Machine learning-enhanced combustion modeling for predicting laminar burning velocity of ammonia-hydrogen mixtures using improved reaction mechanisms
The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion mod...
Saved in:
| Published in | Energy (Oxford) Vol. 320; p. 135259 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 |
| DOI | 10.1016/j.energy.2025.135259 |
Cover
| Abstract | The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion modeling. To address this, prediction accuracy is improved using refined reaction kinetics and machine learning algorithms. GRI Mech3.0 is refined by enhancing H/O, N2O, HNO, NH, and NH2 mechanisms, forming Model I for pure ammonia and Model II for lean burn ammonia-hydrogen mixtures. The simulated laminar burning speed of these models is compared with literature and seven other mechanisms. Combustion analysis includes sensitivity analysis of coefficients, nitric oxide emission rates, sub-mechanisms, and reaction sensitivities to assess their impact, with machine learning algorithms to improve accuracy. Model II achieves the highest accuracy under stoichiometric (RMSE = 1.4590 cm/s) and lean burn conditions (RMSE = 1.3701 cm/s). As different mechanisms suit various conditions, machine learning algorithms further enhance prediction accuracy. The support vector machine with particle swarm optimization improves computational accuracy by 2.9745 times over reaction kinetics, demonstrating its effectiveness. This study develops refined reaction mechanisms and machine learning models for practical applications in ammonia-hydrogen fueled SI engines.
[Display omitted]
•Ammonia/hydrogen kinetics has been improved corresponding to the best thermal conditions.•It has been upgraded with the addition of H/O, N2O, HNO, NH & NH2 species.•It has been compared with other mechanisms and machine learning algorithms.•PSO-SVM has the overall best computational accuracy. |
|---|---|
| AbstractList | The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion modeling. To address this, prediction accuracy is improved using refined reaction kinetics and machine learning algorithms. GRI Mech3.0 is refined by enhancing H/O, N₂O, HNO, NH, and NH₂ mechanisms, forming Model I for pure ammonia and Model II for lean burn ammonia-hydrogen mixtures. The simulated laminar burning speed of these models is compared with literature and seven other mechanisms. Combustion analysis includes sensitivity analysis of coefficients, nitric oxide emission rates, sub-mechanisms, and reaction sensitivities to assess their impact, with machine learning algorithms to improve accuracy. Model II achieves the highest accuracy under stoichiometric (RMSE = 1.4590 cm/s) and lean burn conditions (RMSE = 1.3701 cm/s). As different mechanisms suit various conditions, machine learning algorithms further enhance prediction accuracy. The support vector machine with particle swarm optimization improves computational accuracy by 2.9745 times over reaction kinetics, demonstrating its effectiveness. This study develops refined reaction mechanisms and machine learning models for practical applications in ammonia-hydrogen fueled SI engines. The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion modeling. To address this, prediction accuracy is improved using refined reaction kinetics and machine learning algorithms. GRI Mech3.0 is refined by enhancing H/O, N2O, HNO, NH, and NH2 mechanisms, forming Model I for pure ammonia and Model II for lean burn ammonia-hydrogen mixtures. The simulated laminar burning speed of these models is compared with literature and seven other mechanisms. Combustion analysis includes sensitivity analysis of coefficients, nitric oxide emission rates, sub-mechanisms, and reaction sensitivities to assess their impact, with machine learning algorithms to improve accuracy. Model II achieves the highest accuracy under stoichiometric (RMSE = 1.4590 cm/s) and lean burn conditions (RMSE = 1.3701 cm/s). As different mechanisms suit various conditions, machine learning algorithms further enhance prediction accuracy. The support vector machine with particle swarm optimization improves computational accuracy by 2.9745 times over reaction kinetics, demonstrating its effectiveness. This study develops refined reaction mechanisms and machine learning models for practical applications in ammonia-hydrogen fueled SI engines. [Display omitted] •Ammonia/hydrogen kinetics has been improved corresponding to the best thermal conditions.•It has been upgraded with the addition of H/O, N2O, HNO, NH & NH2 species.•It has been compared with other mechanisms and machine learning algorithms.•PSO-SVM has the overall best computational accuracy. |
| ArticleNumber | 135259 |
| Author | Ma, Fanhua Abbasi, Muhammad Salman Li, Wei Chen, Tianhao Rao, Anas Zulfiqar, Sana Shahid, Muhammad Ihsan Farhan, Muhammad Li, Xin |
| Author_xml | – sequence: 1 givenname: Anas surname: Rao fullname: Rao, Anas organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China – sequence: 2 givenname: Wei surname: Li fullname: Li, Wei organization: Engineering Research Center of Hydrogen Energy Equipment & Safety Detection, Xijing University, Xi'an, Shaanxi, 710123, People's Republic of China – sequence: 3 givenname: Muhammad Salman orcidid: 0000-0002-4510-4490 surname: Abbasi fullname: Abbasi, Muhammad Salman organization: Department of Mechanical Engineering, University of Engineering & Technology, Lahore, 54890, Pakistan – sequence: 4 givenname: Muhammad Ihsan surname: Shahid fullname: Shahid, Muhammad Ihsan organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China – sequence: 5 givenname: Muhammad surname: Farhan fullname: Farhan, Muhammad organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China – sequence: 6 givenname: Sana surname: Zulfiqar fullname: Zulfiqar, Sana organization: University of Management and Technology, C-II Block Phase 1 Johar Town, Lahore, Punjab, 54770, Pakistan – sequence: 7 givenname: Tianhao surname: Chen fullname: Chen, Tianhao organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China – sequence: 8 givenname: Fanhua surname: Ma fullname: Ma, Fanhua email: mafh@tsinghua.edu.cn organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China – sequence: 9 givenname: Xin surname: Li fullname: Li, Xin organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China |
| BookMark | eNp9kLtu2zAUhjm4QGy3b5CBYxa5vIiWtBQIjLQJkKJLOxPU0ZFNQyRdUjLqB-n7hoo6dyKJ818Ovw1Z-eCRkHvOdpzx_efzDj3G420nmFA7LpVQzYqsmdyzQpWluCOblM6MMVU3zZr8_W7gZD3SAU301h8L9CfjATsKwbVTGm3w1IUOhzykfYj0ErGzMM7PwTjrTaTt9O6lVxwC2PFGQ0-Nc8FbU5xuXQxHzCH2zzhFTHRKs9a6SwzX3BPRwNKCkKttcukj-dCbIeGnf-eW_Pr69PPwXLz--PZyeHwtQNT1WCiDgpWt5Fjyqhb7ppaVBOh7UEJ2Zd3mqyz7DmUFpRCsrytegVAcFbK6beSWPCy5eZXfE6ZRO5sAh8F4DFPSUrA9bxTLwVtSLlKIIaWIvb5E60y8ac70TF6f9UJez-T1Qj7bviw2zN-4Wow6gcWZr40Io-6C_X_AGzSplxE |
| Cites_doi | 10.1016/j.proci.2024.105726 10.1063/1.555908 10.1016/j.combustflame.2012.06.003 10.1016/j.ijhydene.2007.12.040 10.1016/j.energy.2015.10.060 10.1016/j.combustflame.2022.112536 10.1016/j.ijhydene.2012.10.114 10.1016/j.proci.2010.05.101 10.1021/acsomega.2c05952 10.1016/0009-2614(80)80492-1 10.1016/j.fuel.2019.115934 10.1002/kin.20929 10.1021/jp905454k 10.1016/j.ijhydene.2020.10.045 10.1016/j.enconman.2009.02.004 10.1016/j.applthermaleng.2015.11.009 10.1016/j.combustflame.2009.12.022 10.1021/acs.energyfuels.8b01056 10.1063/1.555759 10.1016/j.combustflame.2019.08.033 10.1016/j.ijhydene.2016.03.204 10.1016/j.jhazmat.2007.11.089 10.1016/j.combustflame.2007.02.004 10.1016/j.ijhydene.2017.12.066 10.1002/(SICI)1097-4601(1996)28:9<693::AID-KIN8>3.0.CO;2-Q 10.1016/j.pecs.2018.07.001 10.1016/j.ijhydene.2021.07.063 10.1016/S0082-0784(00)80543-3 10.1016/j.combustflame.2010.12.013 10.1063/1.1748524 10.1016/j.csite.2022.102246 10.1016/j.fuel.2022.123577 10.1016/S0082-0784(00)80542-1 10.1016/j.fuel.2023.128244 10.1016/j.rser.2020.110192 10.1016/j.combustflame.2014.08.022 10.1016/j.energy.2022.123611 10.1002/kin.550170410 10.1016/j.energy.2022.125961 10.1016/j.combustflame.2021.111653 10.1016/j.ijhydene.2017.07.107 10.1016/j.combustflame.2021.111753 10.1021/acs.chemrev.9b00538 10.1016/j.combustflame.2009.03.005 10.1016/j.combustflame.2003.12.008 10.1016/j.ijhydene.2022.06.007 10.1016/j.fuel.2015.06.070 10.1016/j.fuel.2022.125872 10.1016/j.combustflame.2019.03.008 10.1080/00102200108907830 10.1080/00102200008952125 10.1016/j.fuel.2021.121358 10.1021/jp963720u 10.1016/j.ijhydene.2015.04.024 10.1007/s12239-021-0031-5 10.1016/j.combustflame.2016.09.006 10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0 10.1016/j.combustflame.2017.09.002 10.1016/S0010-2180(00)00152-8 10.1016/j.fuel.2019.02.110 10.1016/j.fuel.2018.03.030 10.1016/j.fuel.2017.10.019 10.1039/f29747000564 10.1016/j.fuel.2019.03.003 10.1016/j.fuel.2010.06.008 10.1016/j.fuel.2018.07.009 10.1016/j.combustflame.2008.01.012 10.1016/j.fuel.2022.126320 10.1016/j.fuel.2015.06.075 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V 10.1016/j.proci.2004.08.145 10.1007/BF00786097 |
| ContentType | Journal Article |
| Copyright | 2025 |
| Copyright_xml | – notice: 2025 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2025.135259 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2025_135259 S0360544225009016 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ADMUD ADNMO ADXHL AGQPQ AHHHB ASPBG AVWKF AZFZN CITATION EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c288t-5ae204b31e41782698373ccffc523d48bcff34fde37c4220f8717c251e5e08b93 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Thu Oct 02 21:40:41 EDT 2025 Wed Oct 01 06:03:17 EDT 2025 Sat Jul 19 17:11:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ammonia/hydrogen fuel PSO-SVM Laminar burning speed Reaction kinetics Machine learning algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-5ae204b31e41782698373ccffc523d48bcff34fde37c4220f8717c251e5e08b93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-4510-4490 |
| PQID | 3206195098 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3206195098 crossref_primary_10_1016_j_energy_2025_135259 elsevier_sciencedirect_doi_10_1016_j_energy_2025_135259 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 2025-04-00 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ichimura, Hadi, Hashimoto, Hayakawa, Kobayashi, Fujita (bib6) 2019; 246 Klippenstein, Harding, Glarborg, Miller (bib51) 2011; 158 Hayakawa, Goto, Mimoto, Kudo, Kobayashi (bib40) 2015; 2 Hidaka, Shiba, Takuma, Suga (bib60) 1985; 17 Zhou, Cui, Yang, Tan, Wang, Dai, Li, ur Rahman, Wang, Deng, Wang (bib23) 2023; 248 Mueller, Kim, Yetter, Dryer (bib63) 1999; 31 Ma, Wang (bib78) 2008; 33 Konnov, Ruyck (bib15) 2000; 152 Rao, Mehra, Duan, Ma (bib74) 2017; 42 Duynslaegher, Jeanmart, Vandooren (bib8) 2010; 89 Tsang, Hampson (bib45) 1986; 15 Ichikawa, Hayakawa, Kitagawa, Kunkuma Amila Somarathne, Kudo, Kobayashi (bib7) 2015; 40 V Coppens, De Ruyck, Konnov (bib68) 2007; 149 Duynslaegher, Contino, Vandooren, Jeanmart (bib73) 2012; 159 Rao, Liu, Ma (bib34) 2022; 318 Najafi, Ghobadian, Moosavian, Yusaf, Mamat, Kettner, Azmi (bib36) 2016; 95 Rao, Chen, Liu, Ma (bib33) 2023; 347 Sebastian Raschka, How can I know if Deep learn. Work. Better a specif. Probl. Than SVM or random for. (n.d.).. Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (bib42) 2008; 155 Griffiths, Barnard, Bradley (bib62) 1995., 1995 Li, Huang, Kobayashi, He, Osaka, Zeng (bib9) 2015; 93 Tian, Li, Zhang, Glarborg, Qi (bib13) 2009; 156 Huang, Ma (bib26) 2016; 41 Mehra, Duan, Luo, Ma (bib25) 2019; 246 Hong, Davidson, Barbour, Hanson (bib57) 2011; 33 Chen, Chen (bib71) 2016; 174 Zhan, Chen, Qin (bib76) 2022; 37 Nozari, Karabeyoğlu (bib14) 2015; 159 Rao, Wu, Kumar Mehra, Duan, Ma (bib77) 2021; 304 Duan, Li, Wang, Mehra, Luo, Xu, Sun, Wang, Ma (bib24) 2019; 258 Klaus, Takano, Winnewisser (bib53) 1997; 322 V Michael, Sutherland, Harding, Wagner (bib64) 2000; 28 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib21) 2018; 187 Frenklach M, Wang, Goldenberg, Smith, Golden (bib44) 1995 Klaus (bib66) 1997 Ishaq, Dincer (bib4) 2021; 135 Shrestha, Seidel, Zeuch, Mauss (bib20) 2018; 32 Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib38) 2019; 204 Bemand, Clyne, Watson (bib61) 1974; 2 Zakaznov, Kursheva, Fedina (bib41) 1978; 14 Abian, Alzueta, Glarborg (bib47) 2015; 47 Skreiberg, Kilpinen, Glarborg (bib67) 2004; 136 Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (bib39) 2000; 123 Zhang, Xiong, Zhong, Leatham (bib43) 2018 Baulch, Bowman, Cobos, Cox, Just, Kerr, Pilling, Stocker, Troe, Tsang, Walker, Warnatz (bib46) 2005; 34 Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (bib72) 2015; 159 Baulch, Cobos, Cox, Esser, Frank, Just, Kerr, Pilling, Troe, Walker, Warnatz (bib59) 1992; 21 Troe (bib65) 2000; 28 Gotama, Hayakawa, Okafor, Kanoshima, Hayashi, Kudo, Kobayashi (bib17) 2022; 236 Wang, Huang, Zhang, Li, Yi, Wu, Chen (bib16) 2021; 46 Pessina, Berni, Fontanesi, Stagni, Mehl (bib10) 2022; 47 A, S, H, M, P, D, A (bib80) 2023; 15 Lu, Law (bib70) 2005; 30 García-Ruiz, Castejón, Abengochea, Bilbao, Alzueta (bib79) 2024; 40 Konnov, Ruyck (bib58) 2001; 168 Frigo, Gentili (bib5) 2013; 38 Mebel, Lin, Morokuma, Melius (bib49) 1996; 28 Pan, Cai, Chen (bib30) 2021; 22 Silver, Kolb (bib48) 1980; 75 Valera-Medina, Xiao, Owen-Jones, David, Bowen (bib1) 2018; 69 Rao, Liu, Ma (bib75) 2023; 333 Mathieu, Petersen (bib12) 2015; 162 Park, Lin (bib55) 1997; 101 Niemeyer, Sung, Raju (bib69) 2010; 157 Zhang, Moosakutty, Rajan, Younes, Sarathy (bib22) 2021; 234 Duan, Huang, Mehra, Song, Ma (bib27) 2018; 234 Wang, Ji, Wang, Yang, Wang (bib3) 2021; 46 Otomo, Koshi, Mitsumori, Iwasaki, Yamada (bib19) 2018; 43 Wang, Ji, Shi, Yang, Wang, Ge, Chang, Meng, Wang (bib31) 2023; 263 Miller, Glarborg (bib54) 1999; 31 Rasmussen, Rasmussen, Glarborg (bib56) 2008; 154 Fei, Wang, Miao, Tu, Liu (bib35) 2009; 50 Samu, Varga, Rahinov, Cheskis, Turányi (bib52) 2018; 212 Klippenstein, Harding, Ruscic, Sivaramakrishnan, Srinivasan, Su, V Michael (bib50) 2009; 113 Elishav, Mosevitzky Lis, Miller, Arent, Valera-Medina, Grinberg Dana, Shter, Grader (bib2) 2020; 120 Mei, Zhang, Ma, Cui, Guo, Cao, Li (bib18) 2019; 210 Shi, Jiang, Qian, Liang (bib29) 2022; 7 Goldmann, Dinkelacker (bib11) 2018; 224 Wang, Ji, Shi, Ge, Meng, Yang, Chang, Wang (bib32) 2022; 248 Duan, Yin, Kou, Wang, Zeng, Ma (bib28) 2023; 331 Shrestha (10.1016/j.energy.2025.135259_bib20) 2018; 32 Chen (10.1016/j.energy.2025.135259_bib71) 2016; 174 Duan (10.1016/j.energy.2025.135259_bib27) 2018; 234 Mehra (10.1016/j.energy.2025.135259_bib25) 2019; 246 Niemeyer (10.1016/j.energy.2025.135259_bib69) 2010; 157 Samu (10.1016/j.energy.2025.135259_bib52) 2018; 212 Zhan (10.1016/j.energy.2025.135259_bib76) 2022; 37 Mathieu (10.1016/j.energy.2025.135259_bib12) 2015; 162 Mebel (10.1016/j.energy.2025.135259_bib49) 1996; 28 Wang (10.1016/j.energy.2025.135259_bib32) 2022; 248 Duynslaegher (10.1016/j.energy.2025.135259_bib73) 2012; 159 Shi (10.1016/j.energy.2025.135259_bib29) 2022; 7 Rao (10.1016/j.energy.2025.135259_bib34) 2022; 318 Wang (10.1016/j.energy.2025.135259_bib16) 2021; 46 Otomo (10.1016/j.energy.2025.135259_bib19) 2018; 43 Klaus (10.1016/j.energy.2025.135259_bib66) 1997 Hayakawa (10.1016/j.energy.2025.135259_bib40) 2015; 2 Baulch (10.1016/j.energy.2025.135259_bib59) 1992; 21 Rao (10.1016/j.energy.2025.135259_bib77) 2021; 304 Rao (10.1016/j.energy.2025.135259_bib74) 2017; 42 Gotama (10.1016/j.energy.2025.135259_bib17) 2022; 236 Griffiths (10.1016/j.energy.2025.135259_bib62) 1995 Li (10.1016/j.energy.2025.135259_bib9) 2015; 93 Pfahl (10.1016/j.energy.2025.135259_bib39) 2000; 123 Takizawa (10.1016/j.energy.2025.135259_bib42) 2008; 155 Zakaznov (10.1016/j.energy.2025.135259_bib41) 1978; 14 Wang (10.1016/j.energy.2025.135259_bib3) 2021; 46 Rao (10.1016/j.energy.2025.135259_bib33) 2023; 347 Hidaka (10.1016/j.energy.2025.135259_bib60) 1985; 17 Okafor (10.1016/j.energy.2025.135259_bib38) 2019; 204 Konnov (10.1016/j.energy.2025.135259_bib58) 2001; 168 V Coppens (10.1016/j.energy.2025.135259_bib68) 2007; 149 Pan (10.1016/j.energy.2025.135259_bib30) 2021; 22 Park (10.1016/j.energy.2025.135259_bib55) 1997; 101 Frigo (10.1016/j.energy.2025.135259_bib5) 2013; 38 Duynslaegher (10.1016/j.energy.2025.135259_bib8) 2010; 89 Tian (10.1016/j.energy.2025.135259_bib13) 2009; 156 Frenklach M (10.1016/j.energy.2025.135259_bib44) 1995 Rao (10.1016/j.energy.2025.135259_bib75) 2023; 333 Goldmann (10.1016/j.energy.2025.135259_bib11) 2018; 224 Okafor (10.1016/j.energy.2025.135259_bib21) 2018; 187 Klippenstein (10.1016/j.energy.2025.135259_bib50) 2009; 113 Miller (10.1016/j.energy.2025.135259_bib54) 1999; 31 A (10.1016/j.energy.2025.135259_bib80) 2023; 15 Baulch (10.1016/j.energy.2025.135259_bib46) 2005; 34 Zhang (10.1016/j.energy.2025.135259_bib22) 2021; 234 10.1016/j.energy.2025.135259_bib37 Fei (10.1016/j.energy.2025.135259_bib35) 2009; 50 García-Ruiz (10.1016/j.energy.2025.135259_bib79) 2024; 40 Ichimura (10.1016/j.energy.2025.135259_bib6) 2019; 246 Mueller (10.1016/j.energy.2025.135259_bib63) 1999; 31 Duan (10.1016/j.energy.2025.135259_bib28) 2023; 331 Silver (10.1016/j.energy.2025.135259_bib48) 1980; 75 Tsang (10.1016/j.energy.2025.135259_bib45) 1986; 15 Hong (10.1016/j.energy.2025.135259_bib57) 2011; 33 Valera-Medina (10.1016/j.energy.2025.135259_bib1) 2018; 69 Klippenstein (10.1016/j.energy.2025.135259_bib51) 2011; 158 Abian (10.1016/j.energy.2025.135259_bib47) 2015; 47 V Michael (10.1016/j.energy.2025.135259_bib64) 2000; 28 Najafi (10.1016/j.energy.2025.135259_bib36) 2016; 95 Troe (10.1016/j.energy.2025.135259_bib65) 2000; 28 Ichikawa (10.1016/j.energy.2025.135259_bib7) 2015; 40 Duan (10.1016/j.energy.2025.135259_bib24) 2019; 258 Wang (10.1016/j.energy.2025.135259_bib31) 2023; 263 Ishaq (10.1016/j.energy.2025.135259_bib4) 2021; 135 Nozari (10.1016/j.energy.2025.135259_bib14) 2015; 159 Hayakawa (10.1016/j.energy.2025.135259_bib72) 2015; 159 Ma (10.1016/j.energy.2025.135259_bib78) 2008; 33 Mei (10.1016/j.energy.2025.135259_bib18) 2019; 210 Konnov (10.1016/j.energy.2025.135259_bib15) 2000; 152 Rasmussen (10.1016/j.energy.2025.135259_bib56) 2008; 154 Skreiberg (10.1016/j.energy.2025.135259_bib67) 2004; 136 Pessina (10.1016/j.energy.2025.135259_bib10) 2022; 47 Huang (10.1016/j.energy.2025.135259_bib26) 2016; 41 Lu (10.1016/j.energy.2025.135259_bib70) 2005; 30 Bemand (10.1016/j.energy.2025.135259_bib61) 1974; 2 Klaus (10.1016/j.energy.2025.135259_bib53) 1997; 322 Elishav (10.1016/j.energy.2025.135259_bib2) 2020; 120 Zhou (10.1016/j.energy.2025.135259_bib23) 2023; 248 Zhang (10.1016/j.energy.2025.135259_bib43) 2018 |
| References_xml | – volume: 101 start-page: 2643 year: 1997 end-page: 2647 ident: bib55 article-title: A mass spectrometric study of the NH2+NO2 reaction publication-title: J Phys Chem A – volume: 21 start-page: 411 year: 1992 end-page: 734 ident: bib59 article-title: Evaluated kinetic data for combustion modelling publication-title: J Phys Chem Ref Data – volume: 40 start-page: 9570 year: 2015 end-page: 9578 ident: bib7 article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures publication-title: Int J Hydrogen Energy – volume: 89 start-page: 3540 year: 2010 end-page: 3545 ident: bib8 article-title: Ammonia combustion at elevated pressure and temperature conditions publication-title: Fuel – volume: 33 start-page: 1416 year: 2008 end-page: 1424 ident: bib78 article-title: Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine publication-title: Int J Hydrogen Energy – volume: 31 start-page: 113 year: 1999 end-page: 125 ident: bib63 article-title: Flow reactor studies and kinetic modeling of the H2/O2 reaction publication-title: Int J Chem Kinet – volume: 28 start-page: 1471 year: 2000 end-page: 1478 ident: bib64 article-title: Initiation in H2/O2: rate constants for H2+O2→H+HO2 at high temperature publication-title: Proc Combust Inst – volume: 2 start-page: 564 year: 1974 end-page: 576 ident: bib61 article-title: Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementary reactions: O 3P+ NO2→ NO+O2 and NO+O3→ NO2+ O2 publication-title: J Chem Soc Faraday Trans – volume: 7 start-page: 41732 year: 2022 end-page: 41743 ident: bib29 article-title: Application of the Gaussian process regression method based on a combined kernel function in engine performance prediction publication-title: ACS Omega – volume: 224 start-page: 366 year: 2018 end-page: 378 ident: bib11 article-title: Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures publication-title: Fuel – volume: 187 start-page: 185 year: 2018 end-page: 198 ident: bib21 article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames publication-title: Combust Flame – volume: 95 start-page: 186 year: 2016 end-page: 203 ident: bib36 article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels publication-title: Appl Therm Eng – volume: 149 start-page: 409 year: 2007 end-page: 417 ident: bib68 article-title: The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4+H2+O2+N2 publication-title: Combust Flame – volume: 47 start-page: 518 year: 2015 end-page: 532 ident: bib47 article-title: Formation of NO from N2/O2 mixtures in a flow reactor: toward an accurate prediction of thermal NO publication-title: Int J Chem Kinet – volume: 135 year: 2021 ident: bib4 article-title: Comparative assessment of renewable energy-based hydrogen production methods publication-title: Renew Sustain Energy Rev – volume: 234 year: 2021 ident: bib22 article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling publication-title: Combust Flame – volume: 28 start-page: 693 year: 1996 end-page: 703 ident: bib49 article-title: Theoretical study of reactions of N2O with NO and OH radicals publication-title: Int J Chem Kinet – volume: 162 start-page: 554 year: 2015 end-page: 570 ident: bib12 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust Flame – volume: 212 start-page: 679 year: 2018 end-page: 683 ident: bib52 article-title: Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames publication-title: Fuel – volume: 69 start-page: 63 year: 2018 end-page: 102 ident: bib1 article-title: Ammonia for power publication-title: Prog Energy Combust Sci – volume: 50 start-page: 1604 year: 2009 end-page: 1609 ident: bib35 article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil publication-title: Energy Convers Manag – volume: 32 start-page: 10202 year: 2018 end-page: 10217 ident: bib20 article-title: Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides publication-title: Energy Fuel – volume: 22 start-page: 327 year: 2021 end-page: 334 ident: bib30 article-title: Development of an engine calibration model using Gaussian process regression publication-title: Int J Automot Technol – volume: 248 year: 2022 ident: bib32 article-title: Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine publication-title: Energy – volume: 43 start-page: 3004 year: 2018 end-page: 3014 ident: bib19 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int J Hydrogen Energy – volume: 159 start-page: 2799 year: 2012 end-page: 2805 ident: bib73 article-title: Modeling of ammonia combustion at low pressure publication-title: Combust Flame – volume: 246 start-page: 178 year: 2019 end-page: 186 ident: bib6 article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field publication-title: Fuel – volume: 17 start-page: 441 year: 1985 end-page: 453 ident: bib60 article-title: Thermal decomposition of ethane in shock waves publication-title: Int J Chem Kinet – volume: 159 start-page: 223 year: 2015 end-page: 233 ident: bib14 article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms publication-title: Fuel – volume: 246 start-page: 476 year: 2019 end-page: 490 ident: bib25 article-title: Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): an experimental and artificial neural network study publication-title: Fuel – volume: 333 year: 2023 ident: bib75 article-title: Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms publication-title: Fuel – volume: 15 year: 2023 ident: bib80 article-title: Evolution of ammonia reaction mechanisms and modeling parameters: a review publication-title: Appl. Energy Combust. Sci. – volume: 34 start-page: 757 year: 2005 end-page: 1397 ident: bib46 article-title: Evaluated kinetic data for combustion modeling: supplement II publication-title: J Phys Chem Ref Data – volume: 156 start-page: 1413 year: 2009 end-page: 1426 ident: bib13 article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure publication-title: Combust Flame – volume: 30 start-page: 1333 year: 2005 end-page: 1341 ident: bib70 article-title: A directed relation graph method for mechanism reduction publication-title: Proc Combust Inst – volume: 42 year: 2017 ident: bib74 article-title: Comparative study of the NO publication-title: Int J Hydrogen Energy – volume: 159 start-page: 98 year: 2015 end-page: 106 ident: bib72 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel – volume: 37 year: 2022 ident: bib76 article-title: Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner publication-title: Case Stud Therm Eng – volume: 28 start-page: 1463 year: 2000 end-page: 1469 ident: bib65 article-title: Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M) publication-title: Proc Combust Inst – volume: 136 start-page: 501 year: 2004 end-page: 518 ident: bib67 article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor publication-title: Combust Flame – volume: 304 year: 2021 ident: bib77 article-title: Effect of hydrogen addition on combustion, performance and emission of stoichiometric compressed natural gas fueled internal combustion engine along with exhaust gas recirculation at low, half and high load conditions publication-title: Fuel – volume: 47 start-page: 25780 year: 2022 end-page: 25794 ident: bib10 article-title: Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications publication-title: Int J Hydrogen Energy – reference: Sebastian Raschka, How can I know if Deep learn. Work. Better a specif. Probl. Than SVM or random for. (n.d.).. – volume: 46 start-page: 31879 year: 2021 end-page: 31893 ident: bib16 article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition publication-title: Int J Hydrogen Energy – volume: 123 start-page: 140 year: 2000 end-page: 158 ident: bib39 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures publication-title: Combust Flame – start-page: 358 year: 2018 end-page: 363 ident: bib43 article-title: Gaussian process regression method for classification for high-dimensional data with limited samples publication-title: 2018 eighth int. Conf. Inf. Sci. Technol. – volume: 31 start-page: 757 year: 1999 end-page: 765 ident: bib54 article-title: Modeling the thermal De-NOx process: closing in on a final solution publication-title: Int J Chem Kinet – volume: 93 start-page: 2053 year: 2015 end-page: 2068 ident: bib9 article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion publication-title: Energy – volume: 157 start-page: 1760 year: 2010 end-page: 1770 ident: bib69 article-title: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis publication-title: Combust Flame – volume: 38 start-page: 1607 year: 2013 end-page: 1615 ident: bib5 article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen publication-title: Int J Hydrogen Energy – volume: 210 start-page: 236 year: 2019 end-page: 246 ident: bib18 article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions publication-title: Combust Flame – volume: 33 start-page: 309 year: 2011 end-page: 316 ident: bib57 article-title: A new shock tube study of the H+O2→OH+O reaction rate using tunable diode laser absorption of H2O near 2.5μm publication-title: Proc Combust Inst – volume: 234 start-page: 954 year: 2018 end-page: 964 ident: bib27 article-title: Study on influencing factors of prediction accuracy of support vector machine (SVM) model for NOx emission of a hydrogen enriched compressed natural gas engine publication-title: Fuel – volume: 236 year: 2022 ident: bib17 article-title: Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames publication-title: Combust Flame – volume: 2 start-page: 14 year: 2015 end-page: 402 ident: bib40 article-title: NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures publication-title: Mech Eng J – volume: 41 start-page: 11308 year: 2016 end-page: 11320 ident: bib26 article-title: Intelligent regression algorithm study based on performance and NOx emission experimental data of a hydrogen enriched natural gas engine publication-title: Int J Hydrogen Energy – volume: 155 start-page: 144 year: 2008 end-page: 152 ident: bib42 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J Hazard Mater – volume: 154 start-page: 529 year: 2008 end-page: 545 ident: bib56 article-title: Sensitizing effects of NOx on CH4 oxidation at high pressure publication-title: Combust Flame – volume: 322 start-page: 1 year: 1997 end-page: 4 ident: bib53 article-title: Laboratory measurement of the N=1<-0 rotational transition of NH at 1THz publication-title: Astron Astrophys – year: 1997 ident: bib66 article-title: Eines Detaillierten Reaktionsmechanismus Zur Modellierung Der Bildung von Stickoxiden in Flammenfronten – volume: 263 year: 2023 ident: bib31 article-title: Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm publication-title: Energy – volume: 14 start-page: 710 year: 1978 end-page: 713 ident: bib41 article-title: Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture publication-title: Combust Explos Shock Waves – volume: 158 start-page: 774 year: 2011 end-page: 789 ident: bib51 article-title: The role of NNH in NO formation and control publication-title: Combust Flame – volume: 331 year: 2023 ident: bib28 article-title: Regression prediction of hydrogen enriched compressed natural gas (HCNG) engine performance based on improved particle swarm optimization back propagation neural network method (IMPSO-BPNN) publication-title: Fuel – volume: 113 start-page: 10241 year: 2009 end-page: 10259 ident: bib50 article-title: Thermal decomposition of NH2OH and subsequent reactions: ab initio transition state theory and reflected shock tube experiments publication-title: J Phys Chem A – year: 1995 ident: bib44 article-title: GRI-MECH: an optimized detailed chemical reaction mechanism for methane combustion – volume: 174 start-page: 77 year: 2016 end-page: 84 ident: bib71 article-title: Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms publication-title: Combust Flame – volume: 168 start-page: 1 year: 2001 end-page: 46 ident: bib58 article-title: A possible new route for NO formation VIAN2H3 publication-title: Combust Sci Technol – volume: 318 year: 2022 ident: bib34 article-title: Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation publication-title: Fuel – volume: 46 start-page: 2667 year: 2021 end-page: 2683 ident: bib3 article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions publication-title: Int J Hydrogen Energy – volume: 152 start-page: 23 year: 2000 end-page: 37 ident: bib15 article-title: Kinetic modeling of the thermal decomposition of ammonia publication-title: Combust Sci Technol – volume: 258 year: 2019 ident: bib24 article-title: Experimental study of premixed hydrogen enriched natural gas under an alternating-current (AC) electric field and application of support vector machine (SVM) on electric field assisted combustion publication-title: Fuel – year: 1995., 1995 ident: bib62 article-title: Flame and combustion – volume: 204 start-page: 162 year: 2019 end-page: 175 ident: bib38 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust Flame – volume: 248 year: 2023 ident: bib23 article-title: An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature publication-title: Combust Flame – volume: 40 year: 2024 ident: bib79 article-title: High-pressure study of the conversion of NH3/H2 mixtures in a flow reactor publication-title: Proc Combust Inst – volume: 15 start-page: 1087 year: 1986 end-page: 1279 ident: bib45 article-title: Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds publication-title: J Phys Chem Ref Data – volume: 120 start-page: 5352 year: 2020 end-page: 5436 ident: bib2 article-title: Progress and prospective of nitrogen-based alternative fuels publication-title: Chem. Rev. – volume: 75 start-page: 191 year: 1980 end-page: 195 ident: bib48 article-title: Rate constant for the reaction NH3+OH → NH2+H2O over a wide temperature range publication-title: Chem Phys Lett – volume: 347 year: 2023 ident: bib33 article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’ by advanced machine learning algorithms publication-title: Fuel – volume: 40 year: 2024 ident: 10.1016/j.energy.2025.135259_bib79 article-title: High-pressure study of the conversion of NH3/H2 mixtures in a flow reactor publication-title: Proc Combust Inst doi: 10.1016/j.proci.2024.105726 – volume: 21 start-page: 411 year: 1992 ident: 10.1016/j.energy.2025.135259_bib59 article-title: Evaluated kinetic data for combustion modelling publication-title: J Phys Chem Ref Data doi: 10.1063/1.555908 – volume: 159 start-page: 2799 year: 2012 ident: 10.1016/j.energy.2025.135259_bib73 article-title: Modeling of ammonia combustion at low pressure publication-title: Combust Flame doi: 10.1016/j.combustflame.2012.06.003 – volume: 33 start-page: 1416 year: 2008 ident: 10.1016/j.energy.2025.135259_bib78 article-title: Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.12.040 – volume: 93 start-page: 2053 year: 2015 ident: 10.1016/j.energy.2025.135259_bib9 article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion publication-title: Energy doi: 10.1016/j.energy.2015.10.060 – volume: 248 year: 2023 ident: 10.1016/j.energy.2025.135259_bib23 article-title: An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature publication-title: Combust Flame doi: 10.1016/j.combustflame.2022.112536 – volume: 15 year: 2023 ident: 10.1016/j.energy.2025.135259_bib80 article-title: Evolution of ammonia reaction mechanisms and modeling parameters: a review publication-title: Appl. Energy Combust. Sci. – volume: 38 start-page: 1607 year: 2013 ident: 10.1016/j.energy.2025.135259_bib5 article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.114 – year: 1997 ident: 10.1016/j.energy.2025.135259_bib66 – volume: 33 start-page: 309 year: 2011 ident: 10.1016/j.energy.2025.135259_bib57 article-title: A new shock tube study of the H+O2→OH+O reaction rate using tunable diode laser absorption of H2O near 2.5μm publication-title: Proc Combust Inst doi: 10.1016/j.proci.2010.05.101 – volume: 7 start-page: 41732 year: 2022 ident: 10.1016/j.energy.2025.135259_bib29 article-title: Application of the Gaussian process regression method based on a combined kernel function in engine performance prediction publication-title: ACS Omega doi: 10.1021/acsomega.2c05952 – volume: 75 start-page: 191 year: 1980 ident: 10.1016/j.energy.2025.135259_bib48 article-title: Rate constant for the reaction NH3+OH → NH2+H2O over a wide temperature range publication-title: Chem Phys Lett doi: 10.1016/0009-2614(80)80492-1 – volume: 258 year: 2019 ident: 10.1016/j.energy.2025.135259_bib24 article-title: Experimental study of premixed hydrogen enriched natural gas under an alternating-current (AC) electric field and application of support vector machine (SVM) on electric field assisted combustion publication-title: Fuel doi: 10.1016/j.fuel.2019.115934 – volume: 47 start-page: 518 year: 2015 ident: 10.1016/j.energy.2025.135259_bib47 article-title: Formation of NO from N2/O2 mixtures in a flow reactor: toward an accurate prediction of thermal NO publication-title: Int J Chem Kinet doi: 10.1002/kin.20929 – volume: 113 start-page: 10241 year: 2009 ident: 10.1016/j.energy.2025.135259_bib50 article-title: Thermal decomposition of NH2OH and subsequent reactions: ab initio transition state theory and reflected shock tube experiments publication-title: J Phys Chem A doi: 10.1021/jp905454k – volume: 46 start-page: 2667 year: 2021 ident: 10.1016/j.energy.2025.135259_bib3 article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2020.10.045 – volume: 50 start-page: 1604 year: 2009 ident: 10.1016/j.energy.2025.135259_bib35 article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2009.02.004 – ident: 10.1016/j.energy.2025.135259_bib37 – volume: 95 start-page: 186 year: 2016 ident: 10.1016/j.energy.2025.135259_bib36 article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.11.009 – volume: 157 start-page: 1760 year: 2010 ident: 10.1016/j.energy.2025.135259_bib69 article-title: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis publication-title: Combust Flame doi: 10.1016/j.combustflame.2009.12.022 – volume: 32 start-page: 10202 year: 2018 ident: 10.1016/j.energy.2025.135259_bib20 article-title: Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides publication-title: Energy Fuel doi: 10.1021/acs.energyfuels.8b01056 – volume: 15 start-page: 1087 year: 1986 ident: 10.1016/j.energy.2025.135259_bib45 article-title: Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds publication-title: J Phys Chem Ref Data doi: 10.1063/1.555759 – volume: 210 start-page: 236 year: 2019 ident: 10.1016/j.energy.2025.135259_bib18 article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.08.033 – volume: 41 start-page: 11308 year: 2016 ident: 10.1016/j.energy.2025.135259_bib26 article-title: Intelligent regression algorithm study based on performance and NOx emission experimental data of a hydrogen enriched natural gas engine publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.204 – volume: 155 start-page: 144 year: 2008 ident: 10.1016/j.energy.2025.135259_bib42 article-title: Burning velocity measurements of nitrogen-containing compounds publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2007.11.089 – volume: 149 start-page: 409 year: 2007 ident: 10.1016/j.energy.2025.135259_bib68 article-title: The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4+H2+O2+N2 publication-title: Combust Flame doi: 10.1016/j.combustflame.2007.02.004 – volume: 43 start-page: 3004 year: 2018 ident: 10.1016/j.energy.2025.135259_bib19 article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.066 – volume: 28 start-page: 693 year: 1996 ident: 10.1016/j.energy.2025.135259_bib49 article-title: Theoretical study of reactions of N2O with NO and OH radicals publication-title: Int J Chem Kinet doi: 10.1002/(SICI)1097-4601(1996)28:9<693::AID-KIN8>3.0.CO;2-Q – volume: 69 start-page: 63 year: 2018 ident: 10.1016/j.energy.2025.135259_bib1 article-title: Ammonia for power publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2018.07.001 – volume: 46 start-page: 31879 year: 2021 ident: 10.1016/j.energy.2025.135259_bib16 article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.063 – volume: 28 start-page: 1471 year: 2000 ident: 10.1016/j.energy.2025.135259_bib64 article-title: Initiation in H2/O2: rate constants for H2+O2→H+HO2 at high temperature publication-title: Proc Combust Inst doi: 10.1016/S0082-0784(00)80543-3 – volume: 158 start-page: 774 year: 2011 ident: 10.1016/j.energy.2025.135259_bib51 article-title: The role of NNH in NO formation and control publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.12.013 – volume: 34 start-page: 757 year: 2005 ident: 10.1016/j.energy.2025.135259_bib46 article-title: Evaluated kinetic data for combustion modeling: supplement II publication-title: J Phys Chem Ref Data doi: 10.1063/1.1748524 – volume: 37 year: 2022 ident: 10.1016/j.energy.2025.135259_bib76 article-title: Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner publication-title: Case Stud Therm Eng doi: 10.1016/j.csite.2022.102246 – volume: 318 year: 2022 ident: 10.1016/j.energy.2025.135259_bib34 article-title: Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation publication-title: Fuel doi: 10.1016/j.fuel.2022.123577 – volume: 28 start-page: 1463 year: 2000 ident: 10.1016/j.energy.2025.135259_bib65 article-title: Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M) publication-title: Proc Combust Inst doi: 10.1016/S0082-0784(00)80542-1 – volume: 347 year: 2023 ident: 10.1016/j.energy.2025.135259_bib33 article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’ by advanced machine learning algorithms publication-title: Fuel doi: 10.1016/j.fuel.2023.128244 – volume: 135 year: 2021 ident: 10.1016/j.energy.2025.135259_bib4 article-title: Comparative assessment of renewable energy-based hydrogen production methods publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110192 – volume: 162 start-page: 554 year: 2015 ident: 10.1016/j.energy.2025.135259_bib12 article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry publication-title: Combust Flame doi: 10.1016/j.combustflame.2014.08.022 – volume: 248 year: 2022 ident: 10.1016/j.energy.2025.135259_bib32 article-title: Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine publication-title: Energy doi: 10.1016/j.energy.2022.123611 – volume: 17 start-page: 441 year: 1985 ident: 10.1016/j.energy.2025.135259_bib60 article-title: Thermal decomposition of ethane in shock waves publication-title: Int J Chem Kinet doi: 10.1002/kin.550170410 – volume: 263 year: 2023 ident: 10.1016/j.energy.2025.135259_bib31 article-title: Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm publication-title: Energy doi: 10.1016/j.energy.2022.125961 – year: 1995 ident: 10.1016/j.energy.2025.135259_bib62 – start-page: 358 year: 2018 ident: 10.1016/j.energy.2025.135259_bib43 article-title: Gaussian process regression method for classification for high-dimensional data with limited samples – volume: 234 year: 2021 ident: 10.1016/j.energy.2025.135259_bib22 article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling publication-title: Combust Flame doi: 10.1016/j.combustflame.2021.111653 – volume: 42 year: 2017 ident: 10.1016/j.energy.2025.135259_bib74 article-title: Comparative study of the NOx prediction model of HCNG engine publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.07.107 – volume: 236 year: 2022 ident: 10.1016/j.energy.2025.135259_bib17 article-title: Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames publication-title: Combust Flame doi: 10.1016/j.combustflame.2021.111753 – volume: 120 start-page: 5352 year: 2020 ident: 10.1016/j.energy.2025.135259_bib2 article-title: Progress and prospective of nitrogen-based alternative fuels publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00538 – volume: 156 start-page: 1413 year: 2009 ident: 10.1016/j.energy.2025.135259_bib13 article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure publication-title: Combust Flame doi: 10.1016/j.combustflame.2009.03.005 – volume: 136 start-page: 501 year: 2004 ident: 10.1016/j.energy.2025.135259_bib67 article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor publication-title: Combust Flame doi: 10.1016/j.combustflame.2003.12.008 – volume: 47 start-page: 25780 year: 2022 ident: 10.1016/j.energy.2025.135259_bib10 article-title: Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.06.007 – volume: 159 start-page: 98 year: 2015 ident: 10.1016/j.energy.2025.135259_bib72 article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures publication-title: Fuel doi: 10.1016/j.fuel.2015.06.070 – volume: 331 year: 2023 ident: 10.1016/j.energy.2025.135259_bib28 article-title: Regression prediction of hydrogen enriched compressed natural gas (HCNG) engine performance based on improved particle swarm optimization back propagation neural network method (IMPSO-BPNN) publication-title: Fuel doi: 10.1016/j.fuel.2022.125872 – volume: 204 start-page: 162 year: 2019 ident: 10.1016/j.energy.2025.135259_bib38 article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism publication-title: Combust Flame doi: 10.1016/j.combustflame.2019.03.008 – volume: 168 start-page: 1 year: 2001 ident: 10.1016/j.energy.2025.135259_bib58 article-title: A possible new route for NO formation VIAN2H3 publication-title: Combust Sci Technol doi: 10.1080/00102200108907830 – volume: 152 start-page: 23 year: 2000 ident: 10.1016/j.energy.2025.135259_bib15 article-title: Kinetic modeling of the thermal decomposition of ammonia publication-title: Combust Sci Technol doi: 10.1080/00102200008952125 – volume: 304 year: 2021 ident: 10.1016/j.energy.2025.135259_bib77 article-title: Effect of hydrogen addition on combustion, performance and emission of stoichiometric compressed natural gas fueled internal combustion engine along with exhaust gas recirculation at low, half and high load conditions publication-title: Fuel doi: 10.1016/j.fuel.2021.121358 – volume: 101 start-page: 2643 year: 1997 ident: 10.1016/j.energy.2025.135259_bib55 article-title: A mass spectrometric study of the NH2+NO2 reaction publication-title: J Phys Chem A doi: 10.1021/jp963720u – volume: 40 start-page: 9570 year: 2015 ident: 10.1016/j.energy.2025.135259_bib7 article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.04.024 – volume: 2 start-page: 14 year: 2015 ident: 10.1016/j.energy.2025.135259_bib40 article-title: NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures publication-title: Mech Eng J – volume: 22 start-page: 327 year: 2021 ident: 10.1016/j.energy.2025.135259_bib30 article-title: Development of an engine calibration model using Gaussian process regression publication-title: Int J Automot Technol doi: 10.1007/s12239-021-0031-5 – volume: 174 start-page: 77 year: 2016 ident: 10.1016/j.energy.2025.135259_bib71 article-title: Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.09.006 – volume: 31 start-page: 113 year: 1999 ident: 10.1016/j.energy.2025.135259_bib63 article-title: Flow reactor studies and kinetic modeling of the H2/O2 reaction publication-title: Int J Chem Kinet doi: 10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0 – volume: 322 start-page: 1 year: 1997 ident: 10.1016/j.energy.2025.135259_bib53 article-title: Laboratory measurement of the N=1<-0 rotational transition of NH at 1THz publication-title: Astron Astrophys – volume: 187 start-page: 185 year: 2018 ident: 10.1016/j.energy.2025.135259_bib21 article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames publication-title: Combust Flame doi: 10.1016/j.combustflame.2017.09.002 – volume: 123 start-page: 140 year: 2000 ident: 10.1016/j.energy.2025.135259_bib39 article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures publication-title: Combust Flame doi: 10.1016/S0010-2180(00)00152-8 – volume: 246 start-page: 178 year: 2019 ident: 10.1016/j.energy.2025.135259_bib6 article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field publication-title: Fuel doi: 10.1016/j.fuel.2019.02.110 – volume: 224 start-page: 366 year: 2018 ident: 10.1016/j.energy.2025.135259_bib11 article-title: Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures publication-title: Fuel doi: 10.1016/j.fuel.2018.03.030 – year: 1995 ident: 10.1016/j.energy.2025.135259_bib44 – volume: 212 start-page: 679 year: 2018 ident: 10.1016/j.energy.2025.135259_bib52 article-title: Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames publication-title: Fuel doi: 10.1016/j.fuel.2017.10.019 – volume: 2 start-page: 564 issue: 70 year: 1974 ident: 10.1016/j.energy.2025.135259_bib61 article-title: Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementary reactions: O 3P+ NO2→ NO+O2 and NO+O3→ NO2+ O2 publication-title: J Chem Soc Faraday Trans doi: 10.1039/f29747000564 – volume: 246 start-page: 476 year: 2019 ident: 10.1016/j.energy.2025.135259_bib25 article-title: Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): an experimental and artificial neural network study publication-title: Fuel doi: 10.1016/j.fuel.2019.03.003 – volume: 89 start-page: 3540 year: 2010 ident: 10.1016/j.energy.2025.135259_bib8 article-title: Ammonia combustion at elevated pressure and temperature conditions publication-title: Fuel doi: 10.1016/j.fuel.2010.06.008 – volume: 234 start-page: 954 year: 2018 ident: 10.1016/j.energy.2025.135259_bib27 article-title: Study on influencing factors of prediction accuracy of support vector machine (SVM) model for NOx emission of a hydrogen enriched compressed natural gas engine publication-title: Fuel doi: 10.1016/j.fuel.2018.07.009 – volume: 154 start-page: 529 year: 2008 ident: 10.1016/j.energy.2025.135259_bib56 article-title: Sensitizing effects of NOx on CH4 oxidation at high pressure publication-title: Combust Flame doi: 10.1016/j.combustflame.2008.01.012 – volume: 333 year: 2023 ident: 10.1016/j.energy.2025.135259_bib75 article-title: Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms publication-title: Fuel doi: 10.1016/j.fuel.2022.126320 – volume: 159 start-page: 223 year: 2015 ident: 10.1016/j.energy.2025.135259_bib14 article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms publication-title: Fuel doi: 10.1016/j.fuel.2015.06.075 – volume: 31 start-page: 757 year: 1999 ident: 10.1016/j.energy.2025.135259_bib54 article-title: Modeling the thermal De-NOx process: closing in on a final solution publication-title: Int J Chem Kinet doi: 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V – volume: 30 start-page: 1333 year: 2005 ident: 10.1016/j.energy.2025.135259_bib70 article-title: A directed relation graph method for mechanism reduction publication-title: Proc Combust Inst doi: 10.1016/j.proci.2004.08.145 – volume: 14 start-page: 710 year: 1978 ident: 10.1016/j.energy.2025.135259_bib41 article-title: Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture publication-title: Combust Explos Shock Waves doi: 10.1007/BF00786097 |
| SSID | ssj0005899 |
| Score | 2.4888294 |
| Snippet | The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 135259 |
| SubjectTerms | ammonia Ammonia/hydrogen fuel combustion energy fuels hydrogen Laminar burning speed Machine learning algorithm nitric oxide prediction PSO-SVM Reaction kinetics stoichiometry support vector machines |
| Title | Machine learning-enhanced combustion modeling for predicting laminar burning velocity of ammonia-hydrogen mixtures using improved reaction mechanisms |
| URI | https://dx.doi.org/10.1016/j.energy.2025.135259 https://www.proquest.com/docview/3206195098 |
| Volume | 320 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5ED3oRn_jYlV7w2s5M0pPHUUQZFb2sgrcm3aloBJNhMoJe_Bf-X7_qJOwqwsLe8ug8q1L9Vfr7uoQ4RN5jKYpjRUlQKA2AoWyOYDgqdGYjnTtrWY18dR1NbvXF3fhuQZz0WhimVXaxv43pPlp3Wwbd2xxMy3LwG7EXeEPDIYETgFxYwa5jrmJw9PYXzSPxNSS5seLWvXzOc7zI6-uQJQZjLgAR8Iyl33dPXwK1733O1sRqBxvlcXtn62KBqg2x3KuKmw2xffpHsYaG3SfbbIr3K0-XJNnVh7hXVD34YX-JZ7ZczKuupC-Ig50SGFZOZzx6w3xoCX9hwa7Eq-djJTOMHIC7rAuZsQuXmXp4zWc1_FA-lS88HtFIJtPfy9L_r8B1gEtdexVinXHZPDVb4vbs9OZkorpaDMoFSTJX44yCobbhiPQIoCJKkdiGzhWFQyab68RiMdRFTmHsYJJhgUQsdgBPNKZhYtNwWyxWdUU7QmqeVY5S7NWFpgx4w6U2j7KQq50HAe0K1ZvATNspN0zPRXs0rckMm8y0JtsVcW8n88l1DHqFfxz5qzerwVfFQyVZRfVzY8IAOCcFmEr2_vvs-2KF11qazw-xOJ89008gmLk98C56IJaOzy8n1x84WvVs |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPcClaqGoQAFX4mp213G-jmi1aFtYLgWJmxU7EwgSyWqzSOXCv-D_MuMkKqBKlXqLYjtOPOPxm_iNB-CI_B6LURxLTFQhNQEMaXMyhqNCZzbSubOWo5FnF9H0Sv-8Dq9XYNzHwjCtsrP9rU331rq7M-hGczAvy8Evsr2ENzQpJOEEQi6r8EGHKmYP7PjpFc8j8Ukkubbk6n38nCd5oQ-wIzdRhZwBQvGRpX9fn95Zar_8nH6Cjx1uFCftq32GFaw2Yb0PK242YXvyJ2SNKnZzttmC55nnS6LoEkTcSKxu_b6_oI-2nM2rroTPiEOFgkCsmC94-4YJ0YIUhiN2BY09txVMMXKE3EVdiIx1uMzk7WO-qEkRxX35mzckGsFs-htR-h8W1A8BU9f2ghxoXDb3zRe4Op1cjqeyS8YgnUqSpQwzVENtgxHqEaGKKCXPNnCuKBy5srlOLF0GusgxiB3JZFiQJxY7Qk8Y4jCxabANa1Vd4VcQmo-Vw5RKdaExI8DhUptHWcDpzpXCHZC9CMy8PXPD9GS0O9OKzLDITCuyHYh7OZk3umNoWfhHy--9WA1NK94rySqsHxoTKAI6KaGpZPe_n34I69PL2bk5_3FxtgcbXNJyfr7B2nLxgPsEZ5b2wKvrC-KT9wE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-enhanced+combustion+modeling+for+predicting+laminar+burning+velocity+of+ammonia-hydrogen+mixtures+using+improved+reaction+mechanisms&rft.jtitle=Energy+%28Oxford%29&rft.au=Rao%2C+Anas&rft.au=Li%2C+Wei&rft.au=Abbasi%2C+Muhammad+Salman&rft.au=Shahid%2C+Muhammad+Ihsan&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=320&rft_id=info:doi/10.1016%2Fj.energy.2025.135259&rft.externalDocID=S0360544225009016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |