A note on quadratic convergence of a smoothing Newton algorithm for the LCP
The linear complementarity problem (LCP) is to find such that ( x , s ) ≥ 0, s = Mx + q , x T s = 0 with and . The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algori...
        Saved in:
      
    
          | Published in | Optimization letters Vol. 7; no. 3; pp. 519 - 531 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer-Verlag
    
        01.03.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1862-4472 1862-4480  | 
| DOI | 10.1007/s11590-011-0436-6 | 
Cover
| Abstract | The linear complementarity problem (LCP) is to find
such that (
x
,
s
) ≥ 0,
s
 = 
Mx
 + 
q
,
x
T
s
 = 0 with
and
. The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algorithm for the LCP up to now were obtained by Huang et al. (Math Program 99:423–441,
2004
). In this note, by using a revised Chen–Harker–Kanzow–Smale smoothing function, we propose a variation of Huang–Qi–Sun’s algorithm and show that the algorithm possesses better local convergence properties than those given in Huang et al. (Math Program 99:423–441,
2004
). | 
    
|---|---|
| AbstractList | The linear complementarity problem (LCP) is to find
such that (
x
,
s
) ≥ 0,
s
 = 
Mx
 + 
q
,
x
T
s
 = 0 with
and
. The smoothing Newton algorithm is one of the most efficient methods for solving the LCP. To the best of our knowledge, the best local convergence results of the smoothing Newton algorithm for the LCP up to now were obtained by Huang et al. (Math Program 99:423–441,
2004
). In this note, by using a revised Chen–Harker–Kanzow–Smale smoothing function, we propose a variation of Huang–Qi–Sun’s algorithm and show that the algorithm possesses better local convergence properties than those given in Huang et al. (Math Program 99:423–441,
2004
). | 
    
| Author | Hu, Sheng-Long Ni, Tie  | 
    
| Author_xml | – sequence: 1 givenname: Tie surname: Ni fullname: Ni, Tie organization: College of Business Administration, Liaoning Technical University – sequence: 2 givenname: Sheng-Long surname: Hu fullname: Hu, Sheng-Long email: shenglonghu@yahoo.com.cn organization: Department of Mathematics, School of Science, Tianjin University, Department of Applied Mathematics, The Hong Kong Polytechnic University  | 
    
| BookMark | eNp9kM9OwzAMhyM0JLbBA3DLCxTsNkub4zTxT0zAAc5RmiZdpy2BJAPx9mQa4sBhJ1vy77Psb0JGzjtDyCXCFQLU1xFxJqAAxAJYxQt-QsbY8LJgrIHRX1-XZ2QS4xqAIwoxJo9z6nwy1Dv6sVNdUGnQVHv3aUJvnM4DSxWNW-_TanA9fTJfKWfVpvdhSKsttT7QtDJ0uXg5J6dWbaK5-K1T8nZ787q4L5bPdw-L-bLQZdOkgjPFtRG10i0w1J2wbQUlA2ta3XHkSglRYWNVCxZqgZy1M2bbTqiOQ2ewmpL6sFcHH2MwVuoh5cO9S0ENG4kg907kwYnMTuTeieSZxH_kexi2KnwfZcoDE3PW9SbItd8Flx88Av0A5J52SA | 
    
| CitedBy_id | crossref_primary_10_1007_s00373_013_1340_x | 
    
| Cites_doi | 10.1007/s00245-005-0827-0 10.1007/s001860400384 10.1007/s002459900128 10.3934/jimo.2007.3.671 10.1016/0024-3795(91)90267-Z 10.1137/0909022 10.1137/0614069 10.1090/S0025-5718-99-01082-0 10.1007/BF01581275 10.1007/s10107-003-0457-8 10.1080/10556780902769862 10.1007/s101079900127  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer-Verlag 2011 | 
    
| Copyright_xml | – notice: Springer-Verlag 2011 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1007/s11590-011-0436-6 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Mathematics  | 
    
| EISSN | 1862-4480 | 
    
| EndPage | 531 | 
    
| ExternalDocumentID | 10_1007_s11590_011_0436_6 | 
    
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AYJHY B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7Y Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION  | 
    
| ID | FETCH-LOGICAL-c288t-64a6ce97acb041cd9fb30240febcd616aa99318fab0f079164b54fbd9ad60de13 | 
    
| IEDL.DBID | U2A | 
    
| ISSN | 1862-4472 | 
    
| IngestDate | Wed Oct 01 02:11:57 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Fri Feb 21 02:42:30 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | Smoothing Newton algorithm Quadratic convergence Linear complementarity problem  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c288t-64a6ce97acb041cd9fb30240febcd616aa99318fab0f079164b54fbd9ad60de13 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_citationtrail_10_1007_s11590_011_0436_6 crossref_primary_10_1007_s11590_011_0436_6 springer_journals_10_1007_s11590_011_0436_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20130300 2013-3-00  | 
    
| PublicationDateYYYYMMDD | 2013-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2013 text: 20130300  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Berlin/Heidelberg | 
    
| PublicationPlace_xml | – name: Berlin/Heidelberg | 
    
| PublicationTitle | Optimization letters | 
    
| PublicationTitleAbbrev | Optim Lett | 
    
| PublicationYear | 2013 | 
    
| Publisher | Springer-Verlag | 
    
| Publisher_xml | – name: Springer-Verlag | 
    
| References | HuS.L.HuangZ.H.WangP.A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problemsOptim. Methods Softw.200924344746025331011173.9055210.1080/10556780902769862 ClarkeF.H.Optimization and Nonsmooth Analysis1983New YorkWiley0582.49001 PardalosP.M.YeY.Class of linear complementarity problems solvable in polynomial timeLinear Algebra Appl.199115231711075420742.6505410.1016/0024-3795(91)90267-Z PardalosP.M.YeY.HanC.-G.KalinskiJ.Solution of P-matrix linear complementarity problems using a potential reduction algorithmSIAM J. Matrix Anal. Appl.1993141048106012389190788.6507210.1137/0614069 QiL.SunD.ZhouG.A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problemsMath. Program.20008713517346570989.90124 HuangZ.H.SunJ.A non-interior continuation algorithm for the P0 or P* LCP with strong global and local convergence propertiesAppl. Math. Optim.20055223726221572021112.9008310.1007/s00245-005-0827-0 PardalosP.M.RosenJ.B.Global optimization approach to the linear complementarity problemSIAM J. Sci. Stat. Comput.1988934135393005010.1137/0909022 HuangZ.H.XuS.W.Convergence properties of a non-interior-point smoothing algorithm for the P* NCPJ. Ind. Manag. Optim.2007356958423439831166.9037010.3934/jimo.2007.3.671 QiL.SunD.Improving the convergence of non-interior point algorithm for nonlinear complementarity problemsMath. Comput.20006928330416427660947.90117 HuangZ.H.QiL.SunD.Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and monotone LCPMath. Program.20049942344120517051168.9064610.1007/s10107-003-0457-8 SunD.A regularization Newton method for solving nonlinear complementarity problemsAppl. Math. Optim.19993631533910.1007/s002459900128 ZhaoY.B.LiD.A globally and locally superlinearly convergent non-interior-point algorithm for P0 LCPsSIAM J. Optim.2003131196122110.1137/S1052623401384151 QiL.SunJ.A nonsmooth version of Newtons methodMath. Program.19935835336712167910780.9009010.1007/BF01581275 HuangZ.H.Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithmsMath. Methods Oper. Res.200561415521204001066.9012710.1007/s001860400384 Z.H. Huang (436_CR6) 2007; 3 S.L. Hu (436_CR2) 2009; 24 F.H. Clarke (436_CR1) 1983 Z.H. Huang (436_CR3) 2005; 61 P.M. Pardalos (436_CR7) 1988; 9 P.M. Pardalos (436_CR8) 1991; 152 Z.H. Huang (436_CR4) 2004; 99 L. Qi (436_CR10) 1993; 58 D. Sun (436_CR13) 1999; 36 Y.B. Zhao (436_CR14) 2003; 13 P.M. Pardalos (436_CR9) 1993; 14 Z.H. Huang (436_CR5) 2005; 52 L. Qi (436_CR11) 2000; 69 L. Qi (436_CR12) 2000; 87  | 
    
| References_xml | – reference: HuangZ.H.XuS.W.Convergence properties of a non-interior-point smoothing algorithm for the P* NCPJ. Ind. Manag. Optim.2007356958423439831166.9037010.3934/jimo.2007.3.671 – reference: QiL.SunD.Improving the convergence of non-interior point algorithm for nonlinear complementarity problemsMath. Comput.20006928330416427660947.90117 – reference: ClarkeF.H.Optimization and Nonsmooth Analysis1983New YorkWiley0582.49001 – reference: ZhaoY.B.LiD.A globally and locally superlinearly convergent non-interior-point algorithm for P0 LCPsSIAM J. Optim.2003131196122110.1137/S1052623401384151 – reference: HuS.L.HuangZ.H.WangP.A nonmonotone smoothing Newton algorithm for solving nonlinear complementarity problemsOptim. Methods Softw.200924344746025331011173.9055210.1080/10556780902769862 – reference: QiL.SunJ.A nonsmooth version of Newtons methodMath. Program.19935835336712167910780.9009010.1007/BF01581275 – reference: PardalosP.M.RosenJ.B.Global optimization approach to the linear complementarity problemSIAM J. Sci. Stat. Comput.1988934135393005010.1137/0909022 – reference: QiL.SunD.ZhouG.A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problemsMath. Program.20008713517346570989.90124 – reference: PardalosP.M.YeY.Class of linear complementarity problems solvable in polynomial timeLinear Algebra Appl.199115231711075420742.6505410.1016/0024-3795(91)90267-Z – reference: HuangZ.H.QiL.SunD.Sub-quadratic convergence of a smoothing Newton algorithm for the P0- and monotone LCPMath. Program.20049942344120517051168.9064610.1007/s10107-003-0457-8 – reference: SunD.A regularization Newton method for solving nonlinear complementarity problemsAppl. Math. Optim.19993631533910.1007/s002459900128 – reference: HuangZ.H.SunJ.A non-interior continuation algorithm for the P0 or P* LCP with strong global and local convergence propertiesAppl. Math. Optim.20055223726221572021112.9008310.1007/s00245-005-0827-0 – reference: HuangZ.H.Locating a maximally complementary solution of the monotone NCP by using non-interior-point smoothing algorithmsMath. Methods Oper. Res.200561415521204001066.9012710.1007/s001860400384 – reference: PardalosP.M.YeY.HanC.-G.KalinskiJ.Solution of P-matrix linear complementarity problems using a potential reduction algorithmSIAM J. Matrix Anal. Appl.1993141048106012389190788.6507210.1137/0614069 – volume: 52 start-page: 237 year: 2005 ident: 436_CR5 publication-title: Appl. Math. Optim. doi: 10.1007/s00245-005-0827-0 – volume: 61 start-page: 41 year: 2005 ident: 436_CR3 publication-title: Math. Methods Oper. Res. doi: 10.1007/s001860400384 – volume: 36 start-page: 315 year: 1999 ident: 436_CR13 publication-title: Appl. Math. Optim. doi: 10.1007/s002459900128 – volume: 3 start-page: 569 year: 2007 ident: 436_CR6 publication-title: J. Ind. Manag. Optim. doi: 10.3934/jimo.2007.3.671 – volume: 152 start-page: 3 year: 1991 ident: 436_CR8 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(91)90267-Z – volume: 9 start-page: 341 year: 1988 ident: 436_CR7 publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0909022 – volume: 14 start-page: 1048 year: 1993 ident: 436_CR9 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0614069 – volume-title: Optimization and Nonsmooth Analysis year: 1983 ident: 436_CR1 – volume: 69 start-page: 283 year: 2000 ident: 436_CR11 publication-title: Math. Comput. doi: 10.1090/S0025-5718-99-01082-0 – volume: 58 start-page: 353 year: 1993 ident: 436_CR10 publication-title: Math. Program. doi: 10.1007/BF01581275 – volume: 13 start-page: 1196 year: 2003 ident: 436_CR14 publication-title: SIAM J. Optim. – volume: 99 start-page: 423 year: 2004 ident: 436_CR4 publication-title: Math. Program. doi: 10.1007/s10107-003-0457-8 – volume: 24 start-page: 447 issue: 3 year: 2009 ident: 436_CR2 publication-title: Optim. Methods Softw. doi: 10.1080/10556780902769862 – volume: 87 start-page: 1 year: 2000 ident: 436_CR12 publication-title: Math. Program. doi: 10.1007/s101079900127  | 
    
| SSID | ssj0061199 | 
    
| Score | 1.9109226 | 
    
| Snippet | The linear complementarity problem (LCP) is to find
such that (
x
,
s
) ≥ 0,
s
 = 
Mx
 + 
q
,
x
T
s
 = 0 with
and
. The smoothing Newton algorithm is one of... | 
    
| SourceID | crossref springer  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 519 | 
    
| SubjectTerms | Computational Intelligence Mathematics Mathematics and Statistics Numerical and Computational Physics Operations Research/Decision Theory Optimization Original Paper Simulation  | 
    
| Title | A note on quadratic convergence of a smoothing Newton algorithm for the LCP | 
    
| URI | https://link.springer.com/article/10.1007/s11590-011-0436-6 | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1862-4480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061199 issn: 1862-4472 databaseCode: AFBBN dateStart: 20070101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1862-4480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061199 issn: 1862-4472 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1862-4480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061199 issn: 1862-4472 databaseCode: U2A dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGJ9lD14UgJ5bDabY1pai7XFg4V6CvvIqtAm2qT_39k0aS2o4CmEzM5hZjMPZuYbhG4CorkItbbMriKLMCpNEwCzfOGTxBaCesrMDo_GdDAhD1N_Ws1x53W3e12SLC31ZtgNPK9pooL0l3jUoruo6Rs0L7jEEzeqzS91VksjHWbGgUjg1qXMn1hsO6PtSmjpYPqH6KCKDHG0UuUR2knSY7T_DS8Q3kZrkNX8BA0jnGZFgrMUfy65MqqUuOwiLwcq4YPGHOfzDJQBxzHYMwj0MJ-9Zov34m2OIV7FwA8_dp9O0aTfe-4OrGo3giVdxgqLEk5lEgZcCps4UoVaeAauTCdCKupQziHwcBgowtZ2ADEgAeFroUKuqK0SxztDjTRLk3OEIQmmrqaKCTckkKEwlzMBPLgjfaIobyG7FlIsK-Bws79iFm8gj41cY5BrbOQa0xa6XR_5WKFm_EV8V0s-rn6g_Hfqi39RX6I9t9xfYZrGrlCjWCyTa4giCtFGzajf6YzN8_5l2GuXt-gLGRrAPA | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgOwAH3ojxzIETqFMfWZYep2kw2IY4DAlOVR4NIEYLrLvw63G6djwESByrOlFkJ37I9meAoyY1QobGOHZWkUM5U7YIgDsN2aCxKyULtO0dHlyy7jW9uGncFH3c47LavUxJ5pr6o9kNLa8tosLwlwbMYfNQpRif-BWots5ue51SATNvOjbS47YhiDb9Mpn50yZfzdHXXGhuYk5XYFgeblpZ8lifZLKu3r7hNv7z9KuwXLicpDW9I2swFyfrsPQJiBC_BjP01vEG9FokSbOYpAl5mQht74gieXl63qmJPwwRZPyUopRxOUFFiR4kEaO79PUhu38i6AgT3I_021ebcH3aGba7TjF0wVE-55nDqGAqDptCSZd6SodGBhYHzcRSaeYxIdCj8ThK2DVuE51LilI1UodCM1fHXrAFlSRN4m0gGF0z3zDNpR9SDH24L7jEPYSnGlQzUQO35H2kCkRyOxhjFH1gKVuuRci1yHItYjU4ni15nsJx_EV8UsoiKl7m-HfqnX9RH8JCdzjoR_3zy94uLPr5kAxbmbYHlex1Eu-jq5LJg-JqvgOkzNzU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYzxw4gaq1XZqmx2kwDfbQDkzarcqjAaStHWv3_3H62JgESByrJj7YSfxZtj8jdOcTzUWgtWVmFVmEUWmKAJjlCY9EthC0qUzv8GBIu2PyMvEm5ZzTtKp2r1KSRU-DYWmKs8Zc6ca68Q28sCmoglCYNKlFt9EOMTwJcKDHbqt6iqlTDJB0mGkNIr5bpTV_ErHpmDazormz6RyigxIl4lZh1iO0FcXHaP8bdyB8DVaEq-kJ6rVwnGQRTmL8ueTKmFXivKI8b66EHxpznM4SMAxsx_C2AejDfPqWLD6y9xkG7IpBHu63R6do3Hl6bXetck6CJV3GMosSTmUU-FwKmzhSBVo0DXWZjoRU1KGcAwhxGBjF1rYPeJCAIbRQAVfUVpHTPEO1OImjc4QhIKaupooJNyAQrTCXMwEyuCM9oiivI7tSUihLEnEzy2IarumPjV5D0Gto9BrSOrpfbZkXDBp_LX6oNB-Wlyn9ffXFv1bfot3RYyfsPw97l2jPzcdamFqyK1TLFsvoGsBFJm7yA_QFrHfEVA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+note+on+quadratic+convergence+of+a+smoothing+Newton+algorithm+for+the+LCP&rft.jtitle=Optimization+letters&rft.au=Ni%2C+Tie&rft.au=Hu%2C+Sheng-Long&rft.date=2013-03-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=7&rft.issue=3&rft.spage=519&rft.epage=531&rft_id=info:doi/10.1007%2Fs11590-011-0436-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_011_0436_6 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon |