Big data dimensionality reduction-based supervised machine learning algorithms for NASH diagnosis
Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 26; no. 1; p. 256 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          BioMed Central
    
        21.10.2025
     BioMed Central Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/s12859-025-06263-5 | 
Cover
| Abstract | Background
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant.
Methods
This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models.
Results
Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively. | 
    
|---|---|
| AbstractList | Background
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant.
Methods
This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models.
Results
Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively. Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively. Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant.BACKGROUNDIdentifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant.This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models.METHODSThis paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models.Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.RESULTSTwo machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively. Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. Methods This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Results Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively. Keywords: Big data, Dimension reduction, Feature selection, Prediction model, NASH disease, Supervised machine learning Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no confirmed and effective approach for its early and accurate diagnosis yet. A large amount of medical data is collected to diagnose the NASH where the majority of them are redundant. This paper initially focuses on selecting the most informative blood test data among the collected big data with the Pearson correlation statistical approach and modified Particle Swarm Optimization with Artificial Neural Networks (PSO-ANN) machine learning algorithm. Then, a gradient based Batch Least Squares (BLS) and a search-based Artificial Bee Colony (ABC) machine learning algorithms are implemented to optimize the NASH prediction models. Confirmed operational NASH diagnosis supervise the statistical and machine learning algorithms to develop accurate prediction models. Two machine learning algorithms were trained and also validated with the varying number of selected input features. The results yielded that the trained BLS machine learning model is able to diagnose benign and malignant cases with 100% and 98% accuracies, respectively. The trained ABC machine learning algorithm diagnoses the benign and malignant cases with 90.5% and 94.3% accuracies, respectively.  | 
    
| ArticleNumber | 256 | 
    
| Audience | Academic | 
    
| Author | Tutsoy, Onder Sumbul, Hilmi Erdem Ozturk, Huseyin Ali  | 
    
| Author_xml | – sequence: 1 givenname: Onder surname: Tutsoy fullname: Tutsoy, Onder email: otutsoy@atu.edu.tr organization: Adana Alparslan Turkes Science and Technology University – sequence: 2 givenname: Huseyin Ali surname: Ozturk fullname: Ozturk, Huseyin Ali organization: Adana City Training and Research Hospital, University of Health Sciences – sequence: 3 givenname: Hilmi Erdem surname: Sumbul fullname: Sumbul, Hilmi Erdem organization: Adana City Training and Research Hospital, University of Health Sciences  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41120851$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1v1DAQhi3Uin7AH-CAInEphxR_xI5zXKpCK1VFonC2JskkdZXYi53Q7r_HSxbESgghHzxjP-_Yfscn5MB5h4S8YvScMa3eRca1rHLKZU4VVyKXz8gxK0qWc0blwR_xETmJ8YFSVmoqn5OjgjFOtWTHBN7bPmthgqy1I7povYPBTpssYDs3U0rzGiK2WZzXGL7bbThCc28dZgNCcNb1GQy9D3a6H2PW-ZDdru6uUjnonY82viCHHQwRX-7mU_L1w-WXi6v85tPH64vVTd5wrWXeoqp5XReigKpuO06FZAJpJypZcugU0hKaCnSRNgVXtRCllIUsUDBW8K4Up0QsdWe3hs0jDINZBztC2BhGzdYwsxhmkmHmp2FGJtXZoloH_23GOJnRxgaHARz6OZp0lNCVpkol9M2C9jCgsa7zU4Bmi5uVVlQLpqRO1PlfqDRaHG2TGtjZtL4neLsnSMyET1MPc4zm-u7zPvt6d9u5HrH9_cBf_UwAX4Am-BgDdv_nwc65mGDXYzAPfg7pH8R_qX4AoNO_kg | 
    
| Cites_doi | 10.1111/apt.17158 10.1007/s12072-022-10300-3 10.1136/bmjhci-2021-100510 10.3389/fbinf.2025.1522401 10.1136/bmjdrc-2020-001174 10.1007/s11831-025-10309-5 10.1016/j.aohep.2022.100873 10.1038/s41598-024-51741-0 10.1007/s11306-020-01756-1 10.1038/nrgastro.2013.149 10.1097/HEP.0000000000000364 10.1007/s42000-022-00377-8 10.1002/hep4.1689 10.1016/S2468-1253(23)00159-0 10.2337/dc22-2048 10.1186/s12902-023-01318-1 10.1371/journal.pone.0325900 10.1088/2631-8695/ad76f9 10.1016/j.jhep.2022.04.002 10.1080/10255842.2023.2217978 10.1038/s41591-023-02242-6 10.1097/MPG.0b013e318291fefe 10.1093/jamia/ocab003  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd.  | 
    
| Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd.  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 ADTOC UNPAY  | 
    
| DOI | 10.1186/s12859-025-06263-5 | 
    
| DatabaseName | SpringerLink Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| ExternalDocumentID | 10.1186/s12859-025-06263-5 A860831658 41120851 10_1186_s12859_025_06263_5  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM AFFHD 7X8 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ M48 RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c2885-de6b2bb434a9bdf203513e0f39572af6e07ac9a84bdf326b33755454e31142f73 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Wed Oct 29 11:36:26 EDT 2025 Sat Oct 25 04:52:00 EDT 2025 Wed Oct 29 16:59:13 EDT 2025 Tue Oct 28 03:56:32 EDT 2025 Sat Oct 25 06:59:46 EDT 2025 Sun Oct 26 04:17:32 EDT 2025 Sat Oct 25 05:09:13 EDT 2025 Sat Oct 25 01:51:22 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Dimension reduction Feature selection NASH disease Supervised machine learning Big data Prediction model  | 
    
| Language | English | 
    
| License | 2025. The Author(s). cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2885-de6b2bb434a9bdf203513e0f39572af6e07ac9a84bdf326b33755454e31142f73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://doi.org/10.1186/s12859-025-06263-5 | 
    
| PMID | 41120851 | 
    
| PQID | 3263898066 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | unpaywall_primary_10_1186_s12859_025_06263_5 proquest_miscellaneous_3263898066 gale_infotracmisc_A860831658 gale_infotracacademiconefile_A860831658 gale_incontextgauss_ISR_A860831658 pubmed_primary_41120851 crossref_primary_10_1186_s12859_025_06263_5 springer_journals_10_1186_s12859_025_06263_5  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20251021 2025-10-21 2025-Oct-21  | 
    
| PublicationDateYYYYMMDD | 2025-10-21 | 
    
| PublicationDate_xml | – month: 10 year: 2025 text: 20251021 day: 21  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAbbrev | BMC Bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2025 | 
    
| Publisher | BioMed Central BioMed Central Ltd  | 
    
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd  | 
    
| References | M Docherty (6263_CR13) 2021; 28 AR Naderi Yaghouti (6263_CR15) 2024; 14 6263_CR19 V Ratziu (6263_CR7) 2022; 76 L Castera (6263_CR22) 2023; 46 A Wree (6263_CR1) 2013; 10 J Lee (6263_CR12) 2023; 78 KI Zheng (6263_CR11) 2020; 8 6263_CR16 S Kechagias (6263_CR6) 2022; 21 O Yasar (6263_CR14) 2022 6263_CR21 K Puri (6263_CR23) 2013; 57 L Henry (6263_CR2) 2022; 56 A Kumar (6263_CR17) 2025; 20 AS Barritt (6263_CR9) 2021; 5 A Kumar (6263_CR18) 2024; 6 H Tilg (6263_CR3) 2023; 8 Y-S Lee (6263_CR8) 2022; 16 SA Harrison (6263_CR4) 2023; 29 D Contreras (6263_CR5) 2023; 28 M Masarone (6263_CR10) 2021; 17 S Ghosh (6263_CR20) 2025; 5 H Fu (6263_CR24) 2023; 23  | 
    
| References_xml | – volume: 56 start-page: 942 issue: 6 year: 2022 ident: 6263_CR2 publication-title: Aliment Pharmacol Ther doi: 10.1111/apt.17158 – volume: 16 start-page: 316 issue: 2 year: 2022 ident: 6263_CR8 publication-title: Hepatol Int doi: 10.1007/s12072-022-10300-3 – year: 2022 ident: 6263_CR14 publication-title: BMJ Health Care Inform doi: 10.1136/bmjhci-2021-100510 – volume: 5 year: 2025 ident: 6263_CR20 publication-title: Front Bioinform doi: 10.3389/fbinf.2025.1522401 – volume: 8 issue: 1 year: 2020 ident: 6263_CR11 publication-title: BMJ Open Diabetes Res Care doi: 10.1136/bmjdrc-2020-001174 – ident: 6263_CR16 doi: 10.1007/s11831-025-10309-5 – volume: 28 issue: 1 year: 2023 ident: 6263_CR5 publication-title: Ann Hepatol doi: 10.1016/j.aohep.2022.100873 – volume: 14 issue: 1 year: 2024 ident: 6263_CR15 publication-title: Sci Rep doi: 10.1038/s41598-024-51741-0 – volume: 17 start-page: 1 year: 2021 ident: 6263_CR10 publication-title: Metabolomics doi: 10.1007/s11306-020-01756-1 – volume: 10 start-page: 627 issue: 11 year: 2013 ident: 6263_CR1 publication-title: Nat Rev Gastroenterol Hepatol doi: 10.1038/nrgastro.2013.149 – volume: 78 start-page: 258 issue: 1 year: 2023 ident: 6263_CR12 publication-title: Hepatology doi: 10.1097/HEP.0000000000000364 – volume: 21 start-page: 349 issue: 3 year: 2022 ident: 6263_CR6 publication-title: Hormones (Athens) doi: 10.1007/s42000-022-00377-8 – volume: 5 start-page: 938 issue: 6 year: 2021 ident: 6263_CR9 publication-title: Hepatol Commun doi: 10.1002/hep4.1689 – volume: 8 start-page: 943 issue: 10 year: 2023 ident: 6263_CR3 publication-title: Lancet Gastroenterol Hepatol doi: 10.1016/S2468-1253(23)00159-0 – volume: 46 start-page: 1354 issue: 7 year: 2023 ident: 6263_CR22 publication-title: Diabetes Care doi: 10.2337/dc22-2048 – volume: 23 issue: 1 year: 2023 ident: 6263_CR24 publication-title: BMC Endocr Disord doi: 10.1186/s12902-023-01318-1 – volume: 20 issue: 6 year: 2025 ident: 6263_CR17 publication-title: PLoS ONE doi: 10.1371/journal.pone.0325900 – volume: 6 start-page: 035233 issue: 3 year: 2024 ident: 6263_CR18 publication-title: Eng Res Express doi: 10.1088/2631-8695/ad76f9 – volume: 76 start-page: 1263 issue: 6 year: 2022 ident: 6263_CR7 publication-title: J Hepatol doi: 10.1016/j.jhep.2022.04.002 – ident: 6263_CR19 doi: 10.1080/10255842.2023.2217978 – volume: 29 start-page: 562 issue: 3 year: 2023 ident: 6263_CR4 publication-title: Nat Med doi: 10.1038/s41591-023-02242-6 – volume: 57 start-page: 114 issue: 1 year: 2013 ident: 6263_CR23 publication-title: J Pediatr Gastroenterol Nutr doi: 10.1097/MPG.0b013e318291fefe – volume: 28 start-page: 1235 issue: 6 year: 2021 ident: 6263_CR13 publication-title: J Am Med Inform Assoc doi: 10.1093/jamia/ocab003 – ident: 6263_CR21  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.4858222 | 
    
| Snippet | Background
Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there... Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there is no... Background Identifying the Non-Alcoholic Steatohepatitis (NASH) that can cause liver failure-based morbidity remains a challenging research problem since there...  | 
    
| SourceID | unpaywall proquest gale pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 256 | 
    
| SubjectTerms | Algorithms Big Data Bioinformatics Biomedical and Life Sciences Blood Computational Biology/Bioinformatics Computer Appl. in Life Sciences Data mining Dimensionality Reduction Humans Life Sciences Liver Liver diseases Machine Learning Mathematical optimization Medical advice systems Medical examination Microarrays Neural networks Neural Networks, Computer Non-alcoholic Fatty Liver Disease - blood Non-alcoholic Fatty Liver Disease - diagnosis Supervised Machine Learning Type 2 diabetes  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9nDxEf_D5dOSWK4IOXXnc3yW4fq3hUwSJ3Fs6nkGySWmx3S7eLnH-9M_tR2kNEwbeFzC7JZJL8ZjPzG0JepdbEVjvBMiFixrmXzITWMHCvjQHnzUcWf-h_msjxlH-8FJcH5LzLhTHLzMyLljQUiYr7u2noiybLAasouPXpyvpm0afytAyRiY1hcdYBEqwwcYMcSgH4vEcOp5PPo691mlESMvBxRJc989sX906o6_v0zkG1vTm9TW5V-Upf_dCLxc7hdHaXlN2wmpiU7_1qY_rZz2uMj_933PfInRbL0lFjfPfJgcsfkJtNdcurh0S_nc8oRqBSiyUEGvoPAP10jXSxaBAMz1BLy2qFOxY-LuvYTkfbYhYzqhezYj3ffFuWFDpNJ6OLMXyuDg-cl4_I9Oz9l3dj1lZ0YFmUpoJZJ01kDI-5HhrrI7zGjN3A42VhpL10g0RnQ51yaARcaeI4AbgjuIsx5dcn8RHp5UXunhAaZsbh5iKt1zwbOs1t5M1wkIUSQLBJAvKmm0W1aog7VO3wpFI1SlOgNFUrTYmAvMSJVsiIkWPIzUxXZak-XJyrUSqxGhsgtYC8boV8AZOS6TaDATqEJFp7ksd7krBks73mF509KWzCOLfcFVWpYNCAIFPAgQF53BjatvccoDEC5ICcdJan2g2n_OPQTrbW-ReaePpv4sekt1lX7hkgs4153i61X5-vM84 priority: 102 providerName: Unpaywall  | 
    
| Title | Big data dimensionality reduction-based supervised machine learning algorithms for NASH diagnosis | 
    
| URI | https://link.springer.com/article/10.1186/s12859-025-06263-5 https://www.ncbi.nlm.nih.gov/pubmed/41120851 https://www.proquest.com/docview/3263898066 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-025-06263-5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6xTQh4QPwmMCqDkHhgFk3iOOljNq2USlTTSqXyZNmxUyp1adU0QvvvuUvSqkUIwUsSxY5ln-3cZ9_5O4D3iTWh1S7iWRSFXIhccuNbw3F5bQwu3vLA0ob-15EcTMRwGk1bmhw6C7Nvv_cT-an0iWGNU9DVLhGn8OgITlBJydowKy92FgPi5t8eivnjdweK5_ff757-2RlEH8C9qljp2596sdjTOf1H8LAFiyxtevcx3HHFE7jbhI-8fQr6fD5j5OLJLHH0N_waiKrZmvhYSeKclJRlZbWiXwI93tTOk4610SJmTC9my_V88-OmZIhf2SgdD7C42v9uXj6DSf_y28WAtyETeBYkScStkyYwRoRC94zNA7IThq6bkzUu0Ll03VhnPZ0ITETgZsIwRjwRCRfSmdo8Dp_DcbEs3EtgfmYczV5pcy2yntPCBrnpdTNfIso0sQcft_JUq4YZQ9UrikSqRvoKpa9q6avIg3ckckWUEwX5tMx0VZbqy_hapYmkcGcIhTz40GbKl5u1znR7RAArRCxVBzlPD3LinMgOkt9ue1ZREjmSFW5ZlQobjRAtQaDlwYumy3e1F4g9CYF6cLYdA6qd0eVfm3a2Gyf_IIlX_1f6a7gf0ChGdRn4p3C8WVfuDeKgjenAUTyN8Zr0P3fgJE2H4yHezy9HV9edenJ06h0GfDcZXaXffwFm2wTt | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJjR4mPgmbIBBSDwwiyZx3PQxQ0xd2fpAN2lvlh07pVKXVnUjtP-eu3xUK0ITvEWyYzlnn-_n3N3vAD6m1sRWu4TnSRJzIQrJTWgNx-u1MXh5KyJLP_TPx3J4KUZXyVWbFOa7aPfOJVmf1LVap_KLD4lrjVP51R5RqPDkPuxSkBWq426WjSajjfeAePq7BJm_vrllhP48im_Zoo1z9BHsVeVS3_zS8_kt-3PyGPZb4MiyZqWfwD1XPoUHTSnJm2egj2dTRuGezBJff8O1gQibrYiblaTPyWBZ5qslHQ_0eF0HUjrWVo6YMj2fLlaz9c9rzxDLsnE2GeJwdSzezD-Hy5NvF1-HvC2fwPMoTRNunTSRMSIWemBsEZHPMHa9gjxzkS6k6_V1PtCpwEYEcSaO-yjNRLiY8muLfvwCdspF6V4BC3PjSJOlLbTIB04LGxVm0MtDiYjT9AP43MlTLRuWDFXfLlKpGukrlL6qpa-SAD6QyBXRT5QU3zLVlffqdPJDZamk0mcIiwL41HYqFuuVznWbLoATIsaqrZ6HWz1RP_Kt5vfdyipqoqCy0i0qr_CjEa6lCLoCeNks-Wb2AnEoodEAjro9oFrt9nd-2tFmn_yDJF7_3-jvYG94cX6mzk7H3w_gYUQ7Gs1oFB7CznpVuTeIj9bmbasOvwGDHgWu | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BEF8PiM8tMMAgJB42a03iuOljKVQdHxViTNqbZcd2qdSlVZMI7b_nLh9VixCCt0h2LOfs8_2cu_sdwJvUmthql_AsSWIuhJfchNZwvF4bg5c3H1n6of9lKifn4uNFcrGVxV9Hu3cuySangVia8vJkZX2j4qk8KULiXeNUirVHdCo8uQ43BFo3qmEwkqONH4EY-7tUmT--t2OOfj-Ut6zSxk16F25X-Upf_dSLxZYlGt-Hey2EZMNmzR_ANZc_hJtNUcmrR6DfzWeMAj-ZJeb-hnUDsTZbE0srrQMn02VZUa3ooKDHyzqk0rG2hsSM6cVsuZ6XPy4LhqiWTYdnExyujsqbF4_hfPzh-2jC20IKPIvSNOHWSRMZI2KhB8b6iLyHset58tFF2kvX6-tsoFOBjQjnTBz3EWUkwsWUaev78RPYy5e5OwAWZsaRTkvrtcgGTgsbeTPoZaFE7Gn6ARx18lSrhi9D1feMVKpG-gqlr2rpqySA1yRyRUQUOUW6zHRVFOr07JsappKKoCFACuBt28kvy7XOdJs4gBMi7qqdnoc7PVFTsp3mV93KKmqi8LLcLatC4UcjcEsRfgWw3yz5ZvYCESnh0gCOuz2gWj0v_vppx5t98g-SePp_o7-EW1_fj9Xn0-mnZ3Anog2N9jQKD2GvXFfuOQKl0ryodeEXBcYIiw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dixMxEA9nDxEf_D5dOSWK4IOXXnc3yW4fq3hUwSJ3Fs6nkGySWmx3S7eLnH-9M_tR2kNEwbeFzC7JZJL8ZjPzG0JepdbEVjvBMiFixrmXzITWMHCvjQHnzUcWf-h_msjxlH-8FJcH5LzLhTHLzMyLljQUiYr7u2noiybLAasouPXpyvpm0afytAyRiY1hcdYBEqwwcYMcSgH4vEcOp5PPo691mlESMvBxRJc989sX906o6_v0zkG1vTm9TW5V-Upf_dCLxc7hdHaXlN2wmpiU7_1qY_rZz2uMj_933PfInRbL0lFjfPfJgcsfkJtNdcurh0S_nc8oRqBSiyUEGvoPAP10jXSxaBAMz1BLy2qFOxY-LuvYTkfbYhYzqhezYj3ffFuWFDpNJ6OLMXyuDg-cl4_I9Oz9l3dj1lZ0YFmUpoJZJ01kDI-5HhrrI7zGjN3A42VhpL10g0RnQ51yaARcaeI4AbgjuIsx5dcn8RHp5UXunhAaZsbh5iKt1zwbOs1t5M1wkIUSQLBJAvKmm0W1aog7VO3wpFI1SlOgNFUrTYmAvMSJVsiIkWPIzUxXZak-XJyrUSqxGhsgtYC8boV8AZOS6TaDATqEJFp7ksd7krBks73mF509KWzCOLfcFVWpYNCAIFPAgQF53BjatvccoDEC5ICcdJan2g2n_OPQTrbW-ReaePpv4sekt1lX7hkgs4153i61X5-vM84 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Big+data+dimensionality+reduction-based+supervised+machine+learning+algorithms+for+NASH+diagnosis&rft.jtitle=BMC+bioinformatics&rft.au=Tutsoy%2C+Onder&rft.au=Ozturk%2C+Huseyin+Ali&rft.au=Sumbul%2C+Hilmi+Erdem&rft.date=2025-10-21&rft.pub=BioMed+Central&rft.eissn=1471-2105&rft.volume=26&rft.issue=1&rft_id=info:doi/10.1186%2Fs12859-025-06263-5&rft.externalDocID=10_1186_s12859_025_06263_5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |