Bi-level variable selection in semiparametric transformation mixture cure models for right-censored data

We investigate the bi-level variable selection problem in semiparametric transformation mixture cure models (STMCM). In this type of mixture cure models, we consider a class of semiparametric transformation models for the conditional survival function and a logistic regression for the incidence comp...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 52; no. 7; pp. 3006 - 3025
Main Authors Wu, Jingjing, Lu, Xuewen, Zhong, Wenyan
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.07.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2021.1926499

Cover

Abstract We investigate the bi-level variable selection problem in semiparametric transformation mixture cure models (STMCM). In this type of mixture cure models, we consider a class of semiparametric transformation models for the conditional survival function and a logistic regression for the incidence component, then conduct group variable selection. The group bridge penalty is adopted for bi-level variable selection on both parts of the mixture cure models. Through simulation studies and real data analyses, we show that the proposed method can identify the important variables and groups that contribute to the cure proportion and the survival function for the uncured subjects, respectively.
AbstractList We investigate the bi-level variable selection problem in semiparametric transformation mixture cure models (STMCM). In this type of mixture cure models, we consider a class of semiparametric transformation models for the conditional survival function and a logistic regression for the incidence component, then conduct group variable selection. The group bridge penalty is adopted for bi-level variable selection on both parts of the mixture cure models. Through simulation studies and real data analyses, we show that the proposed method can identify the important variables and groups that contribute to the cure proportion and the survival function for the uncured subjects, respectively.
Author Zhong, Wenyan
Wu, Jingjing
Lu, Xuewen
Author_xml – sequence: 1
  givenname: Jingjing
  orcidid: 0000-0003-4555-1490
  surname: Wu
  fullname: Wu, Jingjing
  organization: Department of Mathematics and Statistics, University of Calgary
– sequence: 2
  givenname: Xuewen
  surname: Lu
  fullname: Lu, Xuewen
  organization: Department of Mathematics and Statistics, University of Calgary
– sequence: 3
  givenname: Wenyan
  surname: Zhong
  fullname: Zhong, Wenyan
  organization: Department of Biostatistics and Research Decision Sciences, MSD China
BookMark eNp9kEtLAzEQgIMo2FZ_grDgeWseu2tyU4svKHjRc0iTiU3Z3dQkrfbfm23r1cPMMMw3M_CN0Wnve0DoiuApwRzfYNYQLAifUkzJlAjaVEKcoBGpGS0rUpFTNBqYcoDO0TjGFcaY8YqP0PLBlS1soS22Kji1aKGI0IJOzveF63PTubUKqoMUnC5SUH20PnRqD3TuJ20CFHpInTfQxiJPi-A-l6nU0EcfwBRGJXWBzqxqI1we6wR9PD2-z17K-dvz6-x-XmrKm1TaBRZVU-MahDCKQXNrCTELg3MwA1jVtMbGMmo4oVoLZUEDpxbXVca1ZRN0fbi7Dv5rAzHJld-EPr-UlDNRc0FIlan6QOngYwxg5Tq4ToWdJFgOUuWfVDlIlUepee_usOf6vYVvH1ojk9q1PtjsRrso2f8nfgGwbIKv
Cites_doi 10.1093/biomet/ast029
10.1093/biomet/93.3.627
10.1002/sim.3358
10.4310/SII.2009.v2.n3.a10
10.1111/j.1369-7412.2007.00606.x
10.5705/ss.2013.061
10.1093/biomet/asp020
10.1111/j.1467-9868.2005.00532.x
10.1214/07-AOS584
10.1007/s10985-007-9042-4
10.1093/biomet/91.2.331
10.1111/biom.12300
10.1002/sim.5378
10.1111/j.2517-6161.1996.tb02080.x
10.1093/biomet/asp016
10.2307/3314804
10.1016/j.csda.2012.02.023
10.1214/009053604000000256
10.1093/biomet/79.3.531
10.1111/j.0006-341X.2000.00237.x
10.1111/j.0006-341X.2000.00227.x
10.1198/016214506000001239
ContentType Journal Article
Copyright 2021 Taylor & Francis Group, LLC 2021
2021 Taylor & Francis Group, LLC
Copyright_xml – notice: 2021 Taylor & Francis Group, LLC 2021
– notice: 2021 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2021.1926499
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 3025
ExternalDocumentID 10_1080_03610918_2021_1926499
1926499
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-fb0946505e99da3e67f11dbd0dbd3de0a5250df32d812cc9afece82f054da3cf3
ISSN 0361-0918
IngestDate Wed Aug 13 07:18:46 EDT 2025
Wed Oct 01 02:52:15 EDT 2025
Mon Oct 20 23:45:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-fb0946505e99da3e67f11dbd0dbd3de0a5250df32d812cc9afece82f054da3cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4555-1490
PQID 2839589114
PQPubID 186203
PageCount 20
ParticipantIDs crossref_primary_10_1080_03610918_2021_1926499
proquest_journals_2839589114
informaworld_taylorfrancis_310_1080_03610918_2021_1926499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0021
CIT0020
CIT0001
CIT0012
CIT0023
CIT0011
CIT0022
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0011
  doi: 10.1093/biomet/ast029
– ident: CIT0020
  doi: 10.1093/biomet/93.3.627
– ident: CIT0015
  doi: 10.1002/sim.3358
– ident: CIT0003
  doi: 10.4310/SII.2009.v2.n3.a10
– ident: CIT0021
  doi: 10.1111/j.1369-7412.2007.00606.x
– ident: CIT0006
  doi: 10.5705/ss.2013.061
– ident: CIT0007
  doi: 10.1093/biomet/asp020
– ident: CIT0019
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: CIT0023
  doi: 10.1214/07-AOS584
– ident: CIT0014
  doi: 10.1007/s10985-007-9042-4
– ident: CIT0012
  doi: 10.1093/biomet/91.2.331
– ident: CIT0001
– ident: CIT0002
  doi: 10.1111/biom.12300
– ident: CIT0010
  doi: 10.1002/sim.5378
– ident: CIT0017
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: CIT0018
  doi: 10.1093/biomet/asp016
– ident: CIT0005
  doi: 10.2307/3314804
– ident: CIT0009
  doi: 10.1016/j.csda.2012.02.023
– ident: CIT0004
  doi: 10.1214/009053604000000256
– ident: CIT0008
  doi: 10.1093/biomet/79.3.531
– ident: CIT0013
  doi: 10.1111/j.0006-341X.2000.00237.x
– ident: CIT0016
  doi: 10.1111/j.0006-341X.2000.00227.x
– ident: CIT0022
  doi: 10.1198/016214506000001239
SSID ssj0003848
Score 2.3038042
Snippet We investigate the bi-level variable selection problem in semiparametric transformation mixture cure models (STMCM). In this type of mixture cure models, we...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 3006
SubjectTerms Bi-level variable selection
Censored data (mathematics)
Group bridge
Mixture cure model
Mixtures
Penalized regression
Primary 62N01
secondary 62J07
Semiparametric transformation model
Survival
Transformations
Title Bi-level variable selection in semiparametric transformation mixture cure models for right-censored data
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2021.1926499
https://www.proquest.com/docview/2839589114
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: AMVHM
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbKeBkPXApog4H8wFvlKr7USx4BgSak7WWdVvES2YmtBdFsoukG_A5-MMeOnSZ0EreHRlUubtXz9VySc74PoVdaCV2mXBGaaQMFihJESZYSqbiWmiqtUjeNfHwij87Eh8VsMRr96HUtrRs9Lb7fOlfyL1aFfWBXNyX7F5btFoUd8B7sC1uwMGz_yMZvKvLZNf1MrqHi9TNQKy9rE_oXV2ZZOWrvpVPNKpwaRJejwgnL6qt_elC4jRfE8dQME1-ukwLK20vXmx6G1zZ0Bv2JEt9M62aSWrrn6eS0WgY9sDgwd7UePuw_X3vgQMT8FKOm6wfyexdrc7MZTft4EdqFz039LYA43J9g3Pey8g5R8y2pkJ6H45ISSFhaB2yiB2ZE0JYNK7roGetB8bDnb3mSyF7s5kk7Rb0VF0IjJXfk8tR19DE6hdxWilad6RfK7XDkDrrLIFY4QRCenHTxnadek6378nEuzDG23_YBg4xnwIe7Ff99UjN_iO6HagS_bqH1CI1MPUYPotIHDo5_jO4dd-y-qzHaPe0s_hhdRBDiCELcgRBXNR6CEA9BiAMIsQMhbkGI4SgeghA7ED5BZ-_fzd8ekSDfQQqWyoZYnWQCCoCZybJScSMPLaWlLhN48dIkyj1RLy1nJSSZRZEpawqTMgtFBJxeWP4U7dSXtdlDWMBCIqPaclMKyxM9k5wZLaiCS42V-2gaf-L8qmVpyWkkvw02yZ1N8mCTfZT1DZE3HqW2BWjOf3PtQbRaHpzBKocsPXMCnVQ8-4-ln6PdzV_oAO00X9bmBSS9jX7pMfgT-b6tjg
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROEAPBbZFpbx84OplHWfd5Ngi0PLYPYHEzfJTXcHuVmyoqv76zjgJWkCIA4dEimJbiT2ZfGOPvw_g0Jrc-kIaLkobMEAxOTcqK7gy0iorjDUF7UYejtTgOj-_6d8s7IWhtEqKoWNNFJF8NX3cNBndpsQdodclPkvKzMpEFzGKQtz-AVb6CPZJxUD2Ro_eWBZJQYuqcKrT7uJ5rZkn_6cn7KUvvHX6BZ2ug2sfvs48ue0-VLbr_j3jdXzf223Apwahsh-1SW3CUph2YL1Vf2CNM-jAx-Ej4-u8A2uEWmvS58_w6-eY31E2EvuDoThtzmLzpLeDRsDGU7yYjIlzfEJyXo5VC-AZC0zGf2lZgzk6JaWeOcO7LM0jcIdx9-w-eEa5rV_g-vTk6njAG0kH7rJCVTxaDCcRFPZDWXojg_oehfDW9_CQPvQMrbL6KDOPwMO50sTgQpFFBJZY3EW5BcvT2TR8BZZjQ3kpbJTB51H2bF_JLNhcGKwaotqGbjuQ-nfN3KFFS4jadLGmLtZNF29DuTjcukpTJrHWN9Hyjbq7rW3oxgnMNSK3kkQbRf7tHU0fwOrganipL89GFzuwRnL3KV1Y7sJydf8Q9hAUVXY_Wf1_2-4BzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xkCp64LGlKo9SH7h6u46zbnJsaVc8yopDkXqz_BQr2F1EQlXx65lxEgRUFQcOiRTFthLbmXxjz3wfwL41ufWFNFyUNqCDYnJuVFZwZaRVVhhrCspGPh2rw_P8-Pewiyas2rBK8qFjQxSRbDV93Nc-dhFxn9HoEp0lBWZloo8QRSFsX4RlRbtilMUxGD8YY1kkAS2qwqlOl8Tzv2ae_J6ekJf-Y6zTH2i0BrZ79ibw5LJ_W9u-u3tG6_iql1uH1Rafsq_NhNqAhTDrwVqn_cBaU9CDt6cPfK9VD1YIszaUz-_g4tuEX1EsEvuDjjilZrEqqe3gFGCTGV5MJ8Q4PiUxL8fqR9AZC0wnf2lTgzk6JZ2eiuFdllYRuEOve34TPKPI1k04H_34dXDIW0EH7rJC1TxadCYREg5DWXojg_oShfDWD_CQPgwM7bH6KDOPsMO50sTgQpFFhJVY3EX5HpZm81n4ACzHhvJS2CiDz6Mc2KGSWbC5MFg1RLUF_W4c9XXD26FFR4fadrGmLtZtF29B-Xi0dZ0WTGKjbqLlC3V3u6mhWxNQacRtJUk2inz7FU1_gjdn30f659H4ZAdWSOs-xQrLXViqb27DR0REtd1Lc_4erw8AcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-level+variable+selection+in+semiparametric+transformation+mixture+cure+models+for+right-censored+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Wu%2C+Jingjing&rft.au=Lu%2C+Xuewen&rft.au=Zhong%2C+Wenyan&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=52&rft.issue=7&rft.spage=3006&rft.epage=3025&rft_id=info:doi/10.1080%2F03610918.2021.1926499&rft.externalDocID=1926499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon