A note on quadratic convergence of a smoothing Newton algorithm for the LCP

The linear complementarity problem (LCP) is to find such that ( x , s ) ≥ 0, s  =  Mx  +  q , x T s  = 0 with and . The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algori...

Full description

Saved in:
Bibliographic Details
Published inOptimization letters Vol. 7; no. 3; pp. 519 - 531
Main Authors Ni, Tie, Hu, Sheng-Long
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.03.2013
Subjects
Online AccessGet full text
ISSN1862-4472
1862-4480
DOI10.1007/s11590-011-0436-6

Cover

Abstract The linear complementarity problem (LCP) is to find such that ( x , s ) ≥ 0, s  =  Mx  +  q , x T s  = 0 with and . The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algorithm for the LCP up to now were obtained by Huang et al. (Math Program 99:423–441, 2004 ). In this note, by using a revised Chen–Harker–Kanzow–Smale smoothing function, we propose a variation of Huang–Qi–Sun’s algorithm and show that the algorithm possesses better local convergence properties than those given in Huang et al. (Math Program 99:423–441, 2004 ).
AbstractList The linear complementarity problem (LCP) is to find such that ( x , s ) ≥ 0, s  =  Mx  +  q , x T s  = 0 with and . The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algorithm for the LCP up to now were obtained by Huang et al. (Math Program 99:423–441, 2004 ). In this note, by using a revised Chen–Harker–Kanzow–Smale smoothing function, we propose a variation of Huang–Qi–Sun’s algorithm and show that the algorithm possesses better local convergence properties than those given in Huang et al. (Math Program 99:423–441, 2004 ).
Author Hu, Sheng-Long
Ni, Tie
Author_xml – sequence: 1
  givenname: Tie
  surname: Ni
  fullname: Ni, Tie
  organization: College of Business Administration, Liaoning Technical University
– sequence: 2
  givenname: Sheng-Long
  surname: Hu
  fullname: Hu, Sheng-Long
  email: shenglonghu@yahoo.com.cn
  organization: Department of Mathematics, School of Science, Tianjin University, Department of Applied Mathematics, The Hong Kong Polytechnic University
BookMark eNp9kM9OwzAMhyM0JLbBA3DLCxTsNkub4zTxT0zAAc5RmiZdpy2BJAPx9mQa4sBhJ1vy77Psb0JGzjtDyCXCFQLU1xFxJqAAxAJYxQt-QsbY8LJgrIHRX1-XZ2QS4xqAIwoxJo9z6nwy1Dv6sVNdUGnQVHv3aUJvnM4DSxWNW-_TanA9fTJfKWfVpvdhSKsttT7QtDJ0uXg5J6dWbaK5-K1T8nZ787q4L5bPdw-L-bLQZdOkgjPFtRG10i0w1J2wbQUlA2ta3XHkSglRYWNVCxZqgZy1M2bbTqiOQ2ewmpL6sFcHH2MwVuoh5cO9S0ENG4kg907kwYnMTuTeieSZxH_kexi2KnwfZcoDE3PW9SbItd8Flx88Av0A5J52SA
CitedBy_id crossref_primary_10_1007_s00373_013_1340_x
Cites_doi 10.1007/s00245-005-0827-0
10.1007/s001860400384
10.1007/s002459900128
10.3934/jimo.2007.3.671
10.1016/0024-3795(91)90267-Z
10.1137/0909022
10.1137/0614069
10.1090/S0025-5718-99-01082-0
10.1007/BF01581275
10.1007/s10107-003-0457-8
10.1080/10556780902769862
10.1007/s101079900127
ContentType Journal Article
Copyright Springer-Verlag 2011
Copyright_xml – notice: Springer-Verlag 2011
DBID AAYXX
CITATION
DOI 10.1007/s11590-011-0436-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1862-4480
EndPage 531
ExternalDocumentID 10_1007_s11590_011_0436_6
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
203
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9M
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7Y
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-64a6ce97acb041cd9fb30240febcd616aa99318fab0f079164b54fbd9ad60de13
IEDL.DBID U2A
ISSN 1862-4472
IngestDate Wed Oct 01 02:11:57 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 21 02:42:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Smoothing Newton algorithm
Quadratic convergence
Linear complementarity problem
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-64a6ce97acb041cd9fb30240febcd616aa99318fab0f079164b54fbd9ad60de13
PageCount 13
ParticipantIDs crossref_citationtrail_10_1007_s11590_011_0436_6
crossref_primary_10_1007_s11590_011_0436_6
springer_journals_10_1007_s11590_011_0436_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130300
2013-3-00
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 3
  year: 2013
  text: 20130300
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Optimization letters
PublicationTitleAbbrev Optim Lett
PublicationYear 2013
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
References HuS.L.HuangZ.H.WangP.A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problemsOptim. Methods Softw.200924344746025331011173.9055210.1080/10556780902769862
ClarkeF.H.Optimization and Nonsmooth Analysis1983New YorkWiley0582.49001
PardalosP.M.YeY.Class of linear complementarity problems solvable in polynomial timeLinear Algebra Appl.199115231711075420742.6505410.1016/0024-3795(91)90267-Z
PardalosP.M.YeY.HanC.-G.KalinskiJ.Solution of P-matrix linear complementarity problems using a potential reduction algorithmSIAM J. Matrix Anal. Appl.1993141048106012389190788.6507210.1137/0614069
QiL.SunD.ZhouG.A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problemsMath. Program.20008713517346570989.90124
HuangZ.H.SunJ.A non-interior continuation algorithm for the P0 or P* LCP with strong global and local convergence propertiesAppl. Math. Optim.20055223726221572021112.9008310.1007/s00245-005-0827-0
PardalosP.M.RosenJ.B.Global optimization approach to the linear complementarity problemSIAM J. Sci. Stat. Comput.1988934135393005010.1137/0909022
HuangZ.H.XuS.W.Convergence properties of a non-interior-point smoothing algorithm for the P* NCPJ. Ind. Manag. Optim.2007356958423439831166.9037010.3934/jimo.2007.3.671
QiL.SunD.Improving the convergence of non-interior point algorithm for nonlinear complementarity problemsMath. Comput.20006928330416427660947.90117
HuangZ.H.QiL.SunD.Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and monotone LCPMath. Program.20049942344120517051168.9064610.1007/s10107-003-0457-8
SunD.A regularization Newton method for solving nonlinear complementarity problemsAppl. Math. Optim.19993631533910.1007/s002459900128
ZhaoY.B.LiD.A globally and locally superlinearly convergent non-interior-point algorithm for P0 LCPsSIAM J. Optim.2003131196122110.1137/S1052623401384151
QiL.SunJ.A nonsmooth version of Newtons methodMath. Program.19935835336712167910780.9009010.1007/BF01581275
HuangZ.H.Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithmsMath. Methods Oper. Res.200561415521204001066.9012710.1007/s001860400384
Z.H. Huang (436_CR6) 2007; 3
S.L. Hu (436_CR2) 2009; 24
F.H. Clarke (436_CR1) 1983
Z.H. Huang (436_CR3) 2005; 61
P.M. Pardalos (436_CR7) 1988; 9
P.M. Pardalos (436_CR8) 1991; 152
Z.H. Huang (436_CR4) 2004; 99
L. Qi (436_CR10) 1993; 58
D. Sun (436_CR13) 1999; 36
Y.B. Zhao (436_CR14) 2003; 13
P.M. Pardalos (436_CR9) 1993; 14
Z.H. Huang (436_CR5) 2005; 52
L. Qi (436_CR11) 2000; 69
L. Qi (436_CR12) 2000; 87
References_xml – reference: HuangZ.H.XuS.W.Convergence properties of a non-interior-point smoothing algorithm for the P* NCPJ. Ind. Manag. Optim.2007356958423439831166.9037010.3934/jimo.2007.3.671
– reference: QiL.SunD.Improving the convergence of non-interior point algorithm for nonlinear complementarity problemsMath. Comput.20006928330416427660947.90117
– reference: ClarkeF.H.Optimization and Nonsmooth Analysis1983New YorkWiley0582.49001
– reference: ZhaoY.B.LiD.A globally and locally superlinearly convergent non-interior-point algorithm for P0 LCPsSIAM J. Optim.2003131196122110.1137/S1052623401384151
– reference: HuS.L.HuangZ.H.WangP.A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problemsOptim. Methods Softw.200924344746025331011173.9055210.1080/10556780902769862
– reference: QiL.SunJ.A nonsmooth version of Newtons methodMath. Program.19935835336712167910780.9009010.1007/BF01581275
– reference: PardalosP.M.RosenJ.B.Global optimization approach to the linear complementarity problemSIAM J. Sci. Stat. Comput.1988934135393005010.1137/0909022
– reference: QiL.SunD.ZhouG.A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problemsMath. Program.20008713517346570989.90124
– reference: PardalosP.M.YeY.Class of linear complementarity problems solvable in polynomial timeLinear Algebra Appl.199115231711075420742.6505410.1016/0024-3795(91)90267-Z
– reference: HuangZ.H.QiL.SunD.Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and monotone LCPMath. Program.20049942344120517051168.9064610.1007/s10107-003-0457-8
– reference: SunD.A regularization Newton method for solving nonlinear complementarity problemsAppl. Math. Optim.19993631533910.1007/s002459900128
– reference: HuangZ.H.SunJ.A non-interior continuation algorithm for the P0 or P* LCP with strong global and local convergence propertiesAppl. Math. Optim.20055223726221572021112.9008310.1007/s00245-005-0827-0
– reference: HuangZ.H.Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithmsMath. Methods Oper. Res.200561415521204001066.9012710.1007/s001860400384
– reference: PardalosP.M.YeY.HanC.-G.KalinskiJ.Solution of P-matrix linear complementarity problems using a potential reduction algorithmSIAM J. Matrix Anal. Appl.1993141048106012389190788.6507210.1137/0614069
– volume: 52
  start-page: 237
  year: 2005
  ident: 436_CR5
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s00245-005-0827-0
– volume: 61
  start-page: 41
  year: 2005
  ident: 436_CR3
  publication-title: Math. Methods Oper. Res.
  doi: 10.1007/s001860400384
– volume: 36
  start-page: 315
  year: 1999
  ident: 436_CR13
  publication-title: Appl. Math. Optim.
  doi: 10.1007/s002459900128
– volume: 3
  start-page: 569
  year: 2007
  ident: 436_CR6
  publication-title: J. Ind. Manag. Optim.
  doi: 10.3934/jimo.2007.3.671
– volume: 152
  start-page: 3
  year: 1991
  ident: 436_CR8
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(91)90267-Z
– volume: 9
  start-page: 341
  year: 1988
  ident: 436_CR7
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0909022
– volume: 14
  start-page: 1048
  year: 1993
  ident: 436_CR9
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0614069
– volume-title: Optimization and Nonsmooth Analysis
  year: 1983
  ident: 436_CR1
– volume: 69
  start-page: 283
  year: 2000
  ident: 436_CR11
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-99-01082-0
– volume: 58
  start-page: 353
  year: 1993
  ident: 436_CR10
  publication-title: Math. Program.
  doi: 10.1007/BF01581275
– volume: 13
  start-page: 1196
  year: 2003
  ident: 436_CR14
  publication-title: SIAM J. Optim.
– volume: 99
  start-page: 423
  year: 2004
  ident: 436_CR4
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0457-8
– volume: 24
  start-page: 447
  issue: 3
  year: 2009
  ident: 436_CR2
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780902769862
– volume: 87
  start-page: 1
  year: 2000
  ident: 436_CR12
  publication-title: Math. Program.
  doi: 10.1007/s101079900127
SSID ssj0061199
Score 1.9109226
Snippet The linear complementarity problem (LCP) is to find such that ( x , s ) ≥ 0, s  =  Mx  +  q , x T s  = 0 with and . The smoothing Newton algorithm is one of...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 519
SubjectTerms Computational Intelligence
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Operations Research/Decision Theory
Optimization
Original Paper
Simulation
Title A note on quadratic convergence of a smoothing Newton algorithm for the LCP
URI https://link.springer.com/article/10.1007/s11590-011-0436-6
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: AFBBN
  dateStart: 20070101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1862-4480
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061199
  issn: 1862-4472
  databaseCode: U2A
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGJ9lD14UgJ5bDabY1pai7XFg4V6CvvIqtAm2qT_39k0aS2o4CmEzM5hZjMPZuYbhG4CorkItbbMriKLMCpNEwCzfOGTxBaCesrMDo_GdDAhD1N_Ws1x53W3e12SLC31ZtgNPK9pooL0l3jUoruo6Rs0L7jEEzeqzS91VksjHWbGgUjg1qXMn1hsO6PtSmjpYPqH6KCKDHG0UuUR2knSY7T_DS8Q3kZrkNX8BA0jnGZFgrMUfy65MqqUuOwiLwcq4YPGHOfzDJQBxzHYMwj0MJ-9Zov34m2OIV7FwA8_dp9O0aTfe-4OrGo3giVdxgqLEk5lEgZcCps4UoVaeAauTCdCKupQziHwcBgowtZ2ADEgAeFroUKuqK0SxztDjTRLk3OEIQmmrqaKCTckkKEwlzMBPLgjfaIobyG7FlIsK-Bws79iFm8gj41cY5BrbOQa0xa6XR_5WKFm_EV8V0s-rn6g_Hfqi39RX6I9t9xfYZrGrlCjWCyTa4giCtFGzajf6YzN8_5l2GuXt-gLGRrAPA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojxzIETqFMfWZYep2kw2IY4DAlOVR4NIEYLrLvw63G6djwESByrOlFkJ37I9meAoyY1QobGOHZWkUM5U7YIgDsN2aCxKyULtO0dHlyy7jW9uGncFH3c47LavUxJ5pr6o9kNLa8tosLwlwbMYfNQpRif-BWots5ue51SATNvOjbS47YhiDb9Mpn50yZfzdHXXGhuYk5XYFgeblpZ8lifZLKu3r7hNv7z9KuwXLicpDW9I2swFyfrsPQJiBC_BjP01vEG9FokSbOYpAl5mQht74gieXl63qmJPwwRZPyUopRxOUFFiR4kEaO79PUhu38i6AgT3I_021ebcH3aGba7TjF0wVE-55nDqGAqDptCSZd6SodGBhYHzcRSaeYxIdCj8ThK2DVuE51LilI1UodCM1fHXrAFlSRN4m0gGF0z3zDNpR9SDH24L7jEPYSnGlQzUQO35H2kCkRyOxhjFH1gKVuuRci1yHItYjU4ni15nsJx_EV8UsoiKl7m-HfqnX9RH8JCdzjoR_3zy94uLPr5kAxbmbYHlex1Eu-jq5LJg-JqvgOkzNzU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYzxw4gaq1XZqmx2kwDfbQDkzarcqjAaStHWv3_3H62JgESByrJj7YSfxZtj8jdOcTzUWgtWVmFVmEUWmKAJjlCY9EthC0qUzv8GBIu2PyMvEm5ZzTtKp2r1KSRU-DYWmKs8Zc6ca68Q28sCmoglCYNKlFt9EOMTwJcKDHbqt6iqlTDJB0mGkNIr5bpTV_ErHpmDazormz6RyigxIl4lZh1iO0FcXHaP8bdyB8DVaEq-kJ6rVwnGQRTmL8ueTKmFXivKI8b66EHxpznM4SMAxsx_C2AejDfPqWLD6y9xkG7IpBHu63R6do3Hl6bXetck6CJV3GMosSTmUU-FwKmzhSBVo0DXWZjoRU1KGcAwhxGBjF1rYPeJCAIbRQAVfUVpHTPEO1OImjc4QhIKaupooJNyAQrTCXMwEyuCM9oiivI7tSUihLEnEzy2IarumPjV5D0Gto9BrSOrpfbZkXDBp_LX6oNB-Wlyn9ffXFv1bfot3RYyfsPw97l2jPzcdamFqyK1TLFsvoGsBFJm7yA_QFrHfEVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+quadratic+convergence+of+a+smoothing+Newton+algorithm+for+the+LCP&rft.jtitle=Optimization+letters&rft.au=Ni%2C+Tie&rft.au=Hu%2C+Sheng-Long&rft.date=2013-03-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=7&rft.issue=3&rft.spage=519&rft.epage=531&rft_id=info:doi/10.1007%2Fs11590-011-0436-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_011_0436_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon