Bicategorical type theory: semantics and syntax
We develop semantics and syntax for bicategorical type theory. Bicategorical type theory features contexts, types, terms, and directed reductions between terms. This type theory is naturally interpreted in a class of structured bicategories. We start by developing the semantics, in the form of compr...
Saved in:
| Published in | Mathematical structures in computer science Vol. 33; no. 10; pp. 868 - 912 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.11.2023
|
| Online Access | Get full text |
| ISSN | 0960-1295 1469-8072 1469-8072 |
| DOI | 10.1017/S0960129523000312 |
Cover
| Abstract | We develop semantics and syntax for bicategorical type theory. Bicategorical type theory features contexts, types, terms, and directed reductions between terms. This type theory is naturally interpreted in a class of structured bicategories. We start by developing the semantics, in the form of
comprehension bicategories
. Examples of comprehension bicategories are plentiful; we study both specific examples as well as classes of examples constructed from other data. From the notion of comprehension bicategory, we extract the syntax of bicategorical type theory, that is, judgment forms and structural inference rules. We prove soundness of the rules by giving an interpretation in any comprehension bicategory. The semantic aspects of our work are fully checked in the Coq proof assistant, based on the UniMath library. |
|---|---|
| AbstractList | We develop semantics and syntax for bicategorical type theory. Bicategorical type theory features contexts, types, terms, and directed reductions between terms. This type theory is naturally interpreted in a class of structured bicategories. We start by developing the semantics, in the form of
comprehension bicategories
. Examples of comprehension bicategories are plentiful; we study both specific examples as well as classes of examples constructed from other data. From the notion of comprehension bicategory, we extract the syntax of bicategorical type theory, that is, judgment forms and structural inference rules. We prove soundness of the rules by giving an interpretation in any comprehension bicategory. The semantic aspects of our work are fully checked in the Coq proof assistant, based on the UniMath library. |
| Author | Ahrens, Benedikt North, Paige Randall van der Weide, Niels |
| Author_xml | – sequence: 1 givenname: Benedikt orcidid: 0000-0002-6786-4538 surname: Ahrens fullname: Ahrens, Benedikt – sequence: 2 givenname: Paige Randall surname: North fullname: North, Paige Randall – sequence: 3 givenname: Niels orcidid: 0000-0003-1146-4161 surname: van der Weide fullname: van der Weide, Niels |
| BookMark | eNptz7FOwzAQBmALFYm08ABseYHQs93YDhtUUJAqMRTm6OLYEJQ6kW0EeXsSFTEUphv---70z8nMdc4QcknhigKVyx0UAigrcsYBgFN2QhK6EkWmQLIZSaY4m_IzMg_hHYByCkVClreNxmheOz_ONo1Db9L4Zjo_XKfB7NHFRocUXZ2GwUX8OienFttgLn7mgrzc3z2vH7Lt0-ZxfbPNNFMqZryu8go4CstqlgtF88pWUlkrVK55BSsqBdZY54WoK2nGXQQphNVcSgNQ8AVhh7sfrsfhE9u27H2zRz-UFMqpchmOK49IHpD2XQje2FI3EWPTueixaX_l7h9Jj-Txt7_mG_wHakM |
| CitedBy_id | crossref_primary_10_1007_s40062_024_00348_3 |
| Cites_doi | 10.1145/3373718.3394794 10.1016/j.entcs.2019.09.012 10.1017/S0960129509007646 10.1007/BF00880041 10.1145/1960510.1960514 10.1007/BFb0066909 10.1016/S0022-4049(97)00129-1 10.1007/978-3-642-99902-4_2 10.1145/2103656.2103697 10.1145/3531130.3533363 10.1145/3531130.3533334 10.1016/j.jpaa.2013.11.002 10.1016/j.entcs.2011.09.026 10.1109/LICS.2017.8005124 10.1017/S0960129522000032 10.1007/BFb0074299 10.1007/978-3-319-15398-8 10.1109/LICS.2017.8005130 10.1109/LICS.2019.8785895 10.5281/zenodo.5846982 10.4171/JEMS/1050 10.1109/LICS.2019.8785708 10.1112/plms/pdq026 10.1109/LICS.1994.316071 10.21136/HS.2017.06 10.1017/S0960129514000486 10.1016/j.exmath.2019.02.004 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1017/S0960129523000312 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1469-8072 |
| EndPage | 912 |
| ExternalDocumentID | 10.1017/s0960129523000312 10_1017_S0960129523000312 |
| GroupedDBID | -1D -1F -2P -2V -E. -~6 -~N .DC .FH 09C 09E 0E1 0R~ 29M 4.4 5GY 5VS 6~7 74X 74Y 7~V 88I 8FE 8FG 8R4 8R5 9M5 AAAZR AABES AABWE AACJH AAGFV AAKNA AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB AAYXX ABBXD ABBZL ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABQTM ABQWD ABROB ABTCQ ABUWG ABVFV ABVKB ABVZP ABXAU ABXHF ABZCX ACBMC ACDLN ACEJA ACETC ACGFS ACGOD ACIMK ACIWK ACUIJ ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADKIL ADOVH ADOVT ADVJH AEBAK AEBPU AEHGV AEMTW AENCP AENEX AENGE AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AFZFC AGABE AGBYD AGJUD AGLWM AHQXX AHRGI AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS AKMAY AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMVHM ANOYL AQJOH ARABE ARAPS ARZZG ATUCA AUXHV AYIQA AZQEC BBLKV BCGOX BENPR BESQT BGHMG BGLVJ BJBOZ BLZWO BMAJL BPHCQ C0O CAG CBIIA CCPQU CCQAD CCTKK CCUQV CDIZJ CFAFE CFBFF CGQII CHEAL CITATION CJCSC COF CS3 DC4 DOHLZ DU5 DWQXO EBS EGQIC EJD GNUQQ HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IOEEP IOO IS6 I~P J36 J38 J3A JHPGK JQKCU K6V K7- KAFGG KCGVB KFECR L6V L98 LHUNA LW7 M-V M2P M7S M7~ M8. NIKVX NMFBF NZEOI O9- OYBOY P2P P62 PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS PUEGO PYCCK Q2X RAMDC RCA ROL RR0 S6- S6U SAAAG T9M TN5 UT1 WFFJZ WQ3 WXU WYP XJT ZDLDU ZJOSE ZMEZD ZYDXJ ~V1 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c288t-3db5b03a6f2d256815bfb78ff685c3b04176adad596db7e5b0a0766fc377e0093 |
| IEDL.DBID | UNPAY |
| ISSN | 0960-1295 1469-8072 |
| IngestDate | Sun Oct 26 03:35:13 EDT 2025 Wed Oct 01 03:21:22 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c288t-3db5b03a6f2d256815bfb78ff685c3b04176adad596db7e5b0a0766fc377e0093 |
| ORCID | 0000-0002-6786-4538 0000-0003-1146-4161 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/725F2E17B25094145F9D037D9465A534/S0960129523000312a.pdf/div-class-title-bicategorical-type-theory-semantics-and-syntax-div.pdf |
| PageCount | 45 |
| ParticipantIDs | unpaywall_primary_10_1017_s0960129523000312 crossref_citationtrail_10_1017_S0960129523000312 crossref_primary_10_1017_S0960129523000312 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-00 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical structures in computer science |
| PublicationYear | 2023 |
| References | S0960129523000312_ref18 S0960129523000312_ref17 S0960129523000312_ref39 S0960129523000312_ref16 S0960129523000312_ref38 S0960129523000312_ref15 S0960129523000312_ref37 S0960129523000312_ref19 Street (S0960129523000312_ref40) 1980; 21 Hirschowitz (S0960129523000312_ref22) 2013; 9 Lumsdaine (S0960129523000312_ref30) 2010; 6 S0960129523000312_ref32 S0960129523000312_ref10 S0960129523000312_ref31 S0960129523000312_ref14 S0960129523000312_ref36 S0960129523000312_ref35 S0960129523000312_ref13 S0960129523000312_ref12 S0960129523000312_ref34 S0960129523000312_ref33 S0960129523000312_ref11 S0960129523000312_ref29 S0960129523000312_ref4 S0960129523000312_ref28 S0960129523000312_ref7 S0960129523000312_ref27 S0960129523000312_ref26 S0960129523000312_ref6 S0960129523000312_ref9 Ahrens (S0960129523000312_ref3) 2019; 15 S0960129523000312_ref8 Bar (S0960129523000312_ref5) 2018; 14 S0960129523000312_ref1 S0960129523000312_ref2 Taylor (S0960129523000312_ref43) 1999; 59 S0960129523000312_ref21 S0960129523000312_ref20 S0960129523000312_ref42 S0960129523000312_ref41 S0960129523000312_ref25 S0960129523000312_ref46 S0960129523000312_ref24 S0960129523000312_ref45 S0960129523000312_ref23 S0960129523000312_ref44 |
| References_xml | – ident: S0960129523000312_ref46 doi: 10.1145/3373718.3394794 – ident: S0960129523000312_ref31 doi: 10.1016/j.entcs.2019.09.012 – ident: S0960129523000312_ref45 – ident: S0960129523000312_ref18 doi: 10.1017/S0960129509007646 – ident: S0960129523000312_ref20 – ident: S0960129523000312_ref24 doi: 10.1007/BF00880041 – ident: S0960129523000312_ref42 doi: 10.1145/1960510.1960514 – ident: S0960129523000312_ref41 doi: 10.1007/BFb0066909 – ident: S0960129523000312_ref21 doi: 10.1016/S0022-4049(97)00129-1 – ident: S0960129523000312_ref8 – ident: S0960129523000312_ref19 doi: 10.1007/978-3-642-99902-4_2 – ident: S0960129523000312_ref28 doi: 10.1145/2103656.2103697 – ident: S0960129523000312_ref16 doi: 10.1145/3531130.3533363 – ident: S0960129523000312_ref4 doi: 10.1145/3531130.3533334 – ident: S0960129523000312_ref26 – ident: S0960129523000312_ref32 – ident: S0960129523000312_ref10 doi: 10.1016/j.jpaa.2013.11.002 – ident: S0960129523000312_ref27 doi: 10.1016/j.entcs.2011.09.026 – ident: S0960129523000312_ref36 – ident: S0960129523000312_ref38 – ident: S0960129523000312_ref15 doi: 10.1109/LICS.2017.8005124 – ident: S0960129523000312_ref1 doi: 10.1017/S0960129522000032 – volume: 21 start-page: 111 year: 1980 ident: S0960129523000312_ref40 article-title: Fibrations in bicategories publication-title: Cahiers de Topologie et Géométrie Différentielle Catégoriques – ident: S0960129523000312_ref6 doi: 10.1007/BFb0074299 – ident: S0960129523000312_ref14 doi: 10.1007/978-3-319-15398-8 – ident: S0960129523000312_ref13 – ident: S0960129523000312_ref7 – volume: 14 start-page: 1 year: 2018 ident: S0960129523000312_ref5 article-title: Globular: an online proof assistant for higher-dimensional rewriting publication-title: Logical Methods in Computer Science – ident: S0960129523000312_ref12 doi: 10.1109/LICS.2017.8005130 – ident: S0960129523000312_ref9 – ident: S0960129523000312_ref33 doi: 10.1109/LICS.2019.8785895 – volume: 15 start-page: 1 year: 2019 ident: S0960129523000312_ref3 article-title: Displayed categories publication-title: Logical Methods in Computer Science – volume: 59 volume-title: Cambridge Studies in Advanced Mathematics year: 1999 ident: S0960129523000312_ref43 – ident: S0960129523000312_ref11 doi: 10.5281/zenodo.5846982 – ident: S0960129523000312_ref25 doi: 10.4171/JEMS/1050 – ident: S0960129523000312_ref17 doi: 10.1109/LICS.2019.8785708 – volume: 6 start-page: 1 year: 2010 ident: S0960129523000312_ref30 article-title: Weak omega-categories from intensional type theory publication-title: Logical Methods in Computer Science – volume: 9 start-page: 1 year: 2013 ident: S0960129523000312_ref22 article-title: Cartesian closed 2-categories and permutation equivalence in higher-order rewriting publication-title: Logical Methods in Computer Science – ident: S0960129523000312_ref44 doi: 10.1112/plms/pdq026 – ident: S0960129523000312_ref23 doi: 10.1109/LICS.1994.316071 – ident: S0960129523000312_ref35 – ident: S0960129523000312_ref34 doi: 10.21136/HS.2017.06 – ident: S0960129523000312_ref37 – ident: S0960129523000312_ref2 doi: 10.1017/S0960129514000486 – ident: S0960129523000312_ref39 – ident: S0960129523000312_ref29 doi: 10.1016/j.exmath.2019.02.004 |
| SSID | ssj0013109 |
| Score | 2.3952003 |
| Snippet | We develop semantics and syntax for bicategorical type theory. Bicategorical type theory features contexts, types, terms, and directed reductions between... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Enrichment Source Index Database |
| StartPage | 868 |
| Title | Bicategorical type theory: semantics and syntax |
| URI | https://www.cambridge.org/core/services/aop-cambridge-core/content/view/725F2E17B25094145F9D037D9465A534/S0960129523000312a.pdf/div-class-title-bicategorical-type-theory-semantics-and-syntax-div.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 33 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1469-8072 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0013109 issn: 1469-8072 databaseCode: AMVHM dateStart: 19910301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1469-8072 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0013109 issn: 1469-8072 databaseCode: BENPR dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1469-8072 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0013109 issn: 1469-8072 databaseCode: 8FG dateStart: 20010201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKcuBEeYqiUu2BE8hZr3f9WG4pTVQhEVVApHKK7LWNqoZtRDaU8AP5K_wNZval0khIHDl77Nm1x56Hx98Q8sJ7nSU-4RR0jwcHJRFUG2koY05qkxjr6hfe72bydJ69PRfne-Rn9xYG0yp7jIP6Jr-uj7ZuN05srla0b6d1G-Z0wwEdYyg9VlxM-QSsJI7IcEkmpvkJS9VJnkkxFmkWf0CbHZQcRkNRorkZrVyI3cU3WqC9SutFArcUE5I-NzgdFMOhtH5ZuKVr_wX--aJYU3D16XpbVuY7he44zB0ylALGH5DhfHY2_lQD_UlMf6jLv8CplCP6L--uVxNEM731PX8oyLubcmW212a5vKH1pvvkVzdfTbLL5WhT2VHx4xaU5P8_offJvdYwj8bNTnpA9nz5kOx3RS-i9gx8ROLjmywiZBE1LF5HPY8IeEQNj8dkPp18fHNK26oTtOBaVzR1VliWGhm44wjPJmywSocgtShSy7JESeOMg3VGaGqgNUxJGYpUKY8BoidkUF6V_imJMiNyDTaudkpmBaiWYKxNPAs8ZwFc0wPCuqVeFC0kO1YGWS6a3Du12JncA_Ky77Jq8Ej-Rvyql58d6h3Be_ZP1IdkUH3d-OdgklX2iAyPJ7Oz90et3P8GgoIyxw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELbK9sCJlgKiiKIcOLXyxnHiR3rbPlYVUqtKsFI5rezYRlWXdMVmocsP5K_wN5jJS6UrIXHs2WNPYo89D4-_IeS99zpLfMIp6B4PDkoiqDbSUMac1CYx1tUvvM8v5Nkk-3AlrjbIr-4tDKZV9hgH9U1-XR9t0W6c2NzOad9O6zbM6YYDOsZQeqy4GPNTsJI4IsMlmRjnJyxVJ3kmxUikWfwRbXZQchgNRYnmZjh3IXbX32mB9iqtFwncUkxI-tLgdFAMh9L6ZeGKLvxX-OfrYkHB1aeLVVmZOwrdcZgnZFMKGH9ANicXl6PPNdCfxPSHuvwLnEo5ov_y7no1QTTTB9_zl4J8uiznZvXDzGb3tN54i_zu5qtJdrkZLis7LH4-gJJ8_BO6TZ61hnk0anbSc7Lhyx2y1RW9iNoz8AWJj-6ziJBF1LA4jHoeEfCIGh4vyWR8-un4jLZVJ2jBta5o6qywLDUycMcRnk3YYJUOQWpRpJZliZLGGQfrjNDUQGuYkjIUqVIeA0SvyKC8Lf1rEmVG5BpsXO2UzApQLcFYm3gWeM4CuKa7hHVLPS1aSHasDDKbNrl3aro2ubtkv-8yb_BI_kV80MvPGvWa4L35L-q3ZFB9W_o9MMkq-66V9z_0ZDEt |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bicategorical+type+theory%3A+semantics+and+syntax&rft.jtitle=Mathematical+structures+in+computer+science&rft.au=Ahrens%2C+Benedikt&rft.au=North%2C+Paige+Randall&rft.au=van+der+Weide%2C+Niels&rft.date=2023-11-01&rft.issn=0960-1295&rft.eissn=1469-8072&rft.volume=33&rft.issue=10&rft.spage=868&rft.epage=912&rft_id=info:doi/10.1017%2FS0960129523000312&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_S0960129523000312 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1295&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1295&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1295&client=summon |