Machine learning-enhanced combustion modeling for predicting laminar burning velocity of ammonia-hydrogen mixtures using improved reaction mechanisms

The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion mod...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 320; p. 135259
Main Authors Rao, Anas, Li, Wei, Abbasi, Muhammad Salman, Shahid, Muhammad Ihsan, Farhan, Muhammad, Zulfiqar, Sana, Chen, Tianhao, Ma, Fanhua, Li, Xin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2025.135259

Cover

Abstract The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion modeling. To address this, prediction accuracy is improved using refined reaction kinetics and machine learning algorithms. GRI Mech3.0 is refined by enhancing H/O, N2O, HNO, NH, and NH2 mechanisms, forming Model I for pure ammonia and Model II for lean burn ammonia-hydrogen mixtures. The simulated laminar burning speed of these models is compared with literature and seven other mechanisms. Combustion analysis includes sensitivity analysis of coefficients, nitric oxide emission rates, sub-mechanisms, and reaction sensitivities to assess their impact, with machine learning algorithms to improve accuracy. Model II achieves the highest accuracy under stoichiometric (RMSE = 1.4590 cm/s) and lean burn conditions (RMSE = 1.3701 cm/s). As different mechanisms suit various conditions, machine learning algorithms further enhance prediction accuracy. The support vector machine with particle swarm optimization improves computational accuracy by 2.9745 times over reaction kinetics, demonstrating its effectiveness. This study develops refined reaction mechanisms and machine learning models for practical applications in ammonia-hydrogen fueled SI engines. [Display omitted] •Ammonia/hydrogen kinetics has been improved corresponding to the best thermal conditions.•It has been upgraded with the addition of H/O, N2O, HNO, NH & NH2 species.•It has been compared with other mechanisms and machine learning algorithms.•PSO-SVM has the overall best computational accuracy.
AbstractList The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion modeling. To address this, prediction accuracy is improved using refined reaction kinetics and machine learning algorithms. GRI Mech3.0 is refined by enhancing H/O, N₂O, HNO, NH, and NH₂ mechanisms, forming Model I for pure ammonia and Model II for lean burn ammonia-hydrogen mixtures. The simulated laminar burning speed of these models is compared with literature and seven other mechanisms. Combustion analysis includes sensitivity analysis of coefficients, nitric oxide emission rates, sub-mechanisms, and reaction sensitivities to assess their impact, with machine learning algorithms to improve accuracy. Model II achieves the highest accuracy under stoichiometric (RMSE = 1.4590 cm/s) and lean burn conditions (RMSE = 1.3701 cm/s). As different mechanisms suit various conditions, machine learning algorithms further enhance prediction accuracy. The support vector machine with particle swarm optimization improves computational accuracy by 2.9745 times over reaction kinetics, demonstrating its effectiveness. This study develops refined reaction mechanisms and machine learning models for practical applications in ammonia-hydrogen fueled SI engines.
The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence ratios of 0.6–1 and hydrogen fractions of 0.4–0.6. However, existing reaction mechanisms lose accuracy in this range, limiting combustion modeling. To address this, prediction accuracy is improved using refined reaction kinetics and machine learning algorithms. GRI Mech3.0 is refined by enhancing H/O, N2O, HNO, NH, and NH2 mechanisms, forming Model I for pure ammonia and Model II for lean burn ammonia-hydrogen mixtures. The simulated laminar burning speed of these models is compared with literature and seven other mechanisms. Combustion analysis includes sensitivity analysis of coefficients, nitric oxide emission rates, sub-mechanisms, and reaction sensitivities to assess their impact, with machine learning algorithms to improve accuracy. Model II achieves the highest accuracy under stoichiometric (RMSE = 1.4590 cm/s) and lean burn conditions (RMSE = 1.3701 cm/s). As different mechanisms suit various conditions, machine learning algorithms further enhance prediction accuracy. The support vector machine with particle swarm optimization improves computational accuracy by 2.9745 times over reaction kinetics, demonstrating its effectiveness. This study develops refined reaction mechanisms and machine learning models for practical applications in ammonia-hydrogen fueled SI engines. [Display omitted] •Ammonia/hydrogen kinetics has been improved corresponding to the best thermal conditions.•It has been upgraded with the addition of H/O, N2O, HNO, NH & NH2 species.•It has been compared with other mechanisms and machine learning algorithms.•PSO-SVM has the overall best computational accuracy.
ArticleNumber 135259
Author Ma, Fanhua
Abbasi, Muhammad Salman
Li, Wei
Chen, Tianhao
Rao, Anas
Zulfiqar, Sana
Shahid, Muhammad Ihsan
Farhan, Muhammad
Li, Xin
Author_xml – sequence: 1
  givenname: Anas
  surname: Rao
  fullname: Rao, Anas
  organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China
– sequence: 2
  givenname: Wei
  surname: Li
  fullname: Li, Wei
  organization: Engineering Research Center of Hydrogen Energy Equipment & Safety Detection, Xijing University, Xi'an, Shaanxi, 710123, People's Republic of China
– sequence: 3
  givenname: Muhammad Salman
  orcidid: 0000-0002-4510-4490
  surname: Abbasi
  fullname: Abbasi, Muhammad Salman
  organization: Department of Mechanical Engineering, University of Engineering & Technology, Lahore, 54890, Pakistan
– sequence: 4
  givenname: Muhammad Ihsan
  surname: Shahid
  fullname: Shahid, Muhammad Ihsan
  organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China
– sequence: 5
  givenname: Muhammad
  surname: Farhan
  fullname: Farhan, Muhammad
  organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China
– sequence: 6
  givenname: Sana
  surname: Zulfiqar
  fullname: Zulfiqar, Sana
  organization: University of Management and Technology, C-II Block Phase 1 Johar Town, Lahore, Punjab, 54770, Pakistan
– sequence: 7
  givenname: Tianhao
  surname: Chen
  fullname: Chen, Tianhao
  organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China
– sequence: 8
  givenname: Fanhua
  surname: Ma
  fullname: Ma, Fanhua
  email: mafh@tsinghua.edu.cn
  organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China
– sequence: 9
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: School of Vehicle and Mobility, National Key Laboratory of Intelligent Green Vehicles and Transportation, Tsinghua University, Beijing, 100084, People's Republic of China
BookMark eNp9kLtu2zAUhjm4QGy3b5CBYxa5vIiWtBQIjLQJkKJLOxPU0ZFNQyRdUjLqB-n7hoo6dyKJ818Ovw1Z-eCRkHvOdpzx_efzDj3G420nmFA7LpVQzYqsmdyzQpWluCOblM6MMVU3zZr8_W7gZD3SAU301h8L9CfjATsKwbVTGm3w1IUOhzykfYj0ErGzMM7PwTjrTaTt9O6lVxwC2PFGQ0-Nc8FbU5xuXQxHzCH2zzhFTHRKs9a6SwzX3BPRwNKCkKttcukj-dCbIeGnf-eW_Pr69PPwXLz--PZyeHwtQNT1WCiDgpWt5Fjyqhb7ppaVBOh7UEJ2Zd3mqyz7DmUFpRCsrytegVAcFbK6beSWPCy5eZXfE6ZRO5sAh8F4DFPSUrA9bxTLwVtSLlKIIaWIvb5E60y8ac70TF6f9UJez-T1Qj7bviw2zN-4Wow6gcWZr40Io-6C_X_AGzSplxE
Cites_doi 10.1016/j.proci.2024.105726
10.1063/1.555908
10.1016/j.combustflame.2012.06.003
10.1016/j.ijhydene.2007.12.040
10.1016/j.energy.2015.10.060
10.1016/j.combustflame.2022.112536
10.1016/j.ijhydene.2012.10.114
10.1016/j.proci.2010.05.101
10.1021/acsomega.2c05952
10.1016/0009-2614(80)80492-1
10.1016/j.fuel.2019.115934
10.1002/kin.20929
10.1021/jp905454k
10.1016/j.ijhydene.2020.10.045
10.1016/j.enconman.2009.02.004
10.1016/j.applthermaleng.2015.11.009
10.1016/j.combustflame.2009.12.022
10.1021/acs.energyfuels.8b01056
10.1063/1.555759
10.1016/j.combustflame.2019.08.033
10.1016/j.ijhydene.2016.03.204
10.1016/j.jhazmat.2007.11.089
10.1016/j.combustflame.2007.02.004
10.1016/j.ijhydene.2017.12.066
10.1002/(SICI)1097-4601(1996)28:9<693::AID-KIN8>3.0.CO;2-Q
10.1016/j.pecs.2018.07.001
10.1016/j.ijhydene.2021.07.063
10.1016/S0082-0784(00)80543-3
10.1016/j.combustflame.2010.12.013
10.1063/1.1748524
10.1016/j.csite.2022.102246
10.1016/j.fuel.2022.123577
10.1016/S0082-0784(00)80542-1
10.1016/j.fuel.2023.128244
10.1016/j.rser.2020.110192
10.1016/j.combustflame.2014.08.022
10.1016/j.energy.2022.123611
10.1002/kin.550170410
10.1016/j.energy.2022.125961
10.1016/j.combustflame.2021.111653
10.1016/j.ijhydene.2017.07.107
10.1016/j.combustflame.2021.111753
10.1021/acs.chemrev.9b00538
10.1016/j.combustflame.2009.03.005
10.1016/j.combustflame.2003.12.008
10.1016/j.ijhydene.2022.06.007
10.1016/j.fuel.2015.06.070
10.1016/j.fuel.2022.125872
10.1016/j.combustflame.2019.03.008
10.1080/00102200108907830
10.1080/00102200008952125
10.1016/j.fuel.2021.121358
10.1021/jp963720u
10.1016/j.ijhydene.2015.04.024
10.1007/s12239-021-0031-5
10.1016/j.combustflame.2016.09.006
10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0
10.1016/j.combustflame.2017.09.002
10.1016/S0010-2180(00)00152-8
10.1016/j.fuel.2019.02.110
10.1016/j.fuel.2018.03.030
10.1016/j.fuel.2017.10.019
10.1039/f29747000564
10.1016/j.fuel.2019.03.003
10.1016/j.fuel.2010.06.008
10.1016/j.fuel.2018.07.009
10.1016/j.combustflame.2008.01.012
10.1016/j.fuel.2022.126320
10.1016/j.fuel.2015.06.075
10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V
10.1016/j.proci.2004.08.145
10.1007/BF00786097
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2025.135259
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 10_1016_j_energy_2025_135259
S0360544225009016
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAQXK
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ADMUD
ADNMO
ADXHL
AGQPQ
AHHHB
ASPBG
AVWKF
AZFZN
CITATION
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c288t-5ae204b31e41782698373ccffc523d48bcff34fde37c4220f8717c251e5e08b93
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Oct 02 21:40:41 EDT 2025
Wed Oct 01 06:03:17 EDT 2025
Sat Jul 19 17:11:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Ammonia/hydrogen fuel
PSO-SVM
Laminar burning speed
Reaction kinetics
Machine learning algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-5ae204b31e41782698373ccffc523d48bcff34fde37c4220f8717c251e5e08b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4510-4490
PQID 3206195098
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3206195098
crossref_primary_10_1016_j_energy_2025_135259
elsevier_sciencedirect_doi_10_1016_j_energy_2025_135259
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Energy (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ichimura, Hadi, Hashimoto, Hayakawa, Kobayashi, Fujita (bib6) 2019; 246
Klippenstein, Harding, Glarborg, Miller (bib51) 2011; 158
Hayakawa, Goto, Mimoto, Kudo, Kobayashi (bib40) 2015; 2
Hidaka, Shiba, Takuma, Suga (bib60) 1985; 17
Zhou, Cui, Yang, Tan, Wang, Dai, Li, ur Rahman, Wang, Deng, Wang (bib23) 2023; 248
Mueller, Kim, Yetter, Dryer (bib63) 1999; 31
Ma, Wang (bib78) 2008; 33
Konnov, Ruyck (bib15) 2000; 152
Rao, Mehra, Duan, Ma (bib74) 2017; 42
Duynslaegher, Jeanmart, Vandooren (bib8) 2010; 89
Tsang, Hampson (bib45) 1986; 15
Ichikawa, Hayakawa, Kitagawa, Kunkuma Amila Somarathne, Kudo, Kobayashi (bib7) 2015; 40
V Coppens, De Ruyck, Konnov (bib68) 2007; 149
Duynslaegher, Contino, Vandooren, Jeanmart (bib73) 2012; 159
Rao, Liu, Ma (bib34) 2022; 318
Najafi, Ghobadian, Moosavian, Yusaf, Mamat, Kettner, Azmi (bib36) 2016; 95
Rao, Chen, Liu, Ma (bib33) 2023; 347
Sebastian Raschka, How can I know if Deep learn. Work. Better a specif. Probl. Than SVM or random for. (n.d.)..
Takizawa, Takahashi, Tokuhashi, Kondo, Sekiya (bib42) 2008; 155
Griffiths, Barnard, Bradley (bib62) 1995., 1995
Li, Huang, Kobayashi, He, Osaka, Zeng (bib9) 2015; 93
Tian, Li, Zhang, Glarborg, Qi (bib13) 2009; 156
Huang, Ma (bib26) 2016; 41
Mehra, Duan, Luo, Ma (bib25) 2019; 246
Hong, Davidson, Barbour, Hanson (bib57) 2011; 33
Chen, Chen (bib71) 2016; 174
Zhan, Chen, Qin (bib76) 2022; 37
Nozari, Karabeyoğlu (bib14) 2015; 159
Rao, Wu, Kumar Mehra, Duan, Ma (bib77) 2021; 304
Duan, Li, Wang, Mehra, Luo, Xu, Sun, Wang, Ma (bib24) 2019; 258
Klaus, Takano, Winnewisser (bib53) 1997; 322
V Michael, Sutherland, Harding, Wagner (bib64) 2000; 28
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib21) 2018; 187
Frenklach M, Wang, Goldenberg, Smith, Golden (bib44) 1995
Klaus (bib66) 1997
Ishaq, Dincer (bib4) 2021; 135
Shrestha, Seidel, Zeuch, Mauss (bib20) 2018; 32
Okafor, Naito, Colson, Ichikawa, Kudo, Hayakawa, Kobayashi (bib38) 2019; 204
Bemand, Clyne, Watson (bib61) 1974; 2
Zakaznov, Kursheva, Fedina (bib41) 1978; 14
Abian, Alzueta, Glarborg (bib47) 2015; 47
Skreiberg, Kilpinen, Glarborg (bib67) 2004; 136
Pfahl, Ross, Shepherd, Pasamehmetoglu, Unal (bib39) 2000; 123
Zhang, Xiong, Zhong, Leatham (bib43) 2018
Baulch, Bowman, Cobos, Cox, Just, Kerr, Pilling, Stocker, Troe, Tsang, Walker, Warnatz (bib46) 2005; 34
Hayakawa, Goto, Mimoto, Arakawa, Kudo, Kobayashi (bib72) 2015; 159
Baulch, Cobos, Cox, Esser, Frank, Just, Kerr, Pilling, Troe, Walker, Warnatz (bib59) 1992; 21
Troe (bib65) 2000; 28
Gotama, Hayakawa, Okafor, Kanoshima, Hayashi, Kudo, Kobayashi (bib17) 2022; 236
Wang, Huang, Zhang, Li, Yi, Wu, Chen (bib16) 2021; 46
Pessina, Berni, Fontanesi, Stagni, Mehl (bib10) 2022; 47
A, S, H, M, P, D, A (bib80) 2023; 15
Lu, Law (bib70) 2005; 30
García-Ruiz, Castejón, Abengochea, Bilbao, Alzueta (bib79) 2024; 40
Konnov, Ruyck (bib58) 2001; 168
Frigo, Gentili (bib5) 2013; 38
Mebel, Lin, Morokuma, Melius (bib49) 1996; 28
Pan, Cai, Chen (bib30) 2021; 22
Silver, Kolb (bib48) 1980; 75
Valera-Medina, Xiao, Owen-Jones, David, Bowen (bib1) 2018; 69
Rao, Liu, Ma (bib75) 2023; 333
Mathieu, Petersen (bib12) 2015; 162
Park, Lin (bib55) 1997; 101
Niemeyer, Sung, Raju (bib69) 2010; 157
Zhang, Moosakutty, Rajan, Younes, Sarathy (bib22) 2021; 234
Duan, Huang, Mehra, Song, Ma (bib27) 2018; 234
Wang, Ji, Wang, Yang, Wang (bib3) 2021; 46
Otomo, Koshi, Mitsumori, Iwasaki, Yamada (bib19) 2018; 43
Wang, Ji, Shi, Yang, Wang, Ge, Chang, Meng, Wang (bib31) 2023; 263
Miller, Glarborg (bib54) 1999; 31
Rasmussen, Rasmussen, Glarborg (bib56) 2008; 154
Fei, Wang, Miao, Tu, Liu (bib35) 2009; 50
Samu, Varga, Rahinov, Cheskis, Turányi (bib52) 2018; 212
Klippenstein, Harding, Ruscic, Sivaramakrishnan, Srinivasan, Su, V Michael (bib50) 2009; 113
Elishav, Mosevitzky Lis, Miller, Arent, Valera-Medina, Grinberg Dana, Shter, Grader (bib2) 2020; 120
Mei, Zhang, Ma, Cui, Guo, Cao, Li (bib18) 2019; 210
Shi, Jiang, Qian, Liang (bib29) 2022; 7
Goldmann, Dinkelacker (bib11) 2018; 224
Wang, Ji, Shi, Ge, Meng, Yang, Chang, Wang (bib32) 2022; 248
Duan, Yin, Kou, Wang, Zeng, Ma (bib28) 2023; 331
Shrestha (10.1016/j.energy.2025.135259_bib20) 2018; 32
Chen (10.1016/j.energy.2025.135259_bib71) 2016; 174
Duan (10.1016/j.energy.2025.135259_bib27) 2018; 234
Mehra (10.1016/j.energy.2025.135259_bib25) 2019; 246
Niemeyer (10.1016/j.energy.2025.135259_bib69) 2010; 157
Samu (10.1016/j.energy.2025.135259_bib52) 2018; 212
Zhan (10.1016/j.energy.2025.135259_bib76) 2022; 37
Mathieu (10.1016/j.energy.2025.135259_bib12) 2015; 162
Mebel (10.1016/j.energy.2025.135259_bib49) 1996; 28
Wang (10.1016/j.energy.2025.135259_bib32) 2022; 248
Duynslaegher (10.1016/j.energy.2025.135259_bib73) 2012; 159
Shi (10.1016/j.energy.2025.135259_bib29) 2022; 7
Rao (10.1016/j.energy.2025.135259_bib34) 2022; 318
Wang (10.1016/j.energy.2025.135259_bib16) 2021; 46
Otomo (10.1016/j.energy.2025.135259_bib19) 2018; 43
Klaus (10.1016/j.energy.2025.135259_bib66) 1997
Hayakawa (10.1016/j.energy.2025.135259_bib40) 2015; 2
Baulch (10.1016/j.energy.2025.135259_bib59) 1992; 21
Rao (10.1016/j.energy.2025.135259_bib77) 2021; 304
Rao (10.1016/j.energy.2025.135259_bib74) 2017; 42
Gotama (10.1016/j.energy.2025.135259_bib17) 2022; 236
Griffiths (10.1016/j.energy.2025.135259_bib62) 1995
Li (10.1016/j.energy.2025.135259_bib9) 2015; 93
Pfahl (10.1016/j.energy.2025.135259_bib39) 2000; 123
Takizawa (10.1016/j.energy.2025.135259_bib42) 2008; 155
Zakaznov (10.1016/j.energy.2025.135259_bib41) 1978; 14
Wang (10.1016/j.energy.2025.135259_bib3) 2021; 46
Rao (10.1016/j.energy.2025.135259_bib33) 2023; 347
Hidaka (10.1016/j.energy.2025.135259_bib60) 1985; 17
Okafor (10.1016/j.energy.2025.135259_bib38) 2019; 204
Konnov (10.1016/j.energy.2025.135259_bib58) 2001; 168
V Coppens (10.1016/j.energy.2025.135259_bib68) 2007; 149
Pan (10.1016/j.energy.2025.135259_bib30) 2021; 22
Park (10.1016/j.energy.2025.135259_bib55) 1997; 101
Frigo (10.1016/j.energy.2025.135259_bib5) 2013; 38
Duynslaegher (10.1016/j.energy.2025.135259_bib8) 2010; 89
Tian (10.1016/j.energy.2025.135259_bib13) 2009; 156
Frenklach M (10.1016/j.energy.2025.135259_bib44) 1995
Rao (10.1016/j.energy.2025.135259_bib75) 2023; 333
Goldmann (10.1016/j.energy.2025.135259_bib11) 2018; 224
Okafor (10.1016/j.energy.2025.135259_bib21) 2018; 187
Klippenstein (10.1016/j.energy.2025.135259_bib50) 2009; 113
Miller (10.1016/j.energy.2025.135259_bib54) 1999; 31
A (10.1016/j.energy.2025.135259_bib80) 2023; 15
Baulch (10.1016/j.energy.2025.135259_bib46) 2005; 34
Zhang (10.1016/j.energy.2025.135259_bib22) 2021; 234
10.1016/j.energy.2025.135259_bib37
Fei (10.1016/j.energy.2025.135259_bib35) 2009; 50
García-Ruiz (10.1016/j.energy.2025.135259_bib79) 2024; 40
Ichimura (10.1016/j.energy.2025.135259_bib6) 2019; 246
Mueller (10.1016/j.energy.2025.135259_bib63) 1999; 31
Duan (10.1016/j.energy.2025.135259_bib28) 2023; 331
Silver (10.1016/j.energy.2025.135259_bib48) 1980; 75
Tsang (10.1016/j.energy.2025.135259_bib45) 1986; 15
Hong (10.1016/j.energy.2025.135259_bib57) 2011; 33
Valera-Medina (10.1016/j.energy.2025.135259_bib1) 2018; 69
Klippenstein (10.1016/j.energy.2025.135259_bib51) 2011; 158
Abian (10.1016/j.energy.2025.135259_bib47) 2015; 47
V Michael (10.1016/j.energy.2025.135259_bib64) 2000; 28
Najafi (10.1016/j.energy.2025.135259_bib36) 2016; 95
Troe (10.1016/j.energy.2025.135259_bib65) 2000; 28
Ichikawa (10.1016/j.energy.2025.135259_bib7) 2015; 40
Duan (10.1016/j.energy.2025.135259_bib24) 2019; 258
Wang (10.1016/j.energy.2025.135259_bib31) 2023; 263
Ishaq (10.1016/j.energy.2025.135259_bib4) 2021; 135
Nozari (10.1016/j.energy.2025.135259_bib14) 2015; 159
Hayakawa (10.1016/j.energy.2025.135259_bib72) 2015; 159
Ma (10.1016/j.energy.2025.135259_bib78) 2008; 33
Mei (10.1016/j.energy.2025.135259_bib18) 2019; 210
Konnov (10.1016/j.energy.2025.135259_bib15) 2000; 152
Rasmussen (10.1016/j.energy.2025.135259_bib56) 2008; 154
Skreiberg (10.1016/j.energy.2025.135259_bib67) 2004; 136
Pessina (10.1016/j.energy.2025.135259_bib10) 2022; 47
Huang (10.1016/j.energy.2025.135259_bib26) 2016; 41
Lu (10.1016/j.energy.2025.135259_bib70) 2005; 30
Bemand (10.1016/j.energy.2025.135259_bib61) 1974; 2
Klaus (10.1016/j.energy.2025.135259_bib53) 1997; 322
Elishav (10.1016/j.energy.2025.135259_bib2) 2020; 120
Zhou (10.1016/j.energy.2025.135259_bib23) 2023; 248
Zhang (10.1016/j.energy.2025.135259_bib43) 2018
References_xml – volume: 101
  start-page: 2643
  year: 1997
  end-page: 2647
  ident: bib55
  article-title: A mass spectrometric study of the NH2+NO2 reaction
  publication-title: J Phys Chem A
– volume: 21
  start-page: 411
  year: 1992
  end-page: 734
  ident: bib59
  article-title: Evaluated kinetic data for combustion modelling
  publication-title: J Phys Chem Ref Data
– volume: 40
  start-page: 9570
  year: 2015
  end-page: 9578
  ident: bib7
  article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures
  publication-title: Int J Hydrogen Energy
– volume: 89
  start-page: 3540
  year: 2010
  end-page: 3545
  ident: bib8
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
– volume: 33
  start-page: 1416
  year: 2008
  end-page: 1424
  ident: bib78
  article-title: Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine
  publication-title: Int J Hydrogen Energy
– volume: 31
  start-page: 113
  year: 1999
  end-page: 125
  ident: bib63
  article-title: Flow reactor studies and kinetic modeling of the H2/O2 reaction
  publication-title: Int J Chem Kinet
– volume: 28
  start-page: 1471
  year: 2000
  end-page: 1478
  ident: bib64
  article-title: Initiation in H2/O2: rate constants for H2+O2→H+HO2 at high temperature
  publication-title: Proc Combust Inst
– volume: 2
  start-page: 564
  year: 1974
  end-page: 576
  ident: bib61
  article-title: Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementary reactions: O 3P+ NO2→ NO+O2 and NO+O3→ NO2+ O2
  publication-title: J Chem Soc Faraday Trans
– volume: 7
  start-page: 41732
  year: 2022
  end-page: 41743
  ident: bib29
  article-title: Application of the Gaussian process regression method based on a combined kernel function in engine performance prediction
  publication-title: ACS Omega
– volume: 224
  start-page: 366
  year: 2018
  end-page: 378
  ident: bib11
  article-title: Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures
  publication-title: Fuel
– volume: 187
  start-page: 185
  year: 2018
  end-page: 198
  ident: bib21
  article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames
  publication-title: Combust Flame
– volume: 95
  start-page: 186
  year: 2016
  end-page: 203
  ident: bib36
  article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels
  publication-title: Appl Therm Eng
– volume: 149
  start-page: 409
  year: 2007
  end-page: 417
  ident: bib68
  article-title: The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4+H2+O2+N2
  publication-title: Combust Flame
– volume: 47
  start-page: 518
  year: 2015
  end-page: 532
  ident: bib47
  article-title: Formation of NO from N2/O2 mixtures in a flow reactor: toward an accurate prediction of thermal NO
  publication-title: Int J Chem Kinet
– volume: 135
  year: 2021
  ident: bib4
  article-title: Comparative assessment of renewable energy-based hydrogen production methods
  publication-title: Renew Sustain Energy Rev
– volume: 234
  year: 2021
  ident: bib22
  article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling
  publication-title: Combust Flame
– volume: 28
  start-page: 693
  year: 1996
  end-page: 703
  ident: bib49
  article-title: Theoretical study of reactions of N2O with NO and OH radicals
  publication-title: Int J Chem Kinet
– volume: 162
  start-page: 554
  year: 2015
  end-page: 570
  ident: bib12
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust Flame
– volume: 212
  start-page: 679
  year: 2018
  end-page: 683
  ident: bib52
  article-title: Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames
  publication-title: Fuel
– volume: 69
  start-page: 63
  year: 2018
  end-page: 102
  ident: bib1
  article-title: Ammonia for power
  publication-title: Prog Energy Combust Sci
– volume: 50
  start-page: 1604
  year: 2009
  end-page: 1609
  ident: bib35
  article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil
  publication-title: Energy Convers Manag
– volume: 32
  start-page: 10202
  year: 2018
  end-page: 10217
  ident: bib20
  article-title: Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides
  publication-title: Energy Fuel
– volume: 22
  start-page: 327
  year: 2021
  end-page: 334
  ident: bib30
  article-title: Development of an engine calibration model using Gaussian process regression
  publication-title: Int J Automot Technol
– volume: 248
  year: 2022
  ident: bib32
  article-title: Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine
  publication-title: Energy
– volume: 43
  start-page: 3004
  year: 2018
  end-page: 3014
  ident: bib19
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int J Hydrogen Energy
– volume: 159
  start-page: 2799
  year: 2012
  end-page: 2805
  ident: bib73
  article-title: Modeling of ammonia combustion at low pressure
  publication-title: Combust Flame
– volume: 246
  start-page: 178
  year: 2019
  end-page: 186
  ident: bib6
  article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field
  publication-title: Fuel
– volume: 17
  start-page: 441
  year: 1985
  end-page: 453
  ident: bib60
  article-title: Thermal decomposition of ethane in shock waves
  publication-title: Int J Chem Kinet
– volume: 159
  start-page: 223
  year: 2015
  end-page: 233
  ident: bib14
  article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms
  publication-title: Fuel
– volume: 246
  start-page: 476
  year: 2019
  end-page: 490
  ident: bib25
  article-title: Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): an experimental and artificial neural network study
  publication-title: Fuel
– volume: 333
  year: 2023
  ident: bib75
  article-title: Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms
  publication-title: Fuel
– volume: 15
  year: 2023
  ident: bib80
  article-title: Evolution of ammonia reaction mechanisms and modeling parameters: a review
  publication-title: Appl. Energy Combust. Sci.
– volume: 34
  start-page: 757
  year: 2005
  end-page: 1397
  ident: bib46
  article-title: Evaluated kinetic data for combustion modeling: supplement II
  publication-title: J Phys Chem Ref Data
– volume: 156
  start-page: 1413
  year: 2009
  end-page: 1426
  ident: bib13
  article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure
  publication-title: Combust Flame
– volume: 30
  start-page: 1333
  year: 2005
  end-page: 1341
  ident: bib70
  article-title: A directed relation graph method for mechanism reduction
  publication-title: Proc Combust Inst
– volume: 42
  year: 2017
  ident: bib74
  article-title: Comparative study of the NO
  publication-title: Int J Hydrogen Energy
– volume: 159
  start-page: 98
  year: 2015
  end-page: 106
  ident: bib72
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
– volume: 37
  year: 2022
  ident: bib76
  article-title: Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner
  publication-title: Case Stud Therm Eng
– volume: 28
  start-page: 1463
  year: 2000
  end-page: 1469
  ident: bib65
  article-title: Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M)
  publication-title: Proc Combust Inst
– volume: 136
  start-page: 501
  year: 2004
  end-page: 518
  ident: bib67
  article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor
  publication-title: Combust Flame
– volume: 304
  year: 2021
  ident: bib77
  article-title: Effect of hydrogen addition on combustion, performance and emission of stoichiometric compressed natural gas fueled internal combustion engine along with exhaust gas recirculation at low, half and high load conditions
  publication-title: Fuel
– volume: 47
  start-page: 25780
  year: 2022
  end-page: 25794
  ident: bib10
  article-title: Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications
  publication-title: Int J Hydrogen Energy
– reference: Sebastian Raschka, How can I know if Deep learn. Work. Better a specif. Probl. Than SVM or random for. (n.d.)..
– volume: 46
  start-page: 31879
  year: 2021
  end-page: 31893
  ident: bib16
  article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition
  publication-title: Int J Hydrogen Energy
– volume: 123
  start-page: 140
  year: 2000
  end-page: 158
  ident: bib39
  article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures
  publication-title: Combust Flame
– start-page: 358
  year: 2018
  end-page: 363
  ident: bib43
  article-title: Gaussian process regression method for classification for high-dimensional data with limited samples
  publication-title: 2018 eighth int. Conf. Inf. Sci. Technol.
– volume: 31
  start-page: 757
  year: 1999
  end-page: 765
  ident: bib54
  article-title: Modeling the thermal De-NOx process: closing in on a final solution
  publication-title: Int J Chem Kinet
– volume: 93
  start-page: 2053
  year: 2015
  end-page: 2068
  ident: bib9
  article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion
  publication-title: Energy
– volume: 157
  start-page: 1760
  year: 2010
  end-page: 1770
  ident: bib69
  article-title: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis
  publication-title: Combust Flame
– volume: 38
  start-page: 1607
  year: 2013
  end-page: 1615
  ident: bib5
  article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen
  publication-title: Int J Hydrogen Energy
– volume: 210
  start-page: 236
  year: 2019
  end-page: 246
  ident: bib18
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combust Flame
– volume: 33
  start-page: 309
  year: 2011
  end-page: 316
  ident: bib57
  article-title: A new shock tube study of the H+O2→OH+O reaction rate using tunable diode laser absorption of H2O near 2.5μm
  publication-title: Proc Combust Inst
– volume: 234
  start-page: 954
  year: 2018
  end-page: 964
  ident: bib27
  article-title: Study on influencing factors of prediction accuracy of support vector machine (SVM) model for NOx emission of a hydrogen enriched compressed natural gas engine
  publication-title: Fuel
– volume: 236
  year: 2022
  ident: bib17
  article-title: Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames
  publication-title: Combust Flame
– volume: 2
  start-page: 14
  year: 2015
  end-page: 402
  ident: bib40
  article-title: NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures
  publication-title: Mech Eng J
– volume: 41
  start-page: 11308
  year: 2016
  end-page: 11320
  ident: bib26
  article-title: Intelligent regression algorithm study based on performance and NOx emission experimental data of a hydrogen enriched natural gas engine
  publication-title: Int J Hydrogen Energy
– volume: 155
  start-page: 144
  year: 2008
  end-page: 152
  ident: bib42
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J Hazard Mater
– volume: 154
  start-page: 529
  year: 2008
  end-page: 545
  ident: bib56
  article-title: Sensitizing effects of NOx on CH4 oxidation at high pressure
  publication-title: Combust Flame
– volume: 322
  start-page: 1
  year: 1997
  end-page: 4
  ident: bib53
  article-title: Laboratory measurement of the N=1<-0 rotational transition of NH at 1THz
  publication-title: Astron Astrophys
– year: 1997
  ident: bib66
  article-title: Eines Detaillierten Reaktionsmechanismus Zur Modellierung Der Bildung von Stickoxiden in Flammenfronten
– volume: 263
  year: 2023
  ident: bib31
  article-title: Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm
  publication-title: Energy
– volume: 14
  start-page: 710
  year: 1978
  end-page: 713
  ident: bib41
  article-title: Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture
  publication-title: Combust Explos Shock Waves
– volume: 158
  start-page: 774
  year: 2011
  end-page: 789
  ident: bib51
  article-title: The role of NNH in NO formation and control
  publication-title: Combust Flame
– volume: 331
  year: 2023
  ident: bib28
  article-title: Regression prediction of hydrogen enriched compressed natural gas (HCNG) engine performance based on improved particle swarm optimization back propagation neural network method (IMPSO-BPNN)
  publication-title: Fuel
– volume: 113
  start-page: 10241
  year: 2009
  end-page: 10259
  ident: bib50
  article-title: Thermal decomposition of NH2OH and subsequent reactions: ab initio transition state theory and reflected shock tube experiments
  publication-title: J Phys Chem A
– year: 1995
  ident: bib44
  article-title: GRI-MECH: an optimized detailed chemical reaction mechanism for methane combustion
– volume: 174
  start-page: 77
  year: 2016
  end-page: 84
  ident: bib71
  article-title: Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms
  publication-title: Combust Flame
– volume: 168
  start-page: 1
  year: 2001
  end-page: 46
  ident: bib58
  article-title: A possible new route for NO formation VIAN2H3
  publication-title: Combust Sci Technol
– volume: 318
  year: 2022
  ident: bib34
  article-title: Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation
  publication-title: Fuel
– volume: 46
  start-page: 2667
  year: 2021
  end-page: 2683
  ident: bib3
  article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions
  publication-title: Int J Hydrogen Energy
– volume: 152
  start-page: 23
  year: 2000
  end-page: 37
  ident: bib15
  article-title: Kinetic modeling of the thermal decomposition of ammonia
  publication-title: Combust Sci Technol
– volume: 258
  year: 2019
  ident: bib24
  article-title: Experimental study of premixed hydrogen enriched natural gas under an alternating-current (AC) electric field and application of support vector machine (SVM) on electric field assisted combustion
  publication-title: Fuel
– year: 1995., 1995
  ident: bib62
  article-title: Flame and combustion
– volume: 204
  start-page: 162
  year: 2019
  end-page: 175
  ident: bib38
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust Flame
– volume: 248
  year: 2023
  ident: bib23
  article-title: An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature
  publication-title: Combust Flame
– volume: 40
  year: 2024
  ident: bib79
  article-title: High-pressure study of the conversion of NH3/H2 mixtures in a flow reactor
  publication-title: Proc Combust Inst
– volume: 15
  start-page: 1087
  year: 1986
  end-page: 1279
  ident: bib45
  article-title: Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds
  publication-title: J Phys Chem Ref Data
– volume: 120
  start-page: 5352
  year: 2020
  end-page: 5436
  ident: bib2
  article-title: Progress and prospective of nitrogen-based alternative fuels
  publication-title: Chem. Rev.
– volume: 75
  start-page: 191
  year: 1980
  end-page: 195
  ident: bib48
  article-title: Rate constant for the reaction NH3+OH → NH2+H2O over a wide temperature range
  publication-title: Chem Phys Lett
– volume: 347
  year: 2023
  ident: bib33
  article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’ by advanced machine learning algorithms
  publication-title: Fuel
– volume: 40
  year: 2024
  ident: 10.1016/j.energy.2025.135259_bib79
  article-title: High-pressure study of the conversion of NH3/H2 mixtures in a flow reactor
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2024.105726
– volume: 21
  start-page: 411
  year: 1992
  ident: 10.1016/j.energy.2025.135259_bib59
  article-title: Evaluated kinetic data for combustion modelling
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.555908
– volume: 159
  start-page: 2799
  year: 2012
  ident: 10.1016/j.energy.2025.135259_bib73
  article-title: Modeling of ammonia combustion at low pressure
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2012.06.003
– volume: 33
  start-page: 1416
  year: 2008
  ident: 10.1016/j.energy.2025.135259_bib78
  article-title: Study on the extension of lean operation limit through hydrogen enrichment in a natural gas spark-ignition engine
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.12.040
– volume: 93
  start-page: 2053
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib9
  article-title: Numerical study on effect of oxygen content in combustion air on ammonia combustion
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.060
– volume: 248
  year: 2023
  ident: 10.1016/j.energy.2025.135259_bib23
  article-title: An experimental and kinetic modeling study on NH3/air, NH3/H2/air, NH3/CO/air, and NH3/CH4/air premixed laminar flames at elevated temperature
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2022.112536
– volume: 15
  year: 2023
  ident: 10.1016/j.energy.2025.135259_bib80
  article-title: Evolution of ammonia reaction mechanisms and modeling parameters: a review
  publication-title: Appl. Energy Combust. Sci.
– volume: 38
  start-page: 1607
  year: 2013
  ident: 10.1016/j.energy.2025.135259_bib5
  article-title: Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.114
– year: 1997
  ident: 10.1016/j.energy.2025.135259_bib66
– volume: 33
  start-page: 309
  year: 2011
  ident: 10.1016/j.energy.2025.135259_bib57
  article-title: A new shock tube study of the H+O2→OH+O reaction rate using tunable diode laser absorption of H2O near 2.5μm
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2010.05.101
– volume: 7
  start-page: 41732
  year: 2022
  ident: 10.1016/j.energy.2025.135259_bib29
  article-title: Application of the Gaussian process regression method based on a combined kernel function in engine performance prediction
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05952
– volume: 75
  start-page: 191
  year: 1980
  ident: 10.1016/j.energy.2025.135259_bib48
  article-title: Rate constant for the reaction NH3+OH → NH2+H2O over a wide temperature range
  publication-title: Chem Phys Lett
  doi: 10.1016/0009-2614(80)80492-1
– volume: 258
  year: 2019
  ident: 10.1016/j.energy.2025.135259_bib24
  article-title: Experimental study of premixed hydrogen enriched natural gas under an alternating-current (AC) electric field and application of support vector machine (SVM) on electric field assisted combustion
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.115934
– volume: 47
  start-page: 518
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib47
  article-title: Formation of NO from N2/O2 mixtures in a flow reactor: toward an accurate prediction of thermal NO
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.20929
– volume: 113
  start-page: 10241
  year: 2009
  ident: 10.1016/j.energy.2025.135259_bib50
  article-title: Thermal decomposition of NH2OH and subsequent reactions: ab initio transition state theory and reflected shock tube experiments
  publication-title: J Phys Chem A
  doi: 10.1021/jp905454k
– volume: 46
  start-page: 2667
  year: 2021
  ident: 10.1016/j.energy.2025.135259_bib3
  article-title: Numerical study of the premixed ammonia-hydrogen combustion under engine-relevant conditions
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.10.045
– volume: 50
  start-page: 1604
  year: 2009
  ident: 10.1016/j.energy.2025.135259_bib35
  article-title: Particle swarm optimization-based support vector machine for forecasting dissolved gases content in power transformer oil
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2009.02.004
– ident: 10.1016/j.energy.2025.135259_bib37
– volume: 95
  start-page: 186
  year: 2016
  ident: 10.1016/j.energy.2025.135259_bib36
  article-title: SVM and ANFIS for prediction of performance and exhaust emissions of a SI engine with gasoline–ethanol blended fuels
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.11.009
– volume: 157
  start-page: 1760
  year: 2010
  ident: 10.1016/j.energy.2025.135259_bib69
  article-title: Skeletal mechanism generation for surrogate fuels using directed relation graph with error propagation and sensitivity analysis
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2009.12.022
– volume: 32
  start-page: 10202
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib20
  article-title: Detailed kinetic mechanism for the oxidation of ammonia including the formation and reduction of nitrogen oxides
  publication-title: Energy Fuel
  doi: 10.1021/acs.energyfuels.8b01056
– volume: 15
  start-page: 1087
  year: 1986
  ident: 10.1016/j.energy.2025.135259_bib45
  article-title: Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.555759
– volume: 210
  start-page: 236
  year: 2019
  ident: 10.1016/j.energy.2025.135259_bib18
  article-title: Experimental and kinetic modeling investigation on the laminar flame propagation of ammonia under oxygen enrichment and elevated pressure conditions
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.08.033
– volume: 41
  start-page: 11308
  year: 2016
  ident: 10.1016/j.energy.2025.135259_bib26
  article-title: Intelligent regression algorithm study based on performance and NOx emission experimental data of a hydrogen enriched natural gas engine
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.204
– volume: 155
  start-page: 144
  year: 2008
  ident: 10.1016/j.energy.2025.135259_bib42
  article-title: Burning velocity measurements of nitrogen-containing compounds
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2007.11.089
– volume: 149
  start-page: 409
  year: 2007
  ident: 10.1016/j.energy.2025.135259_bib68
  article-title: The effects of composition on burning velocity and nitric oxide formation in laminar premixed flames of CH4+H2+O2+N2
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2007.02.004
– volume: 43
  start-page: 3004
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib19
  article-title: Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.066
– volume: 28
  start-page: 693
  year: 1996
  ident: 10.1016/j.energy.2025.135259_bib49
  article-title: Theoretical study of reactions of N2O with NO and OH radicals
  publication-title: Int J Chem Kinet
  doi: 10.1002/(SICI)1097-4601(1996)28:9<693::AID-KIN8>3.0.CO;2-Q
– volume: 69
  start-page: 63
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib1
  article-title: Ammonia for power
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2018.07.001
– volume: 46
  start-page: 31879
  year: 2021
  ident: 10.1016/j.energy.2025.135259_bib16
  article-title: Laminar burning characteristics of ammonia/hydrogen/air mixtures with laser ignition
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.07.063
– volume: 28
  start-page: 1471
  year: 2000
  ident: 10.1016/j.energy.2025.135259_bib64
  article-title: Initiation in H2/O2: rate constants for H2+O2→H+HO2 at high temperature
  publication-title: Proc Combust Inst
  doi: 10.1016/S0082-0784(00)80543-3
– volume: 158
  start-page: 774
  year: 2011
  ident: 10.1016/j.energy.2025.135259_bib51
  article-title: The role of NNH in NO formation and control
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.12.013
– volume: 34
  start-page: 757
  year: 2005
  ident: 10.1016/j.energy.2025.135259_bib46
  article-title: Evaluated kinetic data for combustion modeling: supplement II
  publication-title: J Phys Chem Ref Data
  doi: 10.1063/1.1748524
– volume: 37
  year: 2022
  ident: 10.1016/j.energy.2025.135259_bib76
  article-title: Effect of hydrogen-blended natural gas on combustion stability and emission of water heater burner
  publication-title: Case Stud Therm Eng
  doi: 10.1016/j.csite.2022.102246
– volume: 318
  year: 2022
  ident: 10.1016/j.energy.2025.135259_bib34
  article-title: Study of NOx emission for hydrogen enriched compressed natural along with exhaust gas recirculation in spark ignition engine by Zeldovich’ mechanism, support vector machine and regression correlation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.123577
– volume: 28
  start-page: 1463
  year: 2000
  ident: 10.1016/j.energy.2025.135259_bib65
  article-title: Detailed modeling of the temperature and pressure dependence of the reaction H+O2 (+M)→HO2 (+M)
  publication-title: Proc Combust Inst
  doi: 10.1016/S0082-0784(00)80542-1
– volume: 347
  year: 2023
  ident: 10.1016/j.energy.2025.135259_bib33
  article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’ by advanced machine learning algorithms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.128244
– volume: 135
  year: 2021
  ident: 10.1016/j.energy.2025.135259_bib4
  article-title: Comparative assessment of renewable energy-based hydrogen production methods
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110192
– volume: 162
  start-page: 554
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib12
  article-title: Experimental and modeling study on the high-temperature oxidation of Ammonia and related NOx chemistry
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2014.08.022
– volume: 248
  year: 2022
  ident: 10.1016/j.energy.2025.135259_bib32
  article-title: Comparison and evaluation of advanced machine learning methods for performance and emissions prediction of a gasoline Wankel rotary engine
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123611
– volume: 17
  start-page: 441
  year: 1985
  ident: 10.1016/j.energy.2025.135259_bib60
  article-title: Thermal decomposition of ethane in shock waves
  publication-title: Int J Chem Kinet
  doi: 10.1002/kin.550170410
– volume: 263
  year: 2023
  ident: 10.1016/j.energy.2025.135259_bib31
  article-title: Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125961
– year: 1995
  ident: 10.1016/j.energy.2025.135259_bib62
– start-page: 358
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib43
  article-title: Gaussian process regression method for classification for high-dimensional data with limited samples
– volume: 234
  year: 2021
  ident: 10.1016/j.energy.2025.135259_bib22
  article-title: Combustion chemistry of ammonia/hydrogen mixtures: jet-stirred reactor measurements and comprehensive kinetic modeling
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111653
– volume: 42
  year: 2017
  ident: 10.1016/j.energy.2025.135259_bib74
  article-title: Comparative study of the NOx prediction model of HCNG engine
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.07.107
– volume: 236
  year: 2022
  ident: 10.1016/j.energy.2025.135259_bib17
  article-title: Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2021.111753
– volume: 120
  start-page: 5352
  year: 2020
  ident: 10.1016/j.energy.2025.135259_bib2
  article-title: Progress and prospective of nitrogen-based alternative fuels
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00538
– volume: 156
  start-page: 1413
  year: 2009
  ident: 10.1016/j.energy.2025.135259_bib13
  article-title: An experimental and kinetic modeling study of premixed NH3/CH4/O2/Ar flames at low pressure
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2009.03.005
– volume: 136
  start-page: 501
  year: 2004
  ident: 10.1016/j.energy.2025.135259_bib67
  article-title: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2003.12.008
– volume: 47
  start-page: 25780
  year: 2022
  ident: 10.1016/j.energy.2025.135259_bib10
  article-title: Laminar flame speed correlations of ammonia/hydrogen mixtures at high pressure and temperature for combustion modeling applications
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.06.007
– volume: 159
  start-page: 98
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib72
  article-title: Laminar burning velocity and Markstein length of ammonia/air premixed flames at various pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 331
  year: 2023
  ident: 10.1016/j.energy.2025.135259_bib28
  article-title: Regression prediction of hydrogen enriched compressed natural gas (HCNG) engine performance based on improved particle swarm optimization back propagation neural network method (IMPSO-BPNN)
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.125872
– volume: 204
  start-page: 162
  year: 2019
  ident: 10.1016/j.energy.2025.135259_bib38
  article-title: Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2019.03.008
– volume: 168
  start-page: 1
  year: 2001
  ident: 10.1016/j.energy.2025.135259_bib58
  article-title: A possible new route for NO formation VIAN2H3
  publication-title: Combust Sci Technol
  doi: 10.1080/00102200108907830
– volume: 152
  start-page: 23
  year: 2000
  ident: 10.1016/j.energy.2025.135259_bib15
  article-title: Kinetic modeling of the thermal decomposition of ammonia
  publication-title: Combust Sci Technol
  doi: 10.1080/00102200008952125
– volume: 304
  year: 2021
  ident: 10.1016/j.energy.2025.135259_bib77
  article-title: Effect of hydrogen addition on combustion, performance and emission of stoichiometric compressed natural gas fueled internal combustion engine along with exhaust gas recirculation at low, half and high load conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121358
– volume: 101
  start-page: 2643
  year: 1997
  ident: 10.1016/j.energy.2025.135259_bib55
  article-title: A mass spectrometric study of the NH2+NO2 reaction
  publication-title: J Phys Chem A
  doi: 10.1021/jp963720u
– volume: 40
  start-page: 9570
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib7
  article-title: Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.04.024
– volume: 2
  start-page: 14
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib40
  article-title: NO formation/reduction mechanisms of ammonia/air premixed flames at various equivalence ratios and pressures
  publication-title: Mech Eng J
– volume: 22
  start-page: 327
  year: 2021
  ident: 10.1016/j.energy.2025.135259_bib30
  article-title: Development of an engine calibration model using Gaussian process regression
  publication-title: Int J Automot Technol
  doi: 10.1007/s12239-021-0031-5
– volume: 174
  start-page: 77
  year: 2016
  ident: 10.1016/j.energy.2025.135259_bib71
  article-title: Application of Jacobian defined direct interaction coefficient in DRGEP-based chemical mechanism reduction methods using different graph search algorithms
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2016.09.006
– volume: 31
  start-page: 113
  year: 1999
  ident: 10.1016/j.energy.2025.135259_bib63
  article-title: Flow reactor studies and kinetic modeling of the H2/O2 reaction
  publication-title: Int J Chem Kinet
  doi: 10.1002/(SICI)1097-4601(1999)31:2<113::AID-KIN5>3.0.CO;2-0
– volume: 322
  start-page: 1
  year: 1997
  ident: 10.1016/j.energy.2025.135259_bib53
  article-title: Laboratory measurement of the N=1<-0 rotational transition of NH at 1THz
  publication-title: Astron Astrophys
– volume: 187
  start-page: 185
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib21
  article-title: Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2017.09.002
– volume: 123
  start-page: 140
  year: 2000
  ident: 10.1016/j.energy.2025.135259_bib39
  article-title: Flammability limits, ignition energy, and flame speeds in H2–CH4–NH3–N2O–O2–N2 mixtures
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(00)00152-8
– volume: 246
  start-page: 178
  year: 2019
  ident: 10.1016/j.energy.2025.135259_bib6
  article-title: Extinction limits of an ammonia/air flame propagating in a turbulent field
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.02.110
– volume: 224
  start-page: 366
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib11
  article-title: Approximation of laminar flame characteristics on premixed ammonia/hydrogen/nitrogen/air mixtures at elevated temperatures and pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.03.030
– year: 1995
  ident: 10.1016/j.energy.2025.135259_bib44
– volume: 212
  start-page: 679
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib52
  article-title: Determination of rate parameters based on NH2 concentration profiles measured in ammonia-doped methane–air flames
  publication-title: Fuel
  doi: 10.1016/j.fuel.2017.10.019
– volume: 2
  start-page: 564
  issue: 70
  year: 1974
  ident: 10.1016/j.energy.2025.135259_bib61
  article-title: Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementary reactions: O 3P+ NO2→ NO+O2 and NO+O3→ NO2+ O2
  publication-title: J Chem Soc Faraday Trans
  doi: 10.1039/f29747000564
– volume: 246
  start-page: 476
  year: 2019
  ident: 10.1016/j.energy.2025.135259_bib25
  article-title: Laminar burning velocity of hydrogen and carbon-monoxide enriched natural gas (HyCONG): an experimental and artificial neural network study
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.03.003
– volume: 89
  start-page: 3540
  year: 2010
  ident: 10.1016/j.energy.2025.135259_bib8
  article-title: Ammonia combustion at elevated pressure and temperature conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.06.008
– volume: 234
  start-page: 954
  year: 2018
  ident: 10.1016/j.energy.2025.135259_bib27
  article-title: Study on influencing factors of prediction accuracy of support vector machine (SVM) model for NOx emission of a hydrogen enriched compressed natural gas engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.07.009
– volume: 154
  start-page: 529
  year: 2008
  ident: 10.1016/j.energy.2025.135259_bib56
  article-title: Sensitizing effects of NOx on CH4 oxidation at high pressure
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2008.01.012
– volume: 333
  year: 2023
  ident: 10.1016/j.energy.2025.135259_bib75
  article-title: Numerical simulation of nitric oxide (NO) emission for HCNG fueled SI engine by Zeldovich’, prompt (HCN) and nitrous oxide (N2O) mechanisms along with the error reduction novel sub-models and their classification through machine learning algorithms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126320
– volume: 159
  start-page: 223
  year: 2015
  ident: 10.1016/j.energy.2025.135259_bib14
  article-title: Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.075
– volume: 31
  start-page: 757
  year: 1999
  ident: 10.1016/j.energy.2025.135259_bib54
  article-title: Modeling the thermal De-NOx process: closing in on a final solution
  publication-title: Int J Chem Kinet
  doi: 10.1002/(SICI)1097-4601(1999)31:11<757::AID-JCK1>3.0.CO;2-V
– volume: 30
  start-page: 1333
  year: 2005
  ident: 10.1016/j.energy.2025.135259_bib70
  article-title: A directed relation graph method for mechanism reduction
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2004.08.145
– volume: 14
  start-page: 710
  year: 1978
  ident: 10.1016/j.energy.2025.135259_bib41
  article-title: Determination of normal flame velocity and critical diameter of flame extinction in ammonia-air mixture
  publication-title: Combust Explos Shock Waves
  doi: 10.1007/BF00786097
SSID ssj0005899
Score 2.4888294
Snippet The ammonia/hydrogen mixture is a promising zero-carbon fuel for internal combustion engines, with optimal efficiency in spark ignition engines at equivalence...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 135259
SubjectTerms ammonia
Ammonia/hydrogen fuel
combustion
energy
fuels
hydrogen
Laminar burning speed
Machine learning algorithm
nitric oxide
prediction
PSO-SVM
Reaction kinetics
stoichiometry
support vector machines
Title Machine learning-enhanced combustion modeling for predicting laminar burning velocity of ammonia-hydrogen mixtures using improved reaction mechanisms
URI https://dx.doi.org/10.1016/j.energy.2025.135259
https://www.proquest.com/docview/3206195098
Volume 320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5ED3oRn_jYlV7w2s5M0pPHUUQZFb2sgrcm3aloBJNhMoJe_Bf-X7_qJOwqwsLe8ug8q1L9Vfr7uoQ4RN5jKYpjRUlQKA2AoWyOYDgqdGYjnTtrWY18dR1NbvXF3fhuQZz0WhimVXaxv43pPlp3Wwbd2xxMy3LwG7EXeEPDIYETgFxYwa5jrmJw9PYXzSPxNSS5seLWvXzOc7zI6-uQJQZjLgAR8Iyl33dPXwK1733O1sRqBxvlcXtn62KBqg2x3KuKmw2xffpHsYaG3SfbbIr3K0-XJNnVh7hXVD34YX-JZ7ZczKuupC-Ig50SGFZOZzx6w3xoCX9hwa7Eq-djJTOMHIC7rAuZsQuXmXp4zWc1_FA-lS88HtFIJtPfy9L_r8B1gEtdexVinXHZPDVb4vbs9OZkorpaDMoFSTJX44yCobbhiPQIoCJKkdiGzhWFQyab68RiMdRFTmHsYJJhgUQsdgBPNKZhYtNwWyxWdUU7QmqeVY5S7NWFpgx4w6U2j7KQq50HAe0K1ZvATNspN0zPRXs0rckMm8y0JtsVcW8n88l1DHqFfxz5qzerwVfFQyVZRfVzY8IAOCcFmEr2_vvs-2KF11qazw-xOJ89008gmLk98C56IJaOzy8n1x84WvVs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BPcClaqGoQAFX4mp213G-jmi1aFtYLgWJmxU7EwgSyWqzSOXCv-D_MuMkKqBKlXqLYjtOPOPxm_iNB-CI_B6LURxLTFQhNQEMaXMyhqNCZzbSubOWo5FnF9H0Sv-8Dq9XYNzHwjCtsrP9rU331rq7M-hGczAvy8Evsr2ENzQpJOEEQi6r8EGHKmYP7PjpFc8j8Ukkubbk6n38nCd5oQ-wIzdRhZwBQvGRpX9fn95Zar_8nH6Cjx1uFCftq32GFaw2Yb0PK242YXvyJ2SNKnZzttmC55nnS6LoEkTcSKxu_b6_oI-2nM2rroTPiEOFgkCsmC94-4YJ0YIUhiN2BY09txVMMXKE3EVdiIx1uMzk7WO-qEkRxX35mzckGsFs-htR-h8W1A8BU9f2ghxoXDb3zRe4Op1cjqeyS8YgnUqSpQwzVENtgxHqEaGKKCXPNnCuKBy5srlOLF0GusgxiB3JZFiQJxY7Qk8Y4jCxabANa1Vd4VcQmo-Vw5RKdaExI8DhUptHWcDpzpXCHZC9CMy8PXPD9GS0O9OKzLDITCuyHYh7OZk3umNoWfhHy--9WA1NK94rySqsHxoTKAI6KaGpZPe_n34I69PL2bk5_3FxtgcbXNJyfr7B2nLxgPsEZ5b2wKvrC-KT9wE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-enhanced+combustion+modeling+for+predicting+laminar+burning+velocity+of+ammonia-hydrogen+mixtures+using+improved+reaction+mechanisms&rft.jtitle=Energy+%28Oxford%29&rft.au=Rao%2C+Anas&rft.au=Li%2C+Wei&rft.au=Abbasi%2C+Muhammad+Salman&rft.au=Shahid%2C+Muhammad+Ihsan&rft.date=2025-04-01&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=320&rft_id=info:doi/10.1016%2Fj.energy.2025.135259&rft.externalDocID=S0360544225009016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon