Big data dimensionality reduction-based supervised machine learning algorithms for NASH diagnosis

Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 26; no. 1; p. 256
Main Authors Tutsoy, Onder, Ozturk, Huseyin Ali, Sumbul, Hilmi Erdem
Format Journal Article
LanguageEnglish
Published London BioMed Central 21.10.2025
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-025-06263-5

Cover

Abstract Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. Methods This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Results Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.
AbstractList Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. Methods This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Results Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant.BACKGROUNDIdentifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant.This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models.METHODSThis paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models.Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.RESULTSTwo machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.
Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. Methods This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Results Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively. Keywords: Big data, Dimension reduction, Feature selection, Prediction model, NASH disease, Supervised machine learning
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.
ArticleNumber 256
Audience Academic
Author Tutsoy, Onder
Sumbul, Hilmi Erdem
Ozturk, Huseyin Ali
Author_xml – sequence: 1
  givenname: Onder
  surname: Tutsoy
  fullname: Tutsoy, Onder
  email: otutsoy@atu.edu.tr
  organization: Adana Alparslan Turkes Science and Technology University
– sequence: 2
  givenname: Huseyin Ali
  surname: Ozturk
  fullname: Ozturk, Huseyin Ali
  organization: Adana City Training and Research Hospital, University of Health Sciences
– sequence: 3
  givenname: Hilmi Erdem
  surname: Sumbul
  fullname: Sumbul, Hilmi Erdem
  organization: Adana City Training and Research Hospital, University of Health Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41120851$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi3Uin7AH-CAInEphxR_xI5zXKpCK1VFonC2JskkdZXYi53Q7r_HSxbESgghHzxjP-_Yfscn5MB5h4S8YvScMa3eRca1rHLKZU4VVyKXz8gxK0qWc0blwR_xETmJ8YFSVmoqn5OjgjFOtWTHBN7bPmthgqy1I7povYPBTpssYDs3U0rzGiK2WZzXGL7bbThCc28dZgNCcNb1GQy9D3a6H2PW-ZDdru6uUjnonY82viCHHQwRX-7mU_L1w-WXi6v85tPH64vVTd5wrWXeoqp5XReigKpuO06FZAJpJypZcugU0hKaCnSRNgVXtRCllIUsUDBW8K4Up0QsdWe3hs0jDINZBztC2BhGzdYwsxhmkmHmp2FGJtXZoloH_23GOJnRxgaHARz6OZp0lNCVpkol9M2C9jCgsa7zU4Bmi5uVVlQLpqRO1PlfqDRaHG2TGtjZtL4neLsnSMyET1MPc4zm-u7zPvt6d9u5HrH9_cBf_UwAX4Am-BgDdv_nwc65mGDXYzAPfg7pH8R_qX4AoNO_kg
Cites_doi 10.1111/apt.17158
10.1007/s12072-022-10300-3
10.1136/bmjhci-2021-100510
10.3389/fbinf.2025.1522401
10.1136/bmjdrc-2020-001174
10.1007/s11831-025-10309-5
10.1016/j.aohep.2022.100873
10.1038/s41598-024-51741-0
10.1007/s11306-020-01756-1
10.1038/nrgastro.2013.149
10.1097/HEP.0000000000000364
10.1007/s42000-022-00377-8
10.1002/hep4.1689
10.1016/S2468-1253(23)00159-0
10.2337/dc22-2048
10.1186/s12902-023-01318-1
10.1371/journal.pone.0325900
10.1088/2631-8695/ad76f9
10.1016/j.jhep.2022.04.002
10.1080/10255842.2023.2217978
10.1038/s41591-023-02242-6
10.1097/MPG.0b013e318291fefe
10.1093/jamia/ocab003
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
ADTOC
UNPAY
DOI 10.1186/s12859-025-06263-5
DatabaseName SpringerLink Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID 10.1186/s12859-025-06263-5
A860831658
41120851
10_1186_s12859_025_06263_5
Genre Journal Article
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AFFHD
7X8
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
M48
RIG
UNPAY
ID FETCH-LOGICAL-c2885-de6b2bb434a9bdf203513e0f39572af6e07ac9a84bdf326b33755454e31142f73
IEDL.DBID C6C
ISSN 1471-2105
IngestDate Wed Oct 29 11:36:26 EDT 2025
Sat Oct 25 04:52:00 EDT 2025
Wed Oct 29 16:59:13 EDT 2025
Tue Oct 28 03:56:32 EDT 2025
Sat Oct 25 06:59:46 EDT 2025
Sun Oct 26 04:17:32 EDT 2025
Sat Oct 25 05:09:13 EDT 2025
Sat Oct 25 01:51:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Dimension reduction
Feature selection
NASH disease
Supervised machine learning
Big data
Prediction model
Language English
License 2025. The Author(s).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2885-de6b2bb434a9bdf203513e0f39572af6e07ac9a84bdf326b33755454e31142f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1186/s12859-025-06263-5
PMID 41120851
PQID 3263898066
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1186_s12859_025_06263_5
proquest_miscellaneous_3263898066
gale_infotracmisc_A860831658
gale_infotracacademiconefile_A860831658
gale_incontextgauss_ISR_A860831658
pubmed_primary_41120851
crossref_primary_10_1186_s12859_025_06263_5
springer_journals_10_1186_s12859_025_06263_5
PublicationCentury 2000
PublicationDate 20251021
2025-10-21
2025-Oct-21
PublicationDateYYYYMMDD 2025-10-21
PublicationDate_xml – month: 10
  year: 2025
  text: 20251021
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References M Docherty (6263_CR13) 2021; 28
AR Naderi Yaghouti (6263_CR15) 2024; 14
6263_CR19
V Ratziu (6263_CR7) 2022; 76
L Castera (6263_CR22) 2023; 46
A Wree (6263_CR1) 2013; 10
J Lee (6263_CR12) 2023; 78
KI Zheng (6263_CR11) 2020; 8
6263_CR16
S Kechagias (6263_CR6) 2022; 21
O Yasar (6263_CR14) 2022
6263_CR21
K Puri (6263_CR23) 2013; 57
L Henry (6263_CR2) 2022; 56
A Kumar (6263_CR17) 2025; 20
AS Barritt (6263_CR9) 2021; 5
A Kumar (6263_CR18) 2024; 6
H Tilg (6263_CR3) 2023; 8
Y-S Lee (6263_CR8) 2022; 16
SA Harrison (6263_CR4) 2023; 29
D Contreras (6263_CR5) 2023; 28
M Masarone (6263_CR10) 2021; 17
S Ghosh (6263_CR20) 2025; 5
H Fu (6263_CR24) 2023; 23
References_xml – volume: 56
  start-page: 942
  issue: 6
  year: 2022
  ident: 6263_CR2
  publication-title: Aliment Pharmacol Ther
  doi: 10.1111/apt.17158
– volume: 16
  start-page: 316
  issue: 2
  year: 2022
  ident: 6263_CR8
  publication-title: Hepatol Int
  doi: 10.1007/s12072-022-10300-3
– year: 2022
  ident: 6263_CR14
  publication-title: BMJ Health Care Inform
  doi: 10.1136/bmjhci-2021-100510
– volume: 5
  year: 2025
  ident: 6263_CR20
  publication-title: Front Bioinform
  doi: 10.3389/fbinf.2025.1522401
– volume: 8
  issue: 1
  year: 2020
  ident: 6263_CR11
  publication-title: BMJ Open Diabetes Res Care
  doi: 10.1136/bmjdrc-2020-001174
– ident: 6263_CR16
  doi: 10.1007/s11831-025-10309-5
– volume: 28
  issue: 1
  year: 2023
  ident: 6263_CR5
  publication-title: Ann Hepatol
  doi: 10.1016/j.aohep.2022.100873
– volume: 14
  issue: 1
  year: 2024
  ident: 6263_CR15
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-51741-0
– volume: 17
  start-page: 1
  year: 2021
  ident: 6263_CR10
  publication-title: Metabolomics
  doi: 10.1007/s11306-020-01756-1
– volume: 10
  start-page: 627
  issue: 11
  year: 2013
  ident: 6263_CR1
  publication-title: Nat Rev Gastroenterol Hepatol
  doi: 10.1038/nrgastro.2013.149
– volume: 78
  start-page: 258
  issue: 1
  year: 2023
  ident: 6263_CR12
  publication-title: Hepatology
  doi: 10.1097/HEP.0000000000000364
– volume: 21
  start-page: 349
  issue: 3
  year: 2022
  ident: 6263_CR6
  publication-title: Hormones (Athens)
  doi: 10.1007/s42000-022-00377-8
– volume: 5
  start-page: 938
  issue: 6
  year: 2021
  ident: 6263_CR9
  publication-title: Hepatol Commun
  doi: 10.1002/hep4.1689
– volume: 8
  start-page: 943
  issue: 10
  year: 2023
  ident: 6263_CR3
  publication-title: Lancet Gastroenterol Hepatol
  doi: 10.1016/S2468-1253(23)00159-0
– volume: 46
  start-page: 1354
  issue: 7
  year: 2023
  ident: 6263_CR22
  publication-title: Diabetes Care
  doi: 10.2337/dc22-2048
– volume: 23
  issue: 1
  year: 2023
  ident: 6263_CR24
  publication-title: BMC Endocr Disord
  doi: 10.1186/s12902-023-01318-1
– volume: 20
  issue: 6
  year: 2025
  ident: 6263_CR17
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0325900
– volume: 6
  start-page: 035233
  issue: 3
  year: 2024
  ident: 6263_CR18
  publication-title: Eng Res Express
  doi: 10.1088/2631-8695/ad76f9
– volume: 76
  start-page: 1263
  issue: 6
  year: 2022
  ident: 6263_CR7
  publication-title: J Hepatol
  doi: 10.1016/j.jhep.2022.04.002
– ident: 6263_CR19
  doi: 10.1080/10255842.2023.2217978
– volume: 29
  start-page: 562
  issue: 3
  year: 2023
  ident: 6263_CR4
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02242-6
– volume: 57
  start-page: 114
  issue: 1
  year: 2013
  ident: 6263_CR23
  publication-title: J Pediatr Gastroenterol Nutr
  doi: 10.1097/MPG.0b013e318291fefe
– volume: 28
  start-page: 1235
  issue: 6
  year: 2021
  ident: 6263_CR13
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocab003
– ident: 6263_CR21
SSID ssj0017805
Score 2.4858222
Snippet Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there...
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no...
Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there...
SourceID unpaywall
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 256
SubjectTerms Algorithms
Big Data
Bioinformatics
Biomedical and Life Sciences
Blood
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data mining
Dimensionality Reduction
Humans
Life Sciences
Liver
Liver diseases
Machine Learning
Mathematical optimization
Medical advice systems
Medical examination
Microarrays
Neural networks
Neural Networks, Computer
Non-alcoholic Fatty Liver Disease - blood
Non-alcoholic Fatty Liver Disease - diagnosis
Supervised Machine Learning
Type 2 diabetes
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9nDxEf_D5dOSWK4IOXXnc3yW4fq3hUwSJ3Fs6nkGySWmx3S7eLnH-9M_tR2kNEwbeFzC7JZJL8ZjPzG0JepdbEVjvBMiFixrmXzITWMHCvjQHnzUcWf-h_msjxlH-8FJcH5LzLhTHLzMyLljQUiYr7u2noiybLAasouPXpyvpm0afytAyRiY1hcdYBEqwwcYMcSgH4vEcOp5PPo691mlESMvBxRJc989sX906o6_v0zkG1vTm9TW5V-Upf_dCLxc7hdHaXlN2wmpiU7_1qY_rZz2uMj_933PfInRbL0lFjfPfJgcsfkJtNdcurh0S_nc8oRqBSiyUEGvoPAP10jXSxaBAMz1BLy2qFOxY-LuvYTkfbYhYzqhezYj3ffFuWFDpNJ6OLMXyuDg-cl4_I9Oz9l3dj1lZ0YFmUpoJZJ01kDI-5HhrrI7zGjN3A42VhpL10g0RnQ51yaARcaeI4AbgjuIsx5dcn8RHp5UXunhAaZsbh5iKt1zwbOs1t5M1wkIUSQLBJAvKmm0W1aog7VO3wpFI1SlOgNFUrTYmAvMSJVsiIkWPIzUxXZak-XJyrUSqxGhsgtYC8boV8AZOS6TaDATqEJFp7ksd7krBks73mF509KWzCOLfcFVWpYNCAIFPAgQF53BjatvccoDEC5ICcdJan2g2n_OPQTrbW-ReaePpv4sekt1lX7hkgs4153i61X5-vM84
  priority: 102
  providerName: Unpaywall
Title Big data dimensionality reduction-based supervised machine learning algorithms for NASH diagnosis
URI https://link.springer.com/article/10.1186/s12859-025-06263-5
https://www.ncbi.nlm.nih.gov/pubmed/41120851
https://www.proquest.com/docview/3263898066
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-025-06263-5
UnpaywallVersion publishedVersion
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTQh4QPwmMCqDkHhgFk3iOOljNq2USlTTSqXyZNmxUyp1adU0QvvvuUvSqkUIwUsSxY5ln-3cZ9_5O4D3iTWh1S7iWRSFXIhccuNbw3F5bQwu3vLA0ob-15EcTMRwGk1bmhw6C7Nvv_cT-an0iWGNU9DVLhGn8OgITlBJydowKy92FgPi5t8eivnjdweK5_ff757-2RlEH8C9qljp2596sdjTOf1H8LAFiyxtevcx3HHFE7jbhI-8fQr6fD5j5OLJLHH0N_waiKrZmvhYSeKclJRlZbWiXwI93tTOk4610SJmTC9my_V88-OmZIhf2SgdD7C42v9uXj6DSf_y28WAtyETeBYkScStkyYwRoRC94zNA7IThq6bkzUu0Ll03VhnPZ0ITETgZsIwRjwRCRfSmdo8Dp_DcbEs3EtgfmYczV5pcy2yntPCBrnpdTNfIso0sQcft_JUq4YZQ9UrikSqRvoKpa9q6avIg3ckckWUEwX5tMx0VZbqy_hapYmkcGcIhTz40GbKl5u1znR7RAArRCxVBzlPD3LinMgOkt9ue1ZREjmSFW5ZlQobjRAtQaDlwYumy3e1F4g9CYF6cLYdA6qd0eVfm3a2Gyf_IIlX_1f6a7gf0ChGdRn4p3C8WVfuDeKgjenAUTyN8Zr0P3fgJE2H4yHezy9HV9edenJ06h0GfDcZXaXffwFm2wTt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJjR4mPgmbIBBSDwwiyZx3PQxQ0xd2fpAN2lvlh07pVKXVnUjtP-eu3xUK0ITvEWyYzlnn-_n3N3vAD6m1sRWu4TnSRJzIQrJTWgNx-u1MXh5KyJLP_TPx3J4KUZXyVWbFOa7aPfOJVmf1LVap_KLD4lrjVP51R5RqPDkPuxSkBWq426WjSajjfeAePq7BJm_vrllhP48im_Zoo1z9BHsVeVS3_zS8_kt-3PyGPZb4MiyZqWfwD1XPoUHTSnJm2egj2dTRuGezBJff8O1gQibrYiblaTPyWBZ5qslHQ_0eF0HUjrWVo6YMj2fLlaz9c9rzxDLsnE2GeJwdSzezD-Hy5NvF1-HvC2fwPMoTRNunTSRMSIWemBsEZHPMHa9gjxzkS6k6_V1PtCpwEYEcSaO-yjNRLiY8muLfvwCdspF6V4BC3PjSJOlLbTIB04LGxVm0MtDiYjT9AP43MlTLRuWDFXfLlKpGukrlL6qpa-SAD6QyBXRT5QU3zLVlffqdPJDZamk0mcIiwL41HYqFuuVznWbLoATIsaqrZ6HWz1RP_Kt5vfdyipqoqCy0i0qr_CjEa6lCLoCeNks-Wb2AnEoodEAjro9oFrt9nd-2tFmn_yDJF7_3-jvYG94cX6mzk7H3w_gYUQ7Gs1oFB7CznpVuTeIj9bmbasOvwGDHgWu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEF8PiM8tMMAgJB42a03iuOljKVQdHxViTNqbZcd2qdSlVZMI7b_nLh9VixCCt0h2LOfs8_2cu_sdwJvUmthql_AsSWIuhJfchNZwvF4bg5c3H1n6of9lKifn4uNFcrGVxV9Hu3cuySangVia8vJkZX2j4qk8KULiXeNUirVHdCo8uQ43BFo3qmEwkqONH4EY-7tUmT--t2OOfj-Ut6zSxk16F25X-Upf_dSLxZYlGt-Hey2EZMNmzR_ANZc_hJtNUcmrR6DfzWeMAj-ZJeb-hnUDsTZbE0srrQMn02VZUa3ooKDHyzqk0rG2hsSM6cVsuZ6XPy4LhqiWTYdnExyujsqbF4_hfPzh-2jC20IKPIvSNOHWSRMZI2KhB8b6iLyHset58tFF2kvX6-tsoFOBjQjnTBz3EWUkwsWUaev78RPYy5e5OwAWZsaRTkvrtcgGTgsbeTPoZaFE7Gn6ARx18lSrhi9D1feMVKpG-gqlr2rpqySA1yRyRUQUOUW6zHRVFOr07JsappKKoCFACuBt28kvy7XOdJs4gBMi7qqdnoc7PVFTsp3mV93KKmqi8LLcLatC4UcjcEsRfgWw3yz5ZvYCESnh0gCOuz2gWj0v_vppx5t98g-SePp_o7-EW1_fj9Xn0-mnZ3Anog2N9jQKD2GvXFfuOQKl0ryodeEXBcYIiw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9nDxEf_D5dOSWK4IOXXnc3yW4fq3hUwSJ3Fs6nkGySWmx3S7eLnH-9M_tR2kNEwbeFzC7JZJL8ZjPzG0JepdbEVjvBMiFixrmXzITWMHCvjQHnzUcWf-h_msjxlH-8FJcH5LzLhTHLzMyLljQUiYr7u2noiybLAasouPXpyvpm0afytAyRiY1hcdYBEqwwcYMcSgH4vEcOp5PPo691mlESMvBxRJc989sX906o6_v0zkG1vTm9TW5V-Upf_dCLxc7hdHaXlN2wmpiU7_1qY_rZz2uMj_933PfInRbL0lFjfPfJgcsfkJtNdcurh0S_nc8oRqBSiyUEGvoPAP10jXSxaBAMz1BLy2qFOxY-LuvYTkfbYhYzqhezYj3ffFuWFDpNJ6OLMXyuDg-cl4_I9Oz9l3dj1lZ0YFmUpoJZJ01kDI-5HhrrI7zGjN3A42VhpL10g0RnQ51yaARcaeI4AbgjuIsx5dcn8RHp5UXunhAaZsbh5iKt1zwbOs1t5M1wkIUSQLBJAvKmm0W1aog7VO3wpFI1SlOgNFUrTYmAvMSJVsiIkWPIzUxXZak-XJyrUSqxGhsgtYC8boV8AZOS6TaDATqEJFp7ksd7krBks73mF509KWzCOLfcFVWpYNCAIFPAgQF53BjatvccoDEC5ICcdJan2g2n_OPQTrbW-ReaePpv4sekt1lX7hkgs4153i61X5-vM84
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+dimensionality+reduction-based+supervised+machine+learning+algorithms+for+NASH+diagnosis&rft.jtitle=BMC+bioinformatics&rft.au=Tutsoy%2C+Onder&rft.au=Ozturk%2C+Huseyin+Ali&rft.au=Sumbul%2C+Hilmi+Erdem&rft.date=2025-10-21&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-025-06263-5&rft.externalDocID=10_1186_s12859_025_06263_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon