Fuzzy Optimized Gravitational Search Algorithm for Disease Prediction

In this article, fuzzy logic and gravitational search algorithms have been amalgamated and explored for feature selection in the automated prediction of diseases. The gravitational search algorithm has been used for search optimization while fuzzy logic had been used for its parameter tuning. Featur...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of swarm intelligence research Vol. 11; no. 3; pp. 89 - 103
Main Authors Yadav, Utkarsh, Tyagi, Twishi, Nagpal, Sushama
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.07.2020
Subjects
Online AccessGet full text
ISSN1947-9263
1947-9271
DOI10.4018/IJSIR.2020070106

Cover

Abstract In this article, fuzzy logic and gravitational search algorithms have been amalgamated and explored for feature selection in the automated prediction of diseases. The gravitational search algorithm has been used for search optimization while fuzzy logic had been used for its parameter tuning. Feature selection has been considered as a dual objective problem in the article, i.e. selecting minimum number of features without compromising the accuracy of classification, which is performed using K-Nearest Neighbour classifier. The improved algorithm has been tested with various publicly available medical datasets to analyse its effectiveness. The results indicate that the approach not only reduces the feature set by an average of 67.66% but also increases the accuracy by an average of 12%. Further, the results have also been compared with the prior work wherein the feature selection has been done using other evolutionary techniques. It is observed that the proposed approach is able to generate better results in most of the cases.
AbstractList In this article, fuzzy logic and gravitational search algorithms have been amalgamated and explored for feature selection in the automated prediction of diseases. The gravitational search algorithm has been used for search optimization while fuzzy logic had been used for its parameter tuning. Feature selection has been considered as a dual objective problem in the article, i.e. selecting minimum number of features without compromising the accuracy of classification, which is performed using K-Nearest Neighbour classifier. The improved algorithm has been tested with various publicly available medical datasets to analyse its effectiveness. The results indicate that the approach not only reduces the feature set by an average of 67.66% but also increases the accuracy by an average of 12%. Further, the results have also been compared with the prior work wherein the feature selection has been done using other evolutionary techniques. It is observed that the proposed approach is able to generate better results in most of the cases.
Author Yadav, Utkarsh
Nagpal, Sushama
Tyagi, Twishi
AuthorAffiliation Netaji Subhas University of Technology, Delhi, India
CRED, India
Samsung R&D, India
AuthorAffiliation_xml – name: CRED, India
– name: Samsung R&D, India
– name: Netaji Subhas University of Technology, Delhi, India
Author_xml – sequence: 1
  givenname: Utkarsh
  surname: Yadav
  fullname: Yadav, Utkarsh
  organization: CRED, India
– sequence: 2
  givenname: Twishi
  surname: Tyagi
  fullname: Tyagi, Twishi
  organization: Samsung R&D, India
– sequence: 3
  givenname: Sushama
  surname: Nagpal
  fullname: Nagpal, Sushama
  organization: Netaji Subhas University of Technology, Delhi, India
BookMark eNp1kM1PAjEUxBuDiYjcPW7iefH1Y9vdI0FADAlG9Nx0d1soAYrtYrL89S5iIB58l3mHmcnkd4taW7fVCN1j6DHA6ePkZT556xEgAAIw8CvUxhkTcUYEbp1_Tm9QN4QVNJcwIRLaRsPR_nCoo9musht70GU09urLVqqybqvW0VwrXyyj_nrhvK2Wm8g4Hz3ZoFXQ0avXpS2Ozjt0bdQ66O6vdtDHaPg-eI6ns_Fk0J_GBUnTKsaKaZqSMtU6U1xkgnCTUUgUJ7nKyzwHZnJSiJwnmpbNPtCMKQADKTVJAbSDHk69O-8-9zpUcuX2vhkaJMkoYcAwx40LTq7CuxC8NnLn7Ub5WmKQR17yh5e88Goi41PELuyls5ZnLvIPl_96MKbfqnd26g
Cites_doi 10.1109/NaBIC.2013.6617875
10.1007/978-3-540-25948-0_31
10.1109/SIS.2014.7011780
10.1142/S1469026814500096
10.1007/978-1-4615-5725-8_8
10.1109/CSIEC.2017.7940180
10.1109/TEVC.2015.2504420
10.1155/2013/419187
10.1142/S021812661750061X
10.1109/ACCESS.2019.2903137
10.1016/j.eswa.2014.04.015
10.1109/ICCKE.2011.6413315
10.1109/TSMCB.2012.2227469
10.1007/s11047-009-9175-3
10.1016/j.neucom.2011.11.020
10.1016/j.compeleceng.2013.11.024
10.1109/CEC.2013.6557685
10.1109/ICASSP.2011.5946916
10.1016/j.asoc.2015.10.005
10.1007/s00500-016-2385-6
10.4018/978-1-4666-7258-1.ch020
10.1016/j.ijepes.2013.02.022
10.1016/j.ins.2009.03.004
10.1007/s00521-015-2103-9
10.1109/IADCC.2015.7154727
10.4018/IJFSA.2017040102
10.1007/978-981-10-0308-0_3
10.1017/CBO9780511569920.007
10.1109/CSB.2003.1227396
10.1016/j.engappai.2012.01.011
10.1016/j.enconman.2010.07.012
10.1016/j.procs.2017.09.133
10.1016/j.ins.2018.10.025
ContentType Journal Article
Copyright Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJSIR.2020070106
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database
CrossRef
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-9271
EndPage 103
ExternalDocumentID 10_4018_IJSIR_2020070106
y_Optimized_Gravitational10_4018_IJSIR_202007010611
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ACOJC
ADMLS
AFKRA
ARAPS
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CTSEY
H13
HCIFZ
HZ~
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c288t-1a4e382d8ee9a679726f9305a62babdbb04fb2c7b65e3d7530e44a00f083f5c03
IEDL.DBID BENPR
ISSN 1947-9263
IngestDate Sun Jul 13 05:12:41 EDT 2025
Wed Oct 15 13:10:21 EDT 2025
Tue Jan 05 23:28:53 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c288t-1a4e382d8ee9a679726f9305a62babdbb04fb2c7b65e3d7530e44a00f083f5c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932404161
PQPubID 2045809
PageCount 15
ParticipantIDs proquest_journals_2932404161
igi_journals_y_Optimized_Gravitational10_4018_IJSIR_202007010611
crossref_primary_10_4018_IJSIR_2020070106
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of swarm intelligence research
PublicationYear 2020
Publisher IGI Global
Publisher_xml – name: IGI Global
References IJSIR.2020070106-7
IJSIR.2020070106-6
IJSIR.2020070106-5
IJSIR.2020070106-4
IJSIR.2020070106-2
IJSIR.2020070106-1
IJSIR.2020070106-0
K.Satishkumar (IJSIR.2020070106-28) 2016
IJSIR.2020070106-9
IJSIR.2020070106-20
IJSIR.2020070106-8
IJSIR.2020070106-21
IJSIR.2020070106-22
IJSIR.2020070106-23
IJSIR.2020070106-24
IJSIR.2020070106-25
IJSIR.2020070106-26
IJSIR.2020070106-27
O.Inan (IJSIR.2020070106-13) 2013; 9
IJSIR.2020070106-29
H.Banati (IJSIR.2020070106-3) 2011; 8
IJSIR.2020070106-30
IJSIR.2020070106-31
IJSIR.2020070106-10
IJSIR.2020070106-32
IJSIR.2020070106-33
IJSIR.2020070106-12
IJSIR.2020070106-34
IJSIR.2020070106-35
IJSIR.2020070106-14
IJSIR.2020070106-36
IJSIR.2020070106-16
IJSIR.2020070106-38
N.Kokash (IJSIR.2020070106-15) 2005
IJSIR.2020070106-17
IJSIR.2020070106-39
IJSIR.2020070106-18
M.Guerrero (IJSIR.2020070106-11) 2018; 1
IJSIR.2020070106-19
J.Yang (IJSIR.2020070106-37) 1998
References_xml – ident: IJSIR.2020070106-20
  doi: 10.1109/NaBIC.2013.6617875
– ident: IJSIR.2020070106-36
  doi: 10.1007/978-3-540-25948-0_31
– volume: 8
  start-page: 473
  issue: 4
  year: 2011
  ident: IJSIR.2020070106-3
  article-title: Firefly based feature selection approach.
  publication-title: International Journal of Computer Science Issues
– ident: IJSIR.2020070106-21
  doi: 10.1109/SIS.2014.7011780
– ident: IJSIR.2020070106-33
  doi: 10.1142/S1469026814500096
– ident: IJSIR.2020070106-38
– start-page: 117
  year: 1998
  ident: IJSIR.2020070106-37
  article-title: Feature subset selection using a genetic algorithm
  publication-title: Feature extraction, construction and selection
  doi: 10.1007/978-1-4615-5725-8_8
– ident: IJSIR.2020070106-6
  doi: 10.1109/CSIEC.2017.7940180
– ident: IJSIR.2020070106-34
  doi: 10.1109/TEVC.2015.2504420
– year: 2005
  ident: IJSIR.2020070106-15
  publication-title: An introduction to heuristic algorithms
– ident: IJSIR.2020070106-31
  doi: 10.1155/2013/419187
– ident: IJSIR.2020070106-26
  doi: 10.1142/S021812661750061X
– ident: IJSIR.2020070106-39
– ident: IJSIR.2020070106-19
  doi: 10.1109/ACCESS.2019.2903137
– ident: IJSIR.2020070106-32
  doi: 10.1016/j.eswa.2014.04.015
– ident: IJSIR.2020070106-2
  doi: 10.1109/ICCKE.2011.6413315
– ident: IJSIR.2020070106-35
  doi: 10.1109/TSMCB.2012.2227469
– ident: IJSIR.2020070106-25
  doi: 10.1007/s11047-009-9175-3
– ident: IJSIR.2020070106-12
  doi: 10.1016/j.neucom.2011.11.020
– ident: IJSIR.2020070106-4
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: IJSIR.2020070106-30
  doi: 10.1109/CEC.2013.6557685
– ident: IJSIR.2020070106-23
  doi: 10.1109/ICASSP.2011.5946916
– ident: IJSIR.2020070106-29
  doi: 10.1016/j.asoc.2015.10.005
– ident: IJSIR.2020070106-10
  doi: 10.1007/s00500-016-2385-6
– ident: IJSIR.2020070106-7
– ident: IJSIR.2020070106-8
  doi: 10.4018/978-1-4666-7258-1.ch020
– ident: IJSIR.2020070106-9
  doi: 10.1016/j.ijepes.2013.02.022
– ident: IJSIR.2020070106-24
  doi: 10.1016/j.ins.2009.03.004
– ident: IJSIR.2020070106-0
  doi: 10.1007/s00521-015-2103-9
– volume: 1
  start-page: 32
  issue: 1
  year: 2018
  ident: IJSIR.2020070106-11
  article-title: A new algorithm based on the cuckoo search with dynamic adaptation of parameters using Fuzzy systems.
  publication-title: Journal of Universal Mathematics
– ident: IJSIR.2020070106-17
  doi: 10.1109/IADCC.2015.7154727
– ident: IJSIR.2020070106-27
  doi: 10.4018/IJFSA.2017040102
– start-page: 31
  year: 2016
  ident: IJSIR.2020070106-28
  article-title: Computational Intelligence Approach for Prediction of Breast Cancer using Particle Swarm Optimization: A Comparative Study of the Results with Reduced Set of Attributes
  publication-title: Computational Intelligence Techniques in Health Care
  doi: 10.1007/978-981-10-0308-0_3
– ident: IJSIR.2020070106-1
  doi: 10.1017/CBO9780511569920.007
– ident: IJSIR.2020070106-5
  doi: 10.1109/CSB.2003.1227396
– volume: 9
  start-page: 727
  issue: 2
  year: 2013
  ident: IJSIR.2020070106-13
  article-title: A New Hybrid Feature Selection Method Based on Association Rules and Pca for Detection of Breast Cancer.
  publication-title: International Journal of Innovative Computing, Information, & Control
– ident: IJSIR.2020070106-14
  doi: 10.1016/j.engappai.2012.01.011
– ident: IJSIR.2020070106-16
  doi: 10.1016/j.enconman.2010.07.012
– ident: IJSIR.2020070106-18
  doi: 10.1016/j.procs.2017.09.133
– ident: IJSIR.2020070106-22
  doi: 10.1016/j.ins.2018.10.025
SSID ssj0000547753
Score 2.1204143
Snippet In this article, fuzzy logic and gravitational search algorithms have been amalgamated and explored for feature selection in the automated prediction of...
SourceID proquest
crossref
igi
SourceType Aggregation Database
Index Database
Publisher
StartPage 89
SubjectTerms Algorithms
Feature selection
Fuzzy logic
K-nearest neighbors algorithm
Search algorithms
Title Fuzzy Optimized Gravitational Search Algorithm for Disease Prediction
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2020070106
https://www.proquest.com/docview/2932404161
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1947-9271
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: ADMLS
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1947-9271
  dateEnd: 20211231
  omitProxy: true
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JT-swEB7RcuHC9niibPKBCweL2HEc54BYWxbpFQQPiVvkLVAJCpSCRH894yahQgjOSUaaL559PAOwyZ02IkkM5XGcUhE7QzMlJWWZsUlaKB7bcHf4X1eeXIuzm-RmCrr1XZjQVlnrxLGido825Mi30Syh8Qnu-O7TMw1bo0J1tV6hoavVCm5nPGKsAdM8TMZqwvRBu3tx-Zl1QQclLUdTYvCe0ozLuKxdYpihtk_Prk4vMWYM-bsQK32xVY3ebe-bwh5boc48zFbuI9kv__cCTPn-IszVqxlIJal_oN15HY3eyTkqhIfeyDtyPNBv1Thu_L5sMib797fI4vDugaDrSo7KWg25GITiTXhzCa477f-HJ7TamEAtV2pImRY-Vtwp7zMt0yzlsshQorXkRhtnTCQKw21qZOJjh0BEXggdRQU6YkVio_gvNPuPfb8MRFtmQ_Aoo4IJj4ZdOcuYzwqVCGuYbsFWjU3-VA7GyDGgCDjmYxzzCY4t2EPw8ko6XvL3_JP9_Av7PxFgrAVrNfITOpMzsfL741WYCcTKNts1aA4Hr34dnYmh2YCG6hxvVOfkA1dIxv4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELb6OMCFNyJQwAc4cLC6fqzXPlS0tAlJH6EqrdSb69eWSDQtaUqV_Dh-W8fZ3UYVglvPuzuSvx3PfOMZzyD0gQXrRJ47wjgviODBEa2kJFQ7nxelYtynu8N7fdk9EtvH-fEC-tPchUlllY1NnBnqcO7TGfkquCVwPomOf774RdLUqJRdbUZo2Hq0QlibtRirL3bsxMk1hHCXa70t-N8fGeu0Dze7pJ4yQDxTakyoFZErFlSM2spCF0yWGnaBlcxZF5zLROmYL5zMIw_A7rMohM2yEshLmfuMg9xFtCy40BD8LX9p9_cPbk95gBAVVStMqkVBNJO8ypVCWKNWe9vfewcQo6bzwhSb3fGNi4PTwV8OYub1Ok_Qo5qu4o1Kv56ihTh8hh43oyBwbRmeo3bnajqd4G9ggM4G0xjw15H9Xbf_hu-roma88fMUIB3_OMNAlfFWlRvC-6OULEpvvkBH94LdS7Q0PB_GVwhbT30KVmVWUhGBSKjgKY26VLnwjtoW-tRgYy6qRhwGApiEo5nhaOY4ttA6gGfq3XhpJuZ2-ebO8v8lgNIWWmmQn8uZ6-Dr_z9-jx50D_d2zW6vv_MGPUyCqxLfFbQ0Hl3Ft0Bkxu5drS0Yndy3gt4AkxcDNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Optimized+Gravitational+Search+Algorithm+for+Disease+Prediction&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Yadav%2C+Utkarsh&rft.au=Tyagi%2C+Twishi&rft.au=Nagpal%2C+Sushama&rft.date=2020-07-01&rft.pub=IGI+Global&rft.issn=1947-9263&rft.eissn=1947-9271&rft.volume=11&rft.issue=3&rft.spage=89&rft.epage=103&rft_id=info:doi/10.4018%2FIJSIR.2020070106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon