Recursive parameter estimation algorithm of the Dirichlet hidden Markov model

The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the recursive methods is linear, and this complexity allows the estimation of parameters in real time. Most of the recursive parameter estimation m...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 90; no. 2; pp. 306 - 323
Main Authors Vaičiulytė, Jūratė, Sakalauskas, Leonidas
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 22.01.2020
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2019.1679144

Cover

Abstract The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the recursive methods is linear, and this complexity allows the estimation of parameters in real time. Most of the recursive parameter estimation methods use Gaussian mixtures and do not explore other distributions. However, the underlying structure of the data might be non-Gaussian. Thus, we propose a novel recursive method for estimating the parameters of the Dirichlet HMM. The Dirichlet distribution is popular because of its flexibility in modelling data. The proposed estimation is based on the maximum likelihood method, which is known to give close to optimal results. The performance of our algorithm is tested using a computer simulation and the clustering of several data-sets. Several experiments were conducted in order to compare the performance of the Gaussian HMM and Dirichlet HMM in the classification of several data-sets.
AbstractList The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the recursive methods is linear, and this complexity allows the estimation of parameters in real time. Most of the recursive parameter estimation methods use Gaussian mixtures and do not explore other distributions. However, the underlying structure of the data might be non-Gaussian. Thus, we propose a novel recursive method for estimating the parameters of the Dirichlet HMM. The Dirichlet distribution is popular because of its flexibility in modelling data. The proposed estimation is based on the maximum likelihood method, which is known to give close to optimal results. The performance of our algorithm is tested using a computer simulation and the clustering of several data-sets. Several experiments were conducted in order to compare the performance of the Gaussian HMM and Dirichlet HMM in the classification of several data-sets.
Author Vaičiulytė, Jūratė
Sakalauskas, Leonidas
Author_xml – sequence: 1
  givenname: Jūratė
  orcidid: 0000-0001-8249-0768
  surname: Vaičiulytė
  fullname: Vaičiulytė, Jūratė
  email: jurate.vaiciulyte@mif.vu.lt
  organization: Institute of Data Science and Digital Technologies, Vilnius University
– sequence: 2
  givenname: Leonidas
  surname: Sakalauskas
  fullname: Sakalauskas, Leonidas
  organization: Department of Informatics and Statistics, Klaipėda University
BookMark eNp9kM1OwzAQhC0EEm3hEZAscU5Z27GT3EDlV2qFhOBsuY5NXZK42G5R355ELVdOu4eZ2dlvjE473xmErghMCZRwA1DlleB8SoFUUyKKiuT5CRoRLljGiWCnaDRoskF0jsYxrgGAEE5HaPFm9DZEtzN4o4JqTTIBm5hcq5LzHVbNpw8urVrsLU4rg-9dcHrVmIRXrq5NhxcqfPkdbn1tmgt0ZlUTzeVxTtDH48P77Dmbvz69zO7mmaalSJlh2pCKW9B9VU3UEnguiFI1tabfLQOds6Utq0IUWuhSASWGElKDZTVQyybo-pC7Cf5729eVa78NXX9SUkah4kVRlb2KH1Q6-BiDsXIT-r_CXhKQAzn5R04O5OSRXO-7PfhcZ31o1Y8PTS2T2jc-2KA67aJk_0f8Au3fdyw
Cites_doi 10.1177/1471082X18777806
10.1007/978-981-10-3373-5_22
10.1109/ICIT.2017.7915513
10.1007/978-1-4899-7488-4_196
10.2307/2532201
10.1198/jcgs.2011.09109
10.1016/j.enbuild.2015.11.071
10.21437/Eurospeech.2003-344
10.1177/1471082X12471372
10.1126/science.1223709
10.1162/neco.2008.10-06-351
10.1007/s00180-019-00877-z
10.1109/TAC.1977.1101561
10.1016/j.neucom.2017.06.084
10.1109/5.18626
10.1016/j.csda.2007.07.011
10.1016/j.patrec.2009.09.023
10.1093/mnras/stw656
10.1109/78.229888
10.1109/78.340791
10.1080/00949650902725155
10.1109/ICIP.2000.900885
10.1080/00949655.2016.1238086
10.1109/ISCMI.2014.32
10.1137/1.9781611972771.40
10.1109/5326.983933
10.1109/TIP.2004.834664
10.1002/9780470740156.ch5
ContentType Journal Article
Copyright 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
2019 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019
– notice: 2019 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2019.1679144
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 323
ExternalDocumentID 10_1080_00949655_2019_1679144
1679144
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-e3ce195f0c791c1ab05461aad2feb05f30c43bf89767c6c8a021e211d0f3d02f3
ISSN 0094-9655
IngestDate Fri Jul 25 06:28:29 EDT 2025
Wed Oct 01 04:58:55 EDT 2025
Mon Oct 20 23:48:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-e3ce195f0c791c1ab05461aad2feb05f30c43bf89767c6c8a021e211d0f3d02f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8249-0768
PQID 2320957798
PQPubID 53118
PageCount 18
ParticipantIDs proquest_journals_2320957798
crossref_primary_10_1080_00949655_2019_1679144
informaworld_taylorfrancis_310_1080_00949655_2019_1679144
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-22
PublicationDateYYYYMMDD 2020-01-22
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-22
  day: 22
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2020
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
Chavan RS (CIT0010) 2013; 2
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0022
Sundarasekar R (CIT0013) 2017; 102
Narayanan A. (CIT0027) 1991; 40
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – volume: 2
  start-page: 233
  issue: 6
  year: 2013
  ident: CIT0010
  publication-title: Int J Computer Sci Mobile Comput
– ident: CIT0015
– ident: CIT0039
  doi: 10.1177/1471082X18777806
– ident: CIT0038
– ident: CIT0009
  doi: 10.1007/978-981-10-3373-5_22
– ident: CIT0031
  doi: 10.1109/ICIT.2017.7915513
– ident: CIT0008
  doi: 10.1007/978-1-4899-7488-4_196
– ident: CIT0023
  doi: 10.2307/2532201
– ident: CIT0007
  doi: 10.1198/jcgs.2011.09109
– ident: CIT0041
  doi: 10.1016/j.enbuild.2015.11.071
– ident: CIT0019
  doi: 10.21437/Eurospeech.2003-344
– ident: CIT0040
  doi: 10.1177/1471082X12471372
– ident: CIT0001
  doi: 10.1126/science.1223709
– ident: CIT0006
  doi: 10.1162/neco.2008.10-06-351
– volume: 102
  start-page: 2099
  issue: 3
  year: 2017
  ident: CIT0013
  publication-title: Wireless Personal Commun
– ident: CIT0017
  doi: 10.1007/s00180-019-00877-z
– ident: CIT0022
  doi: 10.1109/TAC.1977.1101561
– ident: CIT0025
– ident: CIT0004
– ident: CIT0005
  doi: 10.1016/j.neucom.2017.06.084
– volume: 40
  start-page: 365
  issue: 2
  year: 1991
  ident: CIT0027
  publication-title: J Royal Stat Soc
– ident: CIT0033
– ident: CIT0002
  doi: 10.1109/5.18626
– ident: CIT0028
  doi: 10.1016/j.csda.2007.07.011
– ident: CIT0036
  doi: 10.1016/j.patrec.2009.09.023
– ident: CIT0016
– ident: CIT0042
  doi: 10.1093/mnras/stw656
– ident: CIT0014
  doi: 10.1109/78.229888
– ident: CIT0018
– ident: CIT0043
– ident: CIT0021
  doi: 10.1109/78.340791
– ident: CIT0020
– ident: CIT0037
  doi: 10.1080/00949650902725155
– ident: CIT0012
  doi: 10.1109/ICIP.2000.900885
– ident: CIT0026
– ident: CIT0029
  doi: 10.1080/00949655.2016.1238086
– ident: CIT0024
– ident: CIT0034
– ident: CIT0011
  doi: 10.1109/ISCMI.2014.32
– ident: CIT0032
  doi: 10.1137/1.9781611972771.40
– ident: CIT0003
  doi: 10.1109/5326.983933
– ident: CIT0030
  doi: 10.1109/TIP.2004.834664
– ident: CIT0035
  doi: 10.1002/9780470740156.ch5
SSID ssj0001152
Score 2.2064981
Snippet The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 306
SubjectTerms Algorithms
Clustering
Complexity
Computer simulation
Datasets
Dirichlet distribution
Dirichlet problem
hidden Markov models
likelihood method
Markov analysis
Markov chains
Mathematical models
Maximum likelihood method
Parameter estimation
recursive EM algorithm
Recursive methods
Title Recursive parameter estimation algorithm of the Dirichlet hidden Markov model
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2019.1679144
https://www.proquest.com/docview/2320957798
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1563-5163
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001152
  issn: 0094-9655
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK97IceBQQCwvygT1VqRw7ceJj2QVViHKALqy4RI5jb6vtA9EUCQ78dsaxk6Z0Ea9LZLmq2858nhm7M98g9Az2EFgAkwScJ3kQFVoGIhEkILmQqQZQFcwWJ4_f8NF59Ooivuh0vrerS8p8oL5dW1fyL1qFOdCrrZL9C802i8IEjEG_8AQNw_OPdPzWXpZX-eeWwXthM1v6ljXDlSP25fxyBWf_6aJOBAD7NlNT0FR_aplDllWlzuqLa4fzizDVVhxVZM4VkYhtAeEXtxfus4Xv_lXr7b2cVeHp2Wwz_1raoaXgBaCcnMYnw-cANzfXXOzIKzmXm_WVqyt7rcHEFHLnLoLalLaAbk-uk722IG3TK6JAcMfJO9De2nIWxKG3cN4cu-6hHna0ZVsZ4S03zVyZ8p4HqFMmhSXCj23unhjYv5pCRzP5E7m2f-UGOqDgFUgXHQxHZx8_NL48dD2bmi9f14BZdvbrPmInutnhvt3z9VUAM7mDbnmV4qGD0V3U0cseul139cDeyPfQzXHD5LvuocN3tf7X99C4ARxuAIe3gMMN4PDKYFgEN4DDDnDYAQ5XgLuPzl--mJyOAt-PI1A05WWgmdKhiA1R8FtVKHMI93koZUGNhrFhREUsNylEuIniKpUQP2oahgUxrCDUsAeou1wt9UOEiVHUmMIQKlQUafArhAthmBaRlFyZIzSo5Zh9crQrWdiw2TrBZ1bwmRf8ERJtaWdlBUXjUJix37z3uFZN5nf3OoOTBpw-kkSkj_5j6cfocLtPjlG3_LzRTyCKLfOnHmo_ALynmDg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2V7aFwKGVLxba09YGrt06cOPGxqoq2LbuHCiRuluPY7IqyiyBw4NczEycraFVx4JaLLX-Mn984M28ADvAMIQKEgitVVDyrveW60IKLStvSo1HVkpKTpzM1Ocl-nuanD3JhKKySfOgQhSJarKbDTY_RfUjcFwqH0yrPKTJLj-lHAroFG_AyR7JPVQykmK3ROIlVd6gJpzZ9Fs__unl0Pz1SL_0Hrdsr6HAbXD_4GHlyPr5pqrG7-0vX8XmzewOvO4bKvkaT2oEXfjmE7b76A-vAYAhb07Xi6_UQNom1RtHntzD9Ta_4FBjPSFr8gkJuGMl5xDxJZv-cra4WzfyCrQLDThgC78LN0YTYnCRNloxSiFa3rK3Tswsnh9-Pv014V7eBu7RUDffS-UTnQTgcuktshbRQJdbWafD4HaRwmaxCiUyocMqVFnmGR0e0FkHWIg3yHQyWq6XfAyaCS0Oog0i1yzKP-COU1kF6nVmrXBjBuN8tcxnlOUyyVj2N62hoHU23jiPQD_fUNO27SIhFTIx8ou1-bwCmO-nXBhkpstSi0OX7Z3T9GV5NjqdH5ujH7NcH2EzJqRcJT9N9GDRXN_4jMp-m-tSa9j2F5_ZH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PTxQxFH5RTAweBFeJKGIPXLt2fmxnejTKBoXdEAKJt6bT6XOJsEvYgQN_ve9NZzaCMR64zaVNp319_V77ve8B7NEeIg-AhdS6qGReBydNYZRUlXFlIKOqM05Onkz1wVn-_ceoZxMuO1olx9AYhSJaX82b-6rGnhH3idlwRo9GTMwyQ35HoKjgKTzT_CrGWRxqunLGSSy6w00kt-mTeP7Vzb3j6Z546V_Ouj2BxhtQ9WOPxJNfw5umGvq7B7KOj_q5TXjZ4VPxORrUK3gS5gPY6Gs_iM4VDODFZKX3uhzAOmPWKPn8GiYnfIfPtHjBwuKXTLgRLOYRsySFu_i5uD5vZpdigYI6EeR2z_2MDEjMWNBkLjiBaHEr2io9b-BsvH_65UB2VRukT0vdyJD5kJgRKk9D94mrCBTqxLk6xUDfmCmfZxWWhIMKr33pCGUECkNrhVmtUsy2YG2-mIe3IBT6FLFGlRqf54G8j9LGYBZM7pz2uA3DfrHsVRTnsMlK8zTOo-V5tN08boP5c0lt096KYCxhYrP_tN3p1992-3xpCY8SRi0KU757RNcf4fnx17E9-jY9fA_rKUf0KpFpugNrzfVN-ECwp6l2W8P-DYCb9Os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+parameter+estimation+algorithm+of+the+Dirichlet+hidden+Markov+model&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Vai%C4%8Diulyt%C4%97%2C+J%C5%ABrat%C4%97&rft.au=Sakalauskas%2C+Leonidas&rft.date=2020-01-22&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=90&rft.issue=2&rft.spage=306&rft.epage=323&rft_id=info:doi/10.1080%2F00949655.2019.1679144&rft.externalDocID=1679144
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon