Random Convex Programs
Random convex programs (RCPs) are convex optimization problems subject to a finite number N of random constraints. The optimal objective value ... of an RCP is thus a random variable. We study the probability with which ... is no longer optimal if a further random constraint is added to the problem...
Saved in:
Published in | SIAM journal on optimization Vol. 20; no. 6; pp. 3427 - 3464 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1052-6234 1095-7189 |
DOI | 10.1137/090773490 |
Cover
Abstract | Random convex programs (RCPs) are convex optimization problems subject to a finite number N of random constraints. The optimal objective value ... of an RCP is thus a random variable. We study the probability with which ... is no longer optimal if a further random constraint is added to the problem (violation probability, ...). It turns out that this probability rapidly concentrates near zero as N increases. We first develop a theory for RCPs, leading to explicit bounds on the upper tail probability of ... Then we extend the setup to the case of RCPs with r a posteriori violated constraints (RCPVs): a paradigm that permits us to improve the optimal objective value while maintaining the violation probability under control. Explicit and nonasymptotic bounds are derived also in this case: the upper tail probability of ... is upper bounded by a multiple of a beta distribution, irrespective of the distribution on the random constraints. All results are derived under no feasibility assumptions on the problem. Further, the relation between RCPVs and chanceconstrained problems (CCP) is explored, showing that the optimal objective ... of an RCPV with the generic constraint removal rule provides, with arbitrarily high probability, an upper bound on the optimal objective of a corresponding CCP. Moreover, whenever an optimal constraint removal rule is used in the RCPVs, then appropriate choices of N and r exist such that ... approximates arbitrarily well the objective of the CCP. [PUBLICATION ABSTRACT] |
---|---|
AbstractList | Random convex programs (RCPs) are convex optimization problems subject to a finite number N of random constraints. The optimal objective value ... of an RCP is thus a random variable. We study the probability with which ... is no longer optimal if a further random constraint is added to the problem (violation probability, ...). It turns out that this probability rapidly concentrates near zero as N increases. We first develop a theory for RCPs, leading to explicit bounds on the upper tail probability of ... Then we extend the setup to the case of RCPs with r a posteriori violated constraints (RCPVs): a paradigm that permits us to improve the optimal objective value while maintaining the violation probability under control. Explicit and nonasymptotic bounds are derived also in this case: the upper tail probability of ... is upper bounded by a multiple of a beta distribution, irrespective of the distribution on the random constraints. All results are derived under no feasibility assumptions on the problem. Further, the relation between RCPVs and chanceconstrained problems (CCP) is explored, showing that the optimal objective ... of an RCPV with the generic constraint removal rule provides, with arbitrarily high probability, an upper bound on the optimal objective of a corresponding CCP. Moreover, whenever an optimal constraint removal rule is used in the RCPVs, then appropriate choices of N and r exist such that ... approximates arbitrarily well the objective of the CCP. Random convex programs (RCPs) are convex optimization problems subject to a finite number N of random constraints. The optimal objective value ... of an RCP is thus a random variable. We study the probability with which ... is no longer optimal if a further random constraint is added to the problem (violation probability, ...). It turns out that this probability rapidly concentrates near zero as N increases. We first develop a theory for RCPs, leading to explicit bounds on the upper tail probability of ... Then we extend the setup to the case of RCPs with r a posteriori violated constraints (RCPVs): a paradigm that permits us to improve the optimal objective value while maintaining the violation probability under control. Explicit and nonasymptotic bounds are derived also in this case: the upper tail probability of ... is upper bounded by a multiple of a beta distribution, irrespective of the distribution on the random constraints. All results are derived under no feasibility assumptions on the problem. Further, the relation between RCPVs and chanceconstrained problems (CCP) is explored, showing that the optimal objective ... of an RCPV with the generic constraint removal rule provides, with arbitrarily high probability, an upper bound on the optimal objective of a corresponding CCP. Moreover, whenever an optimal constraint removal rule is used in the RCPVs, then appropriate choices of N and r exist such that ... approximates arbitrarily well the objective of the CCP. [PUBLICATION ABSTRACT] |
Author | Calafiore, Giuseppe Carlo |
Author_xml | – sequence: 1 givenname: Giuseppe Carlo surname: Calafiore fullname: Calafiore, Giuseppe Carlo |
BookMark | eNpt0E1LAzEQBuAgFWyrBy-eixfxsHYm2d1JjlLqBxQU0XNItqls2U1qshX993apeCieZg7POwzviA188I6xc4QbREFTUEAkcgVHbIigioxQqkG_FzwruchP2CilNQBIVcohu3gxfhnaySz4T_c1eY7hPZo2nbLjlWmSO_udY_Z2N3-dPWSLp_vH2e0iq7iUXVbiUnHMkYBzVVlLasmt48oQWmdl4YQzVOXOls7alTLGQF4QoiIhShBKjNnV_u4mho-tS51u61S5pjHehW3SCpA4l9TLywO5Dtvod89pKQGBpOzRdI-qGFKKbqWrujNdHXwXTd1oBN23pP9a2iWuDxKbWLcmfv9jfwCz82U- |
CitedBy_id | crossref_primary_10_1016_j_automatica_2014_02_042 crossref_primary_10_37394_23202_2021_20_19 crossref_primary_10_1016_j_automatica_2014_11_004 crossref_primary_10_1002_cben_201400013 crossref_primary_10_1016_j_ress_2021_107900 crossref_primary_10_1088_1742_6596_783_1_012023 crossref_primary_10_1007_s10994_020_05893_5 crossref_primary_10_1109_TAC_2017_2778696 crossref_primary_10_1109_LCSYS_2022_3174132 crossref_primary_10_1109_TPWRS_2021_3060427 crossref_primary_10_1016_j_trc_2019_05_045 crossref_primary_10_1109_TAC_2014_2318092 crossref_primary_10_1016_j_nahs_2023_101425 crossref_primary_10_1016_j_automatica_2012_11_012 crossref_primary_10_1109_TAC_2014_2330702 crossref_primary_10_1016_j_automatica_2021_110108 crossref_primary_10_1016_j_automatica_2022_110601 crossref_primary_10_1016_j_automatica_2013_03_010 crossref_primary_10_1109_TAC_2016_2586606 crossref_primary_10_1109_TAC_2024_3393790 crossref_primary_10_1016_j_automatica_2011_02_029 crossref_primary_10_1016_j_segan_2023_101205 crossref_primary_10_1016_j_arcontrol_2019_05_005 crossref_primary_10_1016_j_ifacol_2020_12_317 crossref_primary_10_1007_s00291_015_0396_9 crossref_primary_10_1109_TAC_2023_3260729 crossref_primary_10_1016_j_automatica_2013_02_060 crossref_primary_10_1016_j_isatra_2019_01_013 crossref_primary_10_3182_20140824_6_ZA_1003_02629 crossref_primary_10_1016_j_automatica_2024_111643 crossref_primary_10_1016_j_automatica_2019_108533 crossref_primary_10_1016_j_automatica_2019_05_039 crossref_primary_10_1016_j_ins_2023_03_061 crossref_primary_10_1016_j_enbuild_2022_111916 crossref_primary_10_1016_j_automatica_2019_03_027 crossref_primary_10_1080_00207721_2012_670310 crossref_primary_10_1016_j_ifacol_2015_11_297 crossref_primary_10_1109_TAC_2012_2203054 crossref_primary_10_1109_LCSYS_2020_3001882 crossref_primary_10_1016_j_ifacol_2020_12_845 crossref_primary_10_1109_TAC_2023_3255141 crossref_primary_10_1109_LCSYS_2021_3087361 crossref_primary_10_1109_TAC_2011_2164020 crossref_primary_10_1016_j_jfranklin_2023_05_012 crossref_primary_10_1080_19401493_2017_1397196 crossref_primary_10_1016_j_automatica_2021_109571 crossref_primary_10_1016_j_automatica_2015_07_013 crossref_primary_10_1109_LCSYS_2021_3083962 crossref_primary_10_1109_TAC_2015_2394874 crossref_primary_10_3390_electronics9122078 crossref_primary_10_1016_j_automatica_2014_05_009 crossref_primary_10_1103_PhysRevE_86_036702 crossref_primary_10_1016_j_apenergy_2022_118623 crossref_primary_10_1016_j_automatica_2019_108702 crossref_primary_10_1137_130944254 crossref_primary_10_1016_j_amc_2018_09_064 crossref_primary_10_1016_j_ifacol_2018_06_362 crossref_primary_10_1080_0305215X_2014_905550 crossref_primary_10_1080_10556788_2013_869807 crossref_primary_10_1016_j_ifacol_2021_08_476 crossref_primary_10_1109_TCST_2014_2313736 crossref_primary_10_1115_1_4044918 crossref_primary_10_1002_asjc_1006 crossref_primary_10_1016_j_automatica_2024_111746 crossref_primary_10_1109_TCST_2018_2811404 crossref_primary_10_1016_j_automatica_2022_110412 crossref_primary_10_1016_j_neunet_2019_07_005 crossref_primary_10_1109_LCSYS_2017_2714426 crossref_primary_10_1016_j_jprocont_2017_10_006 crossref_primary_10_1109_ACCESS_2022_3216883 crossref_primary_10_1016_j_ifacol_2017_08_1388 crossref_primary_10_1016_j_arcontrol_2021_10_004 crossref_primary_10_1109_TAC_2015_2444134 crossref_primary_10_1007_s10479_025_06545_4 crossref_primary_10_1016_j_automatica_2011_12_002 crossref_primary_10_1109_LCSYS_2020_3007645 crossref_primary_10_1080_21642583_2021_1916788 crossref_primary_10_1080_21642583_2021_1916789 crossref_primary_10_1109_TAC_2016_2575859 crossref_primary_10_1109_JSTSP_2013_2247023 crossref_primary_10_1007_s11431_019_9658_0 crossref_primary_10_1109_TAC_2024_3382610 crossref_primary_10_1109_TCST_2020_3024571 crossref_primary_10_1137_120885796 crossref_primary_10_1109_ACCESS_2023_3268153 crossref_primary_10_1016_j_knosys_2022_109570 crossref_primary_10_1016_j_ejcon_2015_04_007 crossref_primary_10_1109_TAC_2015_2460051 crossref_primary_10_1137_120878719 crossref_primary_10_1109_TAC_2022_3165320 crossref_primary_10_1109_ACCESS_2023_3346197 crossref_primary_10_1016_j_sysconle_2016_05_009 crossref_primary_10_1016_j_compchemeng_2014_03_019 crossref_primary_10_1109_LCSYS_2023_3285753 crossref_primary_10_1109_TAC_2014_2303232 crossref_primary_10_1109_TAC_2020_3024273 crossref_primary_10_1137_130931011 crossref_primary_10_1109_LCSYS_2024_3521360 crossref_primary_10_1007_s13675_018_0096_8 crossref_primary_10_1109_TCNS_2021_3100404 crossref_primary_10_1109_TAC_2015_2494875 crossref_primary_10_1016_j_ifacol_2015_09_430 crossref_primary_10_1016_j_compchemeng_2019_03_034 crossref_primary_10_1109_TAC_2018_2887054 crossref_primary_10_1016_j_ifacol_2018_08_047 crossref_primary_10_1016_j_automatica_2017_03_031 crossref_primary_10_1109_TAC_2020_3030754 crossref_primary_10_1146_annurev_control_060117_105215 crossref_primary_10_1016_j_ifacol_2015_11_255 crossref_primary_10_1109_ACCESS_2023_3312561 crossref_primary_10_1016_j_automatica_2013_01_062 crossref_primary_10_1115_1_4055738 crossref_primary_10_1007_s10107_018_01359_8 crossref_primary_10_1016_j_ejor_2019_11_059 crossref_primary_10_1155_2021_9915994 crossref_primary_10_1080_15472450_2019_1638780 crossref_primary_10_1016_j_automatica_2021_110120 crossref_primary_10_1109_ACCESS_2022_3162204 crossref_primary_10_1016_j_arcontrol_2016_04_006 crossref_primary_10_1109_ACCESS_2022_3187968 crossref_primary_10_1109_TAC_2023_3315691 crossref_primary_10_1109_LRA_2021_3074866 crossref_primary_10_3182_20140824_6_ZA_1003_02436 crossref_primary_10_1109_MCS_2016_2602087 crossref_primary_10_1016_j_est_2024_111177 crossref_primary_10_1109_TAC_2015_2433591 crossref_primary_10_1016_j_jprocont_2018_12_013 crossref_primary_10_1080_0305215X_2022_2052287 crossref_primary_10_1109_TAC_2013_2281883 crossref_primary_10_1155_2021_1465493 |
Cites_doi | 10.1016/j.automatica.2008.09.004 10.1214/aoms/1177729330 10.1137/070702928 10.1109/TAC.2009.2031207 10.1145/77635.77639 10.1016/0020-0190(94)00190-A 10.1137/07069821X 10.1287/opre.11.1.18 10.1287/moor.1040.0094 10.1007/s10957-009-9579-3 10.1109/TAC.2002.800644 10.1007/BF02570713 10.1016/j.sysconle.2010.05.003 10.1016/0196-6774(91)90022-Q 10.1109/TAC.2008.2008335 10.1137/S1052623403430099 10.1007/s101070100286 10.1007/s10107-003-0499-y 10.1137/S1052623496305717 10.1287/moor.23.4.769 10.1007/PL00011393 10.1007/s00454-001-0006-2 10.1109/TAC.2006.875041 10.1137/050622328 |
ContentType | Journal Article |
Copyright | Copyright Society for Industrial and Applied Mathematics 2010 |
Copyright_xml | – notice: Copyright Society for Industrial and Applied Mathematics 2010 |
DBID | AAYXX CITATION 3V. 7RQ 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U U9A 7SC 7TB 8FD FR3 H8D KR7 L7M L~C L~D |
DOI | 10.1137/090773490 |
DatabaseName | CrossRef ProQuest Central (Corporate) Career & Technical Education Database ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Collection Agricultural Science Database Computing Database Military Database ProQuest Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest Career and Technical Education ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1095-7189 |
EndPage | 3464 |
ExternalDocumentID | 2411992301 10_1137_090773490 |
Genre | Feature |
GroupedDBID | -~X .4S .DC 123 4.4 7RQ 7WY 7X2 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8G5 8V8 AALVN AASXH AAYOK AAYXX ABDBF ABDPE ABJCF ABKAD ABMZU ABUWG ACGFO ACGOD ACIWK ACPRK ACUHS ADBBV AEMOZ AENEX AFFNX AFKRA AFRAH AHQJS AKVCP ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ARCSS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBR EBS EBU EDO EJD EMK EST ESX F5P FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K1G K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TH9 TN5 TUS TWZ YNT 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U U9A 7SC 7TB 8FD FR3 H8D KR7 L7M L~C L~D PUEGO |
ID | FETCH-LOGICAL-c288t-61d9214170229cbb79d2be29a71beb85e3ea7c4eb6ebbf9aaa045711973360393 |
IEDL.DBID | 8FG |
ISSN | 1052-6234 |
IngestDate | Thu Sep 04 17:12:41 EDT 2025 Fri Jul 25 12:26:23 EDT 2025 Thu Apr 24 23:05:39 EDT 2025 Tue Jul 01 04:05:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c288t-61d9214170229cbb79d2be29a71beb85e3ea7c4eb6ebbf9aaa045711973360393 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
PQID | 880107889 |
PQPubID | 666300 |
PageCount | 38 |
ParticipantIDs | proquest_miscellaneous_901722879 proquest_journals_880107889 crossref_citationtrail_10_1137_090773490 crossref_primary_10_1137_090773490 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | SIAM journal on optimization |
PublicationYear | 2010 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | R3 R4 R5 R6 R7 R8 R9 R30 R10 R20 R11 R22 R25 R13 R24 R16 R27 R15 R26 R29 R17 R28 R19 R1 |
References_xml | – ident: R13 doi: 10.1016/j.automatica.2008.09.004 – ident: R17 doi: 10.1214/aoms/1177729330 – ident: R27 doi: 10.1137/070702928 – ident: R3 doi: 10.1109/TAC.2009.2031207 – ident: R22 doi: 10.1145/77635.77639 – ident: R28 doi: 10.1016/0020-0190(94)00190-A – ident: R15 doi: 10.1137/07069821X – ident: R16 doi: 10.1287/opre.11.1.18 – ident: R19 doi: 10.1287/moor.1040.0094 – ident: R8 doi: 10.1007/s10957-009-9579-3 – ident: R4 doi: 10.1109/TAC.2002.800644 – ident: R29 doi: 10.1007/BF02570713 – ident: R7 doi: 10.1016/j.sysconle.2010.05.003 – ident: R1 doi: 10.1016/0196-6774(91)90022-Q – ident: R11 doi: 10.1109/TAC.2008.2008335 – ident: R26 doi: 10.1137/S1052623403430099 – ident: R6 doi: 10.1007/s101070100286 – ident: R9 doi: 10.1007/s10107-003-0499-y – ident: R25 doi: 10.1137/S1052623496305717 – ident: R5 doi: 10.1287/moor.23.4.769 – ident: R20 doi: 10.1007/PL00011393 – ident: R24 doi: 10.1007/s00454-001-0006-2 – ident: R10 doi: 10.1109/TAC.2006.875041 – ident: R30 doi: 10.1137/050622328 |
SSID | ssj0008968 |
Score | 2.3869276 |
Snippet | Random convex programs (RCPs) are convex optimization problems subject to a finite number N of random constraints. The optimal objective value ... of an RCP is... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3427 |
SubjectTerms | Approximation Beta Concentrates Convex analysis Feasibility Linear programming Mathematical analysis Mathematical problems Optimization Random variables Randomized algorithms Studies Upper bounds |
Title | Random Convex Programs |
URI | https://www.proquest.com/docview/880107889 https://www.proquest.com/docview/901722879 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfBVrVYJ48BJsdrPd3ZPU2gdC0xKs9Bb21ZOk1bT_39l0GyqIl0DIEsjOMN98mZ1vEHroaKNjwlgo2wsbxtrgUGonW2lMRLWRnJYV03HSGc3itzmd-7M5hT9WuYuJZaA2S-3-kT-BnwFT4Vw8r75CNzTKFVf9BI1DVI8wQK1rFB8Mq0DMhe-EozgElI-9sFDkJH2AEzISu0i8D0e_o3EJMYNTdOJzw6C7NeYZOrD5OTreUwyEu3Els1pcoEbaTV4n46A3ST7682CaToYpMPNLNBv033uj0A86CDXmfA30zQgcxREDQBVaKSYMVhYLySJlFaeWWMl0bFXHKrUQUkpIxJgrABLScc21DVTLl7m9QgHgLVGMLgzFNrYWyBRvgzkkXCiGVKiJHnffm2mvAu6GUXxmJRsgLKu2ponuq6WrrfTFX4tau03LvPcXWWWrJgqqp-C2rhYhc7vcFJlw3BPYmrj-9wUtdLQt1_OQtG9Qbf29sbeQBazVXWnrO1R_6SfT9AdVpK29 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB58HNSD-MT6XETBy6KbZJvkIFLUWh_bSn3Q25pXT9JWWxF_lP_RyXZ3URBvXhaWDYGdTGbmy0y-AdirGmsY5TxUR10XMmNJqIynrbQ2io1VIs4ypkmz2nhgV524MwGfxV0YX1ZZ2MTMUNu-8Wfkh6hniFSEkCeDl9A3jfLJ1aKDxlgrrt3HOyK24fHlGS7vPiH18_vTRpg3FQgNEWKEUMlKErGIo_OSRmsuLdGOSMUj7bSIHXWKG-Z01WndlUopDHq4T7ZRWvUXWXHeSZhmlFJfQSjqF6XhFzK_eReTEKMKlhMZRZ5CCDEop8xb_u_u76f1z1xafQHm81g0qI2VZxEmXG8J5r4xFOJbUtK6DpdhtV1rnrWS4LTVfDzvBLft1kW7ltytwMO_yGAVpnr9nluDAP071Tzu2pg45hyCN3GEy6_wERMMvSpwUPxvanLWcd_84jnN0AflaSmaCuyWQwdjqo3fBm0UQkvz3TZMS92oQFB-xW3icx-q5_pvw1R6rIvoUK7_OcEOzDTuk5v05rJ5vQGz41IBf96yCVOj1ze3hRHISG9n6x7A038r2hfMfui6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Random+Convex+Programs&rft.jtitle=SIAM+journal+on+optimization&rft.au=Calafiore%2C+Giuseppe+Carlo&rft.date=2010-01-01&rft.issn=1052-6234&rft.eissn=1095-7189&rft.volume=20&rft.issue=6&rft.spage=3427&rft.epage=3464&rft_id=info:doi/10.1137%2F090773490&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_090773490 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1052-6234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1052-6234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1052-6234&client=summon |