication-title: Renewable Energy doi: 10.1016/j.renene.2019.10.054 – volume: 79 start-page: 2691 issue: 3 year: 2023 ident: 34_CR24 publication-title: Journal of Supercomput doi: 10.1007/s11227-022-04754-3 – volume: 12 start-page: 64 issue: 1 year: 2008 ident: 34_CR16 publication-title: IEEE Transactions Evolutionary Computation doi: 10.1109/TEVC.2007.894200 – volume: 34 start-page: e2829 issue: 2 year: 2020 ident: 34_CR18 publication-title: International Journal of Numerical Modelling: Electronic Networks doi: 10.1002/jnm.2829 – volume: 32 start-page: 9383 issue: 13 year: 2019 ident: 34_CR14 publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04452-x – volume-title: Fluid transients in system [M] year: 1993 ident: 34_CR15 – volume: 52 start-page: 301 year: 2018 ident: 34_CR20 publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.07.022 – volume-title: Applied hydraulic transients [M] year: 2013 ident: 34_CR4 |
| SSID | ssj0036904 ssib060475366 |
| Score | 2.3126497 |
| Snippet | Optimization of the closing law of the guide vane is the most economical and efficient way to reduce the risk incurred by pressure and speed excursions, thus... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 582 |
| SubjectTerms | Engineering Engineering Fluid Dynamics Hydrology/Water Resources Numerical and Computational Physics Simulation |
| Title | Optimization of closing law of turbine guide vanes based on improved artificial ecosystem algorithm |
| URI | https://link.springer.com/article/10.1007/s42241-023-0034-y |
| Volume | 35 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1878-0342 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: ADMLS dateStart: 20060201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: .~1 dateStart: 0 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-0342 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AKRWK dateStart: 20060401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1878-0342 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036904 issn: 1001-6058 databaseCode: AFBBN dateStart: 20060201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JbxMxFLZCeoEDYhVlkw-ciFzNeDyLjxWiiloWCVq1t5HjJZ0qzaBmcgg_g1_M8zJLgCDKZTSx3iyZ99lv8VsQesNEnsvIxITnUUpYoTnhnEoSJVxqJrnW1OY7f_yUTc_Y8UV6MRr9GEQtrZvZgfz-x7yS_-EqjAFfbZbsLTjb3RQG4Bz4C0fgMBz_icefYb5fh0RKFx--qJ3pvxAuGQWkycwqkfN1pbRt0KtXEyu1lN0hqJw3Ac7tfUMZCTBFfWXniVjM65uqubzeobxebhSsvL6b_erArjhgcfcdnM-DF_pDRTatbBx6p48rQa6qDlNH3gs7rZdzMheBPrgiaNKHTG25Im2ctd39-GqbeoMVoQfrq43gsjuxXvz4scIW-U3Y1qLsa5gE8CWDFTb1vYqCsE59e8Xf5IAP_Vgxq6AQ96bwALLphV4XitiVbXa0JdDacqms3NxBexQkRTRGe4cnX85PWvmeZNw1pez-SrtXbhMyf33gtrazvdXuNJjTB-h-4B4-9Dh6iEZ6-QjdGxSkfIzkEFG4NjggCgOi7M-AKOwQhR2isEMUBvIWUbhHFO4QhTtEPUFnR-9P301JaMNBJC2KBuQlzVUh0kTkicqpgqktYmNMlHElcq4k0_BJDOh9uaJMZpHIIk0N1VxxA_pf8hSNl_VSP0OYGUZjHQvDtGSJyQuZwIVgQ3OhZiKL91HUfq5Shhr1tlXKotzJpn30trvkmy_Q8jfiScuDMszj1W7q57eifoHu9nPiJRo3N2v9ChTWZvY6IOgnMI2WoQ |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+closing+law+of+turbine+guide+vanes+based+on+improved+artificial+ecosystem+algorithm&rft.jtitle=Journal+of+hydrodynamics.+Series+B&rft.au=Wang%2C+Li-ying&rft.au=Zhang%2C+Jia-jie&rft.au=Fan%2C+Hong-gang&rft.date=2023-06-01&rft.pub=Springer+Nature+Singapore&rft.issn=1001-6058&rft.eissn=1878-0342&rft.volume=35&rft.issue=3&rft.spage=582&rft.epage=593&rft_id=info:doi/10.1007%2Fs42241-023-0034-y&rft.externalDocID=10_1007_s42241_023_0034_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-6058&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-6058&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-6058&client=summon |