Recursive parameter estimation algorithm of the Dirichlet hidden Markov model
The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the recursive methods is linear, and this complexity allows the estimation of parameters in real time. Most of the recursive parameter estimation m...
        Saved in:
      
    
          | Published in | Journal of statistical computation and simulation Vol. 90; no. 2; pp. 306 - 323 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        22.01.2020
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0094-9655 1563-5163  | 
| DOI | 10.1080/00949655.2019.1679144 | 
Cover
| Abstract | The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the recursive methods is linear, and this complexity allows the estimation of parameters in real time. Most of the recursive parameter estimation methods use Gaussian mixtures and do not explore other distributions. However, the underlying structure of the data might be non-Gaussian. Thus, we propose a novel recursive method for estimating the parameters of the Dirichlet HMM. The Dirichlet distribution is popular because of its flexibility in modelling data. The proposed estimation is based on the maximum likelihood method, which is known to give close to optimal results. The performance of our algorithm is tested using a computer simulation and the clustering of several data-sets. Several experiments were conducted in order to compare the performance of the Gaussian HMM and Dirichlet HMM in the classification of several data-sets. | 
    
|---|---|
| AbstractList | The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the recursive methods is linear, and this complexity allows the estimation of parameters in real time. Most of the recursive parameter estimation methods use Gaussian mixtures and do not explore other distributions. However, the underlying structure of the data might be non-Gaussian. Thus, we propose a novel recursive method for estimating the parameters of the Dirichlet HMM. The Dirichlet distribution is popular because of its flexibility in modelling data. The proposed estimation is based on the maximum likelihood method, which is known to give close to optimal results. The performance of our algorithm is tested using a computer simulation and the clustering of several data-sets. Several experiments were conducted in order to compare the performance of the Gaussian HMM and Dirichlet HMM in the classification of several data-sets. | 
    
| Author | Vaičiulytė, Jūratė Sakalauskas, Leonidas  | 
    
| Author_xml | – sequence: 1 givenname: Jūratė orcidid: 0000-0001-8249-0768 surname: Vaičiulytė fullname: Vaičiulytė, Jūratė email: jurate.vaiciulyte@mif.vu.lt organization: Institute of Data Science and Digital Technologies, Vilnius University – sequence: 2 givenname: Leonidas surname: Sakalauskas fullname: Sakalauskas, Leonidas organization: Department of Informatics and Statistics, Klaipėda University  | 
    
| BookMark | eNp9kM1OwzAQhC0EEm3hEZAscU5Z27GT3EDlV2qFhOBsuY5NXZK42G5R355ELVdOu4eZ2dlvjE473xmErghMCZRwA1DlleB8SoFUUyKKiuT5CRoRLljGiWCnaDRoskF0jsYxrgGAEE5HaPFm9DZEtzN4o4JqTTIBm5hcq5LzHVbNpw8urVrsLU4rg-9dcHrVmIRXrq5NhxcqfPkdbn1tmgt0ZlUTzeVxTtDH48P77Dmbvz69zO7mmaalSJlh2pCKW9B9VU3UEnguiFI1tabfLQOds6Utq0IUWuhSASWGElKDZTVQyybo-pC7Cf5729eVa78NXX9SUkah4kVRlb2KH1Q6-BiDsXIT-r_CXhKQAzn5R04O5OSRXO-7PfhcZ31o1Y8PTS2T2jc-2KA67aJk_0f8Au3fdyw | 
    
| Cites_doi | 10.1177/1471082X18777806 10.1007/978-981-10-3373-5_22 10.1109/ICIT.2017.7915513 10.1007/978-1-4899-7488-4_196 10.2307/2532201 10.1198/jcgs.2011.09109 10.1016/j.enbuild.2015.11.071 10.21437/Eurospeech.2003-344 10.1177/1471082X12471372 10.1126/science.1223709 10.1162/neco.2008.10-06-351 10.1007/s00180-019-00877-z 10.1109/TAC.1977.1101561 10.1016/j.neucom.2017.06.084 10.1109/5.18626 10.1016/j.csda.2007.07.011 10.1016/j.patrec.2009.09.023 10.1093/mnras/stw656 10.1109/78.229888 10.1109/78.340791 10.1080/00949650902725155 10.1109/ICIP.2000.900885 10.1080/00949655.2016.1238086 10.1109/ISCMI.2014.32 10.1137/1.9781611972771.40 10.1109/5326.983933 10.1109/TIP.2004.834664 10.1002/9780470740156.ch5  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1080/00949655.2019.1679144 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Mathematics Computer Science  | 
    
| EISSN | 1563-5163 | 
    
| EndPage | 323 | 
    
| ExternalDocumentID | 10_1080_00949655_2019_1679144 1679144  | 
    
| Genre | Article | 
    
| GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 8FD ADYSH JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c286t-e3ce195f0c791c1ab05461aad2feb05f30c43bf89767c6c8a021e211d0f3d02f3 | 
    
| ISSN | 0094-9655 | 
    
| IngestDate | Fri Jul 25 06:28:29 EDT 2025 Wed Oct 01 04:58:55 EDT 2025 Mon Oct 20 23:48:40 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c286t-e3ce195f0c791c1ab05461aad2feb05f30c43bf89767c6c8a021e211d0f3d02f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8249-0768 | 
    
| PQID | 2320957798 | 
    
| PQPubID | 53118 | 
    
| PageCount | 18 | 
    
| ParticipantIDs | proquest_journals_2320957798 crossref_primary_10_1080_00949655_2019_1679144 informaworld_taylorfrancis_310_1080_00949655_2019_1679144  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-01-22 | 
    
| PublicationDateYYYYMMDD | 2020-01-22 | 
    
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-22 day: 22  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | Journal of statistical computation and simulation | 
    
| PublicationYear | 2020 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | CIT0030 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 Chavan RS (CIT0010) 2013; 2 CIT0018 CIT0017 CIT0039 CIT0019 CIT0041 CIT0040 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0023 CIT0022 Sundarasekar R (CIT0013) 2017; 102 Narayanan A. (CIT0027) 1991; 40 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008  | 
    
| References_xml | – volume: 2 start-page: 233 issue: 6 year: 2013 ident: CIT0010 publication-title: Int J Computer Sci Mobile Comput – ident: CIT0015 – ident: CIT0039 doi: 10.1177/1471082X18777806 – ident: CIT0038 – ident: CIT0009 doi: 10.1007/978-981-10-3373-5_22 – ident: CIT0031 doi: 10.1109/ICIT.2017.7915513 – ident: CIT0008 doi: 10.1007/978-1-4899-7488-4_196 – ident: CIT0023 doi: 10.2307/2532201 – ident: CIT0007 doi: 10.1198/jcgs.2011.09109 – ident: CIT0041 doi: 10.1016/j.enbuild.2015.11.071 – ident: CIT0019 doi: 10.21437/Eurospeech.2003-344 – ident: CIT0040 doi: 10.1177/1471082X12471372 – ident: CIT0001 doi: 10.1126/science.1223709 – ident: CIT0006 doi: 10.1162/neco.2008.10-06-351 – volume: 102 start-page: 2099 issue: 3 year: 2017 ident: CIT0013 publication-title: Wireless Personal Commun – ident: CIT0017 doi: 10.1007/s00180-019-00877-z – ident: CIT0022 doi: 10.1109/TAC.1977.1101561 – ident: CIT0025 – ident: CIT0004 – ident: CIT0005 doi: 10.1016/j.neucom.2017.06.084 – volume: 40 start-page: 365 issue: 2 year: 1991 ident: CIT0027 publication-title: J Royal Stat Soc – ident: CIT0033 – ident: CIT0002 doi: 10.1109/5.18626 – ident: CIT0028 doi: 10.1016/j.csda.2007.07.011 – ident: CIT0036 doi: 10.1016/j.patrec.2009.09.023 – ident: CIT0016 – ident: CIT0042 doi: 10.1093/mnras/stw656 – ident: CIT0014 doi: 10.1109/78.229888 – ident: CIT0018 – ident: CIT0043 – ident: CIT0021 doi: 10.1109/78.340791 – ident: CIT0020 – ident: CIT0037 doi: 10.1080/00949650902725155 – ident: CIT0012 doi: 10.1109/ICIP.2000.900885 – ident: CIT0026 – ident: CIT0029 doi: 10.1080/00949655.2016.1238086 – ident: CIT0024 – ident: CIT0034 – ident: CIT0011 doi: 10.1109/ISCMI.2014.32 – ident: CIT0032 doi: 10.1137/1.9781611972771.40 – ident: CIT0003 doi: 10.1109/5326.983933 – ident: CIT0030 doi: 10.1109/TIP.2004.834664 – ident: CIT0035 doi: 10.1002/9780470740156.ch5  | 
    
| SSID | ssj0001152 | 
    
| Score | 2.2064981 | 
    
| Snippet | The recursive (online, incremental) estimation of the hidden Markov model (HMM) parameters has become a more popular research subject. The complexity of the... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 306 | 
    
| SubjectTerms | Algorithms Clustering Complexity Computer simulation Datasets Dirichlet distribution Dirichlet problem hidden Markov models likelihood method Markov analysis Markov chains Mathematical models Maximum likelihood method Parameter estimation recursive EM algorithm Recursive methods  | 
    
| Title | Recursive parameter estimation algorithm of the Dirichlet hidden Markov model | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2019.1679144 https://www.proquest.com/docview/2320957798  | 
    
| Volume | 90 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1563-5163 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001152 issn: 0094-9655 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZK97IceBQQCwvygT1VqRw7ceJj2QVViHKALqy4RI5jb6vtA9EUCQ78dsaxk6Z0Ea9LZLmq2858nhm7M98g9Az2EFgAkwScJ3kQFVoGIhEkILmQqQZQFcwWJ4_f8NF59Ooivuh0vrerS8p8oL5dW1fyL1qFOdCrrZL9C802i8IEjEG_8AQNw_OPdPzWXpZX-eeWwXthM1v6ljXDlSP25fxyBWf_6aJOBAD7NlNT0FR_aplDllWlzuqLa4fzizDVVhxVZM4VkYhtAeEXtxfus4Xv_lXr7b2cVeHp2Wwz_1raoaXgBaCcnMYnw-cANzfXXOzIKzmXm_WVqyt7rcHEFHLnLoLalLaAbk-uk722IG3TK6JAcMfJO9De2nIWxKG3cN4cu-6hHna0ZVsZ4S03zVyZ8p4HqFMmhSXCj23unhjYv5pCRzP5E7m2f-UGOqDgFUgXHQxHZx8_NL48dD2bmi9f14BZdvbrPmInutnhvt3z9VUAM7mDbnmV4qGD0V3U0cseul139cDeyPfQzXHD5LvuocN3tf7X99C4ARxuAIe3gMMN4PDKYFgEN4DDDnDYAQ5XgLuPzl--mJyOAt-PI1A05WWgmdKhiA1R8FtVKHMI93koZUGNhrFhREUsNylEuIniKpUQP2oahgUxrCDUsAeou1wt9UOEiVHUmMIQKlQUafArhAthmBaRlFyZIzSo5Zh9crQrWdiw2TrBZ1bwmRf8ERJtaWdlBUXjUJix37z3uFZN5nf3OoOTBpw-kkSkj_5j6cfocLtPjlG3_LzRTyCKLfOnHmo_ALynmDg | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2V7aFwKGVLxba09YGrt06cOPGxqoq2LbuHCiRuluPY7IqyiyBw4NczEycraFVx4JaLLX-Mn984M28ADvAMIQKEgitVVDyrveW60IKLStvSo1HVkpKTpzM1Ocl-nuanD3JhKKySfOgQhSJarKbDTY_RfUjcFwqH0yrPKTJLj-lHAroFG_AyR7JPVQykmK3ROIlVd6gJpzZ9Fs__unl0Pz1SL_0Hrdsr6HAbXD_4GHlyPr5pqrG7-0vX8XmzewOvO4bKvkaT2oEXfjmE7b76A-vAYAhb07Xi6_UQNom1RtHntzD9Ta_4FBjPSFr8gkJuGMl5xDxJZv-cra4WzfyCrQLDThgC78LN0YTYnCRNloxSiFa3rK3Tswsnh9-Pv014V7eBu7RUDffS-UTnQTgcuktshbRQJdbWafD4HaRwmaxCiUyocMqVFnmGR0e0FkHWIg3yHQyWq6XfAyaCS0Oog0i1yzKP-COU1kF6nVmrXBjBuN8tcxnlOUyyVj2N62hoHU23jiPQD_fUNO27SIhFTIx8ou1-bwCmO-nXBhkpstSi0OX7Z3T9GV5NjqdH5ujH7NcH2EzJqRcJT9N9GDRXN_4jMp-m-tSa9j2F5_ZH | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PTxQxFH5RTAweBFeJKGIPXLt2fmxnejTKBoXdEAKJt6bT6XOJsEvYgQN_ve9NZzaCMR64zaVNp319_V77ve8B7NEeIg-AhdS6qGReBydNYZRUlXFlIKOqM05Onkz1wVn-_ceoZxMuO1olx9AYhSJaX82b-6rGnhH3idlwRo9GTMwyQ35HoKjgKTzT_CrGWRxqunLGSSy6w00kt-mTeP7Vzb3j6Z546V_Ouj2BxhtQ9WOPxJNfw5umGvq7B7KOj_q5TXjZ4VPxORrUK3gS5gPY6Gs_iM4VDODFZKX3uhzAOmPWKPn8GiYnfIfPtHjBwuKXTLgRLOYRsySFu_i5uD5vZpdigYI6EeR2z_2MDEjMWNBkLjiBaHEr2io9b-BsvH_65UB2VRukT0vdyJD5kJgRKk9D94mrCBTqxLk6xUDfmCmfZxWWhIMKr33pCGUECkNrhVmtUsy2YG2-mIe3IBT6FLFGlRqf54G8j9LGYBZM7pz2uA3DfrHsVRTnsMlK8zTOo-V5tN08boP5c0lt096KYCxhYrP_tN3p1992-3xpCY8SRi0KU757RNcf4fnx17E9-jY9fA_rKUf0KpFpugNrzfVN-ECwp6l2W8P-DYCb9Os | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+parameter+estimation+algorithm+of+the+Dirichlet+hidden+Markov+model&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=Vai%C4%8Diulyt%C4%97%2C+J%C5%ABrat%C4%97&rft.au=Sakalauskas%2C+Leonidas&rft.date=2020-01-22&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=90&rft.issue=2&rft.spage=306&rft.epage=323&rft_id=info:doi/10.1080%2F00949655.2019.1679144&rft.externalDocID=1679144 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |