An efficient multi-objective optimization approach based on the micro genetic algorithm and its application

In this paper, an efficient multi-objective optimization approach based on the micro genetic algorithm is suggested to solving the multi-objective optimization problems. An external elite archive is used to store Pareto-optimal solutions found in the evolutionary process. A non-dominated sorting is...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of mechanics and materials in design Vol. 8; no. 1; pp. 37 - 49
Main Authors Liu, G. P., Han, X., Jiang, C.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2012
Subjects
Online AccessGet full text
ISSN1569-1713
1573-8841
DOI10.1007/s10999-011-9174-2

Cover

Abstract In this paper, an efficient multi-objective optimization approach based on the micro genetic algorithm is suggested to solving the multi-objective optimization problems. An external elite archive is used to store Pareto-optimal solutions found in the evolutionary process. A non-dominated sorting is employed to classify the combinational population of the evolutionary population and the external elite population into several different non-dominated levels. Once the evolutionary population converges, an exploratory operator will be performed to explore more non-dominated solutions, and a restart strategy will be subsequently adopted. Simulation results for several difficult test functions indicate that the present method has higher efficiency and better convergence near the globally Pareto-optimal set for all test functions, and a better spread of solutions for some test functions compared to NSGAII. Eventually, this approach is applied to the structural optimization of a composite laminated plate for maximum stiffness in thickness direction and minimum mass.
AbstractList In this paper, an efficient multi-objective optimization approach based on the micro genetic algorithm is suggested to solving the multi-objective optimization problems. An external elite archive is used to store Pareto-optimal solutions found in the evolutionary process. A non-dominated sorting is employed to classify the combinational population of the evolutionary population and the external elite population into several different non-dominated levels. Once the evolutionary population converges, an exploratory operator will be performed to explore more non-dominated solutions, and a restart strategy will be subsequently adopted. Simulation results for several difficult test functions indicate that the present method has higher efficiency and better convergence near the globally Pareto-optimal set for all test functions, and a better spread of solutions for some test functions compared to NSGAII. Eventually, this approach is applied to the structural optimization of a composite laminated plate for maximum stiffness in thickness direction and minimum mass.
Author Liu, G. P.
Han, X.
Jiang, C.
Author_xml – sequence: 1
  givenname: G. P.
  surname: Liu
  fullname: Liu, G. P.
  email: ji_pi@sina.com
  organization: State Key Laboratory of Advanced Design Manufacturing for Vehicle Body, College of Mechanical and Automotive Engineering, Hunan University
– sequence: 2
  givenname: X.
  surname: Han
  fullname: Han, X.
  organization: State Key Laboratory of Advanced Design Manufacturing for Vehicle Body, College of Mechanical and Automotive Engineering, Hunan University
– sequence: 3
  givenname: C.
  surname: Jiang
  fullname: Jiang, C.
  organization: State Key Laboratory of Advanced Design Manufacturing for Vehicle Body, College of Mechanical and Automotive Engineering, Hunan University
BookMark eNp9kM1OwzAQhC1UJErhAbj5BQz-SRr7WFX8SZW4wNlynHXrkjiR7SLB05O0nDj0tKuVvtmZuUaz0AdA6I7Re0Zp9ZAYVUoRyhhRrCoIv0BzVlaCSFmw2bQvFWEVE1foOqU9pYIyKefocxUwOOeth5Bxd2izJ329B5v9F-B-yL7zPyb7PmAzDLE3dodrk6DB4yXvAHfexh5vIUD2Fpt220efdx02ocE-p4lqvT0q3KBLZ9oEt39zgT6eHt_XL2Tz9vy6Xm2I5VJmIjiVjWkaScEVwjWNcsrKsl5S4ySvOYVaKGclEzBmULywEgpTFryoVE1LLhaInXRHZylFcHqIvjPxWzOqp7b0qS09tqWntvTEVP8Y6_PRdY7Gt2dJfiLT-CVsIep9f4hhDHgG-gVac4Lp
CitedBy_id crossref_primary_10_1080_00295639_2024_2372516
crossref_primary_10_1016_j_swevo_2020_100818
crossref_primary_10_1080_27690911_2022_2062344
crossref_primary_10_1016_j_applthermaleng_2018_08_006
crossref_primary_10_1177_09544062241311775
crossref_primary_10_1007_s00202_017_0518_2
crossref_primary_10_1142_S0219876220500073
crossref_primary_10_1109_TETCI_2024_3451309
crossref_primary_10_5194_ms_12_715_2021
crossref_primary_10_1142_S0219876219500798
crossref_primary_10_1007_s10999_015_9322_1
crossref_primary_10_1142_S0219876213500837
crossref_primary_10_1007_s12046_019_1133_x
crossref_primary_10_1007_s00158_020_02766_2
crossref_primary_10_1007_s00158_022_03407_6
crossref_primary_10_1016_j_measurement_2019_01_009
crossref_primary_10_1109_TCYB_2023_3336369
crossref_primary_10_1007_s00158_021_02990_4
Cites_doi 10.1007/s10732-007-9037-z
10.1109/3468.650320
10.1115/1.2930174
10.1109/ICEC.1994.350037
10.1007/BFb0029752
10.1007/BFb0056872
10.1117/12.969927
10.1201/9780203494486
10.1109/ICSMC.1995.537993
10.1109/TEVC.2005.851274
10.1109/4235.996017
ContentType Journal Article
Copyright Springer Science+Business Media, B.V. 2011
Copyright_xml – notice: Springer Science+Business Media, B.V. 2011
DBID AAYXX
CITATION
DOI 10.1007/s10999-011-9174-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-8841
EndPage 49
ExternalDocumentID 10_1007_s10999_011_9174_2
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
203
29J
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P9P
PF0
PT4
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7R
Z7S
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ID FETCH-LOGICAL-c288t-3208dadd80ef43fdd9f9c85b60af82b20eb39fc813e018924c8e4a542479b0523
IEDL.DBID U2A
ISSN 1569-1713
IngestDate Thu Apr 24 23:00:06 EDT 2025
Wed Oct 01 06:43:19 EDT 2025
Fri Feb 21 02:28:01 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords Laminated plates
Multi-objective optimization
Micro genetic algorithm
Non-dominated sorting
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-3208dadd80ef43fdd9f9c85b60af82b20eb39fc813e018924c8e4a542479b0523
PageCount 13
ParticipantIDs crossref_primary_10_1007_s10999_011_9174_2
crossref_citationtrail_10_1007_s10999_011_9174_2
springer_journals_10_1007_s10999_011_9174_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120300
2012-3-00
PublicationDateYYYYMMDD 2012-03-01
PublicationDate_xml – month: 3
  year: 2012
  text: 20120300
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle International journal of mechanics and materials in design
PublicationTitleAbbrev Int J Mech Mater Des
PublicationYear 2012
Publisher Springer Netherlands
Publisher_xml – name: Springer Netherlands
References Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. San Mateo, California (1993)
Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts (1995)
Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE proceedings: intelligent control and adaptive systems, pp. 289–296 (1989)
Tanaka, M.: GA-based decision support system for multicriteria optimization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics-2, pp. 1556–1561 (1995)
Schafer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. Thesis, Nashville, TN: Vanderbilt University (1984)
Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational computation, 1, pp. 82–87. Piscataway, NJ (1994)
Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Fifth international conference on parallel problem solving from nature (PPSN-V): 292–301 (1998b)
FonsecaCMFlemingPJMultiobjctive optimization and multiple constraint handling with evolutionary algorithms—Part II: application exampleIEEE Trans. Syst. Man Cybern. A199828384710.1109/3468.650320
SrinivasNDebKMultiobjective optimization using nondominated sorting in genetic algorithmsIEEE Trans. Evol. Comput.19943221248
EskandariHGeigerCDA fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problemsJ. Heuristics2008142032411211.9020710.1007/s10732-007-9037-z
LiuGRTaniJOhyoshiTWatanabeKTransient waves in anisotropic laminated plates. Part 1: theory; Part 2: applicationsJ. Vib. Acoust.199111323023910.1115/1.2930174
XuYGLiuGRWuZPA novel hybrid genetic algorithm using local optimizer based on heuristic pattern moveAppl. Artif. Intell.2001760163110.1080/088395101750363966
LuHYenGGRank-density-based multiobjective genetic algorithm and benchmark test function studyIEEE Trans. Evol. Comput.20034325343
LiuGRHanXComputational inverse techniques in nondestructive evaluation2003FloridaCRC Press1067.7400210.1201/9780203494486
Coello, C.A.C., Pulido, G.T.: Multiobjective optimization using a micro-genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), San Francisco, California, pp. 274–282 (2001)
DebKMulti-objective optimization using evolutionary algorithms2001EnglandWiley0970.90091
ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms: empirical resultsIEEE Trans. Evol. Comput.20008173195
Kursawe, F.: A variant of evolution strategies for vector optimization. In: Parallel Problem Solving from Nature, pp. 193–197. Springer, Berlin (1990)
ZitzlerEThieleLAn evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Institute TIK1998SwitzerlandETH Zurich
DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGAIIIEEE Trans. Evol. Comput.2002218219710.1109/4235.996017
KnowlesJParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problemsIEEE Trans. Evol. Comput.20061506660312510.1109/TEVC.2005.851274
LiuGRXiZCElastic waves in anisotropic laminates2001FloridaCRC Press
PulidoGTCoelloCACThe micro genetic algorithm 2: towards on-line adaptation in evolutionary multiobjective optimization. Evolutionary Multi-Criterion Optimization Second International Conference (EMO 2003)2003PortugalFaro252266
J Knowles (9174_CR11) 2006; 1
N Srinivas (9174_CR20) 1994; 3
9174_CR19
9174_CR18
E Zitzler (9174_CR25) 2000; 8
H Lu (9174_CR17) 2003; 4
9174_CR6
K Deb (9174_CR2) 2001
9174_CR1
K Deb (9174_CR3) 2002; 2
GR Liu (9174_CR15) 2001
GT Pulido (9174_CR9) 2003
GR Liu (9174_CR16) 2003
E Zitzler (9174_CR23) 1998
CM Fonseca (9174_CR7) 1998; 28
9174_CR13
9174_CR24
9174_CR12
9174_CR10
9174_CR21
H Eskandari (9174_CR5) 2008; 14
YG Xu (9174_CR22) 2001; 7
GR Liu (9174_CR14) 1991; 113
References_xml – reference: LiuGRXiZCElastic waves in anisotropic laminates2001FloridaCRC Press
– reference: KnowlesJParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problemsIEEE Trans. Evol. Comput.20061506660312510.1109/TEVC.2005.851274
– reference: Tanaka, M.: GA-based decision support system for multicriteria optimization. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics-2, pp. 1556–1561 (1995)
– reference: DebKMulti-objective optimization using evolutionary algorithms2001EnglandWiley0970.90091
– reference: DebKPratapAAgarwalSMeyarivanTA fast and elitist multiobjective genetic algorithm: NSGAIIIEEE Trans. Evol. Comput.2002218219710.1109/4235.996017
– reference: Kursawe, F.: A variant of evolution strategies for vector optimization. In: Parallel Problem Solving from Nature, pp. 193–197. Springer, Berlin (1990)
– reference: LuHYenGGRank-density-based multiobjective genetic algorithm and benchmark test function studyIEEE Trans. Evol. Comput.20034325343
– reference: LiuGRHanXComputational inverse techniques in nondestructive evaluation2003FloridaCRC Press1067.7400210.1201/9780203494486
– reference: ZitzlerEThieleLAn evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Institute TIK1998SwitzerlandETH Zurich
– reference: FonsecaCMFlemingPJMultiobjctive optimization and multiple constraint handling with evolutionary algorithms—Part II: application exampleIEEE Trans. Syst. Man Cybern. A199828384710.1109/3468.650320
– reference: ZitzlerEDebKThieleLComparison of multiobjective evolutionary algorithms: empirical resultsIEEE Trans. Evol. Comput.20008173195
– reference: Schafer, J.D.: Some experiments in machine learning using vector evaluated genetic algorithms. Ph.D. Thesis, Nashville, TN: Vanderbilt University (1984)
– reference: Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Master’s thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts (1995)
– reference: PulidoGTCoelloCACThe micro genetic algorithm 2: towards on-line adaptation in evolutionary multiobjective optimization. Evolutionary Multi-Criterion Optimization Second International Conference (EMO 2003)2003PortugalFaro252266
– reference: LiuGRTaniJOhyoshiTWatanabeKTransient waves in anisotropic laminated plates. Part 1: theory; Part 2: applicationsJ. Vib. Acoust.199111323023910.1115/1.2930174
– reference: Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. San Mateo, California (1993)
– reference: XuYGLiuGRWuZPA novel hybrid genetic algorithm using local optimizer based on heuristic pattern moveAppl. Artif. Intell.2001760163110.1080/088395101750363966
– reference: EskandariHGeigerCDA fast Pareto genetic algorithm approach for solving expensive multiobjective optimization problemsJ. Heuristics2008142032411211.9020710.1007/s10732-007-9037-z
– reference: Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the first IEEE conference on evolutionary computation, IEEE world congress on computational computation, 1, pp. 82–87. Piscataway, NJ (1994)
– reference: SrinivasNDebKMultiobjective optimization using nondominated sorting in genetic algorithmsIEEE Trans. Evol. Comput.19943221248
– reference: Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Fifth international conference on parallel problem solving from nature (PPSN-V): 292–301 (1998b)
– reference: Coello, C.A.C., Pulido, G.T.: Multiobjective optimization using a micro-genetic algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO’2001), San Francisco, California, pp. 274–282 (2001)
– reference: Krishnakumar, K.: Micro-genetic algorithms for stationary and non-stationary function optimization. In: SPIE proceedings: intelligent control and adaptive systems, pp. 289–296 (1989)
– ident: 9174_CR1
– ident: 9174_CR18
– ident: 9174_CR19
– ident: 9174_CR6
– volume: 14
  start-page: 203
  year: 2008
  ident: 9174_CR5
  publication-title: J. Heuristics
  doi: 10.1007/s10732-007-9037-z
– volume: 28
  start-page: 38
  year: 1998
  ident: 9174_CR7
  publication-title: IEEE Trans. Syst. Man Cybern. A
  doi: 10.1109/3468.650320
– volume: 113
  start-page: 230
  year: 1991
  ident: 9174_CR14
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.2930174
– volume: 4
  start-page: 325
  year: 2003
  ident: 9174_CR17
  publication-title: IEEE Trans. Evol. Comput.
– volume-title: Elastic waves in anisotropic laminates
  year: 2001
  ident: 9174_CR15
– volume-title: Multi-objective optimization using evolutionary algorithms
  year: 2001
  ident: 9174_CR2
– ident: 9174_CR10
  doi: 10.1109/ICEC.1994.350037
– ident: 9174_CR13
  doi: 10.1007/BFb0029752
– ident: 9174_CR24
  doi: 10.1007/BFb0056872
– ident: 9174_CR12
  doi: 10.1117/12.969927
– start-page: 252
  volume-title: The micro genetic algorithm 2: towards on-line adaptation in evolutionary multiobjective optimization. Evolutionary Multi-Criterion Optimization Second International Conference (EMO 2003)
  year: 2003
  ident: 9174_CR9
– volume-title: An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical Report 43, Institute TIK
  year: 1998
  ident: 9174_CR23
– volume-title: Computational inverse techniques in nondestructive evaluation
  year: 2003
  ident: 9174_CR16
  doi: 10.1201/9780203494486
– volume: 7
  start-page: 601
  year: 2001
  ident: 9174_CR22
  publication-title: Appl. Artif. Intell.
– volume: 3
  start-page: 221
  year: 1994
  ident: 9174_CR20
  publication-title: IEEE Trans. Evol. Comput.
– ident: 9174_CR21
  doi: 10.1109/ICSMC.1995.537993
– volume: 8
  start-page: 173
  year: 2000
  ident: 9174_CR25
  publication-title: IEEE Trans. Evol. Comput.
– volume: 1
  start-page: 50
  year: 2006
  ident: 9174_CR11
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.851274
– volume: 2
  start-page: 182
  year: 2002
  ident: 9174_CR3
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
SSID ssj0030188
Score 1.9892079
Snippet In this paper, an efficient multi-objective optimization approach based on the micro genetic algorithm is suggested to solving the multi-objective optimization...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Characterization and Evaluation of Materials
Classical Mechanics
Engineering
Engineering Design
Solid Mechanics
Title An efficient multi-objective optimization approach based on the micro genetic algorithm and its application
URI https://link.springer.com/article/10.1007/s10999-011-9174-2
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-8841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0030188
  issn: 1569-1713
  databaseCode: AFBBN
  dateStart: 20040301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-8841
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0030188
  issn: 1569-1713
  databaseCode: AGYKE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-8841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0030188
  issn: 1569-1713
  databaseCode: U2A
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QdoED4inGY8qBEyhSm6ZtcqzQxgSCE5PGqWqaBAZbO23l_-OkLWwSIHGt0hwc-7Md218QuhSBolJSRmLKJWEmi4lgkKwIcAXSV-AkQjuc_PAYjcbsbhJOmjnuVdvt3pYkHVKvDbu5iXnfBwONGQHc7YaWzQuUeEyTFn5BYd1jk5CXCOJDCtaWMn_aYtMZbVZCnYMZ7qHdJjLESX2U-2hLFwdoZ40v8BC9JwXWjvMBXAV2vYCklG81ZuESrH_ejFXiliscWzelMHyBSA_PbfsdBp2xo4s4m72Uy2n1OsdZofC0WuG1cvYRGg8HTzcj0ryWQHLKeUUC6nEFaMU9bVhglBJG5DyUkZcZTiX1IG0WJud-oEFEkHblXLMsZJTFQtrL4WPUKcpCnyCsFctiAzApYCtfehAjCmmiSPlaAh7FPeS1YkvzhkrcvmgxS79JkK2kU5B0aiWd0h66-vplUfNo_LX4uj2LtDGp1e-rT_-1-gxtQ8xD6zayc9Splh_6AuKKSvZRN7l9vh_0nT59At6txnc
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QOAAHxFOMZw6cQJHaNG2T44SYBmw7bdJuUdMkMNhatJX_j9MHbBIgca3SHJz4sx3bnxG6FoGmSlFGYsoVYTaJiWAQrAgwBcrXYCRC15w8GEa9MXuchJO6j3vZVLs3KckSqVea3cqOed8HBY0ZAdzddPxVjjB_TDsN_MKFLYdNQlwiiA8hWJPK_GmLdWO0ngktDUx3D-3WniHuVEe5jzZMdoB2VvgCD9FbJ8Om5HwAU4HLWkCSq9cKs3AO2j-v2ypxwxWOnZnSGL6Ap4fnrvwOw51xrYs4mT3ni2nxMsdJpvG0WOKVdPYRGnfvR3c9Uk9LICnlvCAB9bgGtOKesSywWgsrUh6qyEssp4p6EDYLm3I_MCAiCLtSblgSMspiodzj8DFqZXlmThA2miWxBZgUsJWvPPARhbJRpH2jAI_iNvIascm0phJ3Ey1m8psE2UlagqSlk7SkbXTz9ct7xaPx1-Lb5ixkrVLL31ef_mv1FdrqjQZ92X8YPp2hbfB_aFVSdo5axeLDXICPUajL8k59AhGzx88
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7QkBAcEE8xnjlwAkVr07RNjhMwjdfEgUm7VU2TwGBtp638f5w-YJMAiWuVRpXjfLZr-zNC58JTVErKSEi5JMzEIREMghUBpkC6CoyEb5uTHwdBf8juRv6onnM6b6rdm5Rk1dNgWZqyojNVprPQ-FZ2z7suXNaQEcDgVWZ5EkChh7TbQDEobzl4EmIUQVwIx5q05k9bLBum5axoaWx6W2iz9hJxtzrWbbSisx20scAduIveuxnWJf8DfDYu6wJJLt8q_MI5IEFat1jihjccW5OlMDwBrw-nthQPg_7YNkYcT17y2bh4TXGcKTwu5nghtb2Hhr2b56s-qScnkIRyXhCPOlwBcnFHG-YZpYQRCfdl4MSGU0kdCKGFSbjraRARhGAJ1yz2GWWhkPZH8T5qZXmmDxDWisWhAcgUsJUrHfAXhTRBoFwtAZvCNnIasUVJTStup1tMom9CZCvpCCQdWUlHtI0uvl6ZVpwafy2-bM4iqq_X_PfVh_9afYbWnq570cPt4P4IrYMrRKvqsmPUKmYf-gTcjUKelir1Cc16zAs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+multi-objective+optimization+approach+based+on+the+micro+genetic+algorithm+and+its+application&rft.jtitle=International+journal+of+mechanics+and+materials+in+design&rft.au=Liu%2C+G.+P.&rft.au=Han%2C+X.&rft.au=Jiang%2C+C.&rft.date=2012-03-01&rft.pub=Springer+Netherlands&rft.issn=1569-1713&rft.eissn=1573-8841&rft.volume=8&rft.issue=1&rft.spage=37&rft.epage=49&rft_id=info:doi/10.1007%2Fs10999-011-9174-2&rft.externalDocID=10_1007_s10999_011_9174_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-1713&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-1713&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-1713&client=summon