Multivariate generalized linear mixed models for underdispersed count data
Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one res...
Saved in:
Published in | Journal of statistical computation and simulation Vol. 93; no. 14; pp. 2410 - 2427 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
22.09.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0094-9655 1563-5163 |
DOI | 10.1080/00949655.2023.2184474 |
Cover
Abstract | Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one response variable at a time. Moreover, it is not possible to directly calculate from the regression model a correlation measure between the response variables. In this article, we employed the Multivariate Generalized Linear Mixed Models framework, which allows the specification of a set of response variables and calculates the correlation between them through a random effect structure that follows a multivariate normal distribution. We used the maximum likelihood estimation framework to estimate all model parameters using Laplace approximation to integrate out the random effects. The derivatives are provided by automatic differentiation. The outer maximization was made using a general-purpose algorithm such as
PORT
and Broyden-Fletcher-Goldfarb-Shanno algorithm (
BFGS
). We delimited this problem by studying count response variables with the following distributions: Poisson, negative binomial, Conway-Maxwell-Poisson (COM-Poisson), and double Poisson. While the first distribution can model only equidispersed data, the second models equi and overdispersed, and the third and fourth models all types of dispersion (i.e. including underdispersion). The models were implemented on software
R
with package
TMB
, based on
C++
templates. Besides the full specification, models with simpler structures in the covariance matrix were considered (fixed and common variance, and ρ set to 0) and fixed dispersion. These models were applied to a dataset from the National Health and Nutrition Examination Survey, where two response variables are underdispersed and one can be considered equidispersed that were measured at 1281 subjects. The double Poisson full model specification overcame the other three competitors considering three goodness-of-fit measures: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and maximized log-likelihood. Consequently, it estimated parameters with smaller standard error and a greater number of significant correlation coefficients. Therefore, the proposed model can deal with multivariate count responses and measures the correlation between them taking into account the effects of the covariates. |
---|---|
AbstractList | Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one response variable at a time. Moreover, it is not possible to directly calculate from the regression model a correlation measure between the response variables. In this article, we employed the Multivariate Generalized Linear Mixed Models framework, which allows the specification of a set of response variables and calculates the correlation between them through a random effect structure that follows a multivariate normal distribution. We used the maximum likelihood estimation framework to estimate all model parameters using Laplace approximation to integrate out the random effects. The derivatives are provided by automatic differentiation. The outer maximization was made using a general-purpose algorithm such as PORT and Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). We delimited this problem by studying count response variables with the following distributions: Poisson, negative binomial, Conway-Maxwell-Poisson (COM-Poisson), and double Poisson. While the first distribution can model only equidispersed data, the second models equi and overdispersed, and the third and fourth models all types of dispersion (i.e. including underdispersion). The models were implemented on software R with package TMB, based on C++ templates. Besides the full specification, models with simpler structures in the covariance matrix were considered (fixed and common variance, and ρ set to 0) and fixed dispersion. These models were applied to a dataset from the National Health and Nutrition Examination Survey, where two response variables are underdispersed and one can be considered equidispersed that were measured at 1281 subjects. The double Poisson full model specification overcame the other three competitors considering three goodness-of-fit measures: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and maximized log-likelihood. Consequently, it estimated parameters with smaller standard error and a greater number of significant correlation coefficients. Therefore, the proposed model can deal with multivariate count responses and measures the correlation between them taking into account the effects of the covariates. Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one response variable at a time. Moreover, it is not possible to directly calculate from the regression model a correlation measure between the response variables. In this article, we employed the Multivariate Generalized Linear Mixed Models framework, which allows the specification of a set of response variables and calculates the correlation between them through a random effect structure that follows a multivariate normal distribution. We used the maximum likelihood estimation framework to estimate all model parameters using Laplace approximation to integrate out the random effects. The derivatives are provided by automatic differentiation. The outer maximization was made using a general-purpose algorithm such as PORT and Broyden-Fletcher-Goldfarb-Shanno algorithm ( BFGS ). We delimited this problem by studying count response variables with the following distributions: Poisson, negative binomial, Conway-Maxwell-Poisson (COM-Poisson), and double Poisson. While the first distribution can model only equidispersed data, the second models equi and overdispersed, and the third and fourth models all types of dispersion (i.e. including underdispersion). The models were implemented on software R with package TMB , based on C++ templates. Besides the full specification, models with simpler structures in the covariance matrix were considered (fixed and common variance, and ρ set to 0) and fixed dispersion. These models were applied to a dataset from the National Health and Nutrition Examination Survey, where two response variables are underdispersed and one can be considered equidispersed that were measured at 1281 subjects. The double Poisson full model specification overcame the other three competitors considering three goodness-of-fit measures: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and maximized log-likelihood. Consequently, it estimated parameters with smaller standard error and a greater number of significant correlation coefficients. Therefore, the proposed model can deal with multivariate count responses and measures the correlation between them taking into account the effects of the covariates. |
Author | Petterle, Ricardo Rasmussen Bonat, Wagner Hugo Ribeiro Jr, Paulo Justiniano da Silva, Guilherme Parreira Laureano, Henrique Aparecido |
Author_xml | – sequence: 1 givenname: Guilherme Parreira orcidid: 0000-0001-6040-6465 surname: da Silva fullname: da Silva, Guilherme Parreira email: guilhermeparreira.silva@gmail.com organization: Paraná Federal University – sequence: 2 givenname: Henrique Aparecido orcidid: 0000-0003-1654-8356 surname: Laureano fullname: Laureano, Henrique Aparecido organization: Paraná Federal University – sequence: 3 givenname: Ricardo Rasmussen orcidid: 0000-0001-7735-1077 surname: Petterle fullname: Petterle, Ricardo Rasmussen organization: Paraná Federal University – sequence: 4 givenname: Paulo Justiniano orcidid: 0000-0001-5302-9446 surname: Ribeiro Jr fullname: Ribeiro Jr, Paulo Justiniano organization: Paraná Federal University – sequence: 5 givenname: Wagner Hugo orcidid: 0000-0002-0349-7054 surname: Bonat fullname: Bonat, Wagner Hugo organization: Paraná Federal University |
BookMark | eNp9kMtOwzAQRS1UJNrCJyBFYp1iO7Fj70AVTxWxgL3lV5Arxy52ApSvJ1Fhy2o0M_fe0ZwFmIUYLADnCK4QZPASQl5zSsgKQ1ytMGJ13dRHYI4IrUqCaDUD80lTTqITsMh5CyFEiOA5eHwafO8-ZHKyt8WbDTZJ776tKbwLVqaic19j00VjfS7amIohGJuMyzub8rjRcQh9YWQvT8FxK322Z791CV5ub17X9-Xm-e5hfb0pNWa0L41VBhGmKYNoHGCsLedcKU0V50hJhhRSuoGWNowzRFpCW1VRjkkDZVUtwcUhdZfi-2BzL7ZxSGE8KDAjsJ5YNKOKHFQ6xZyTbcUuuU6mvUBQTNDEHzQxQRO_0Ebf1cHnwvhrJz9j8kb0cu9japMM2mVR_R_xA1FndTU |
Cites_doi | 10.1080/01621459.1986.10478327 10.32614/RJ-2018-017 10.1145/567806.567807 10.1177/1471082X17697749 10.1080/03610926.2012.743565 10.18637/jss.v067.i01 10.18637/jss.v033.i02 10.1016/j.applanim.2018.08.001 10.1177/1471082X20936017 10.1017/CBO9781107741973 10.2307/2841583 10.2307/2344614 10.1002/bimj.201000076 10.1111/j.1469-1809.1934.tb02105.x 10.1080/01621459.1993.10594284 10.1080/02664763.2014.922168 10.1111/rssc.12145 10.1002/env.1036 10.1002/env.2375 10.1177/1471082X17715718 10.1111/j.1467-9876.2005.00474.x 10.32614/CRAN.package.gamlss.ggplots 10.1080/01621459.1986.10478240 10.1111/j.2517-6161.1996.tb02105.x 10.18637/jss.v027.i08 10.1016/j.jmva.2017.12.010 10.1007/s10182-015-0250-z 10.32614/RJ-2017-066 10.1017/S0013091500024135 10.1007/s10651-017-0372-4 10.18637/jss.v070.i05 10.1093/biomet/73.1.13 10.1002/wics.1398 10.1007/s10463-019-00732-4 10.1016/j.jmaa.2011.11.042 10.1111/j.2517-6161.1968.tb00722.x |
ContentType | Journal Article |
Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00949655.2023.2184474 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1563-5163 |
EndPage | 2427 |
ExternalDocumentID | 10_1080_00949655_2023_2184474 2184474 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 29L 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ADCVX ADGTB ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 YQT ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX CITATION TASJS 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c286t-debd158c680128622ce999bbc6b991ba81b1bc70e6789815f56fb3692570a33 |
ISSN | 0094-9655 |
IngestDate | Fri Jul 25 07:56:35 EDT 2025 Sun Aug 03 02:37:24 EDT 2025 Wed Apr 16 06:52:01 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-debd158c680128622ce999bbc6b991ba81b1bc70e6789815f56fb3692570a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5302-9446 0000-0001-6040-6465 0000-0001-7735-1077 0000-0002-0349-7054 0000-0003-1654-8356 |
PQID | 2850409497 |
PQPubID | 53118 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2850409497 informaworld_taylorfrancis_310_1080_00949655_2023_2184474 crossref_primary_10_1080_00949655_2023_2184474 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-22 |
PublicationDateYYYYMMDD | 2023-09-22 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of statistical computation and simulation |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 Lee Y (CIT0024) 1996; 58 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 R Core Team (CIT0025) 2020 CIT0014 Wedderburn RW. (CIT0019) 1974; 61 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0018 CIT0039 CIT0041 CIT0040 Winkelmann R. (CIT0017) 2008 CIT0021 CIT0043 CIT0020 CIT0042 CIT0001 CIT0045 CIT0022 Baydin AG (CIT0037) 2017; 18 CIT0044 Dempster AP. (CIT0023) 1968; 30 CIT0003 CIT0002 CIT0046 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
References_xml | – ident: CIT0010 doi: 10.1080/01621459.1986.10478327 – ident: CIT0040 – ident: CIT0021 doi: 10.32614/RJ-2018-017 – ident: CIT0042 doi: 10.1145/567806.567807 – ident: CIT0044 doi: 10.1177/1471082X17697749 – ident: CIT0016 doi: 10.1080/03610926.2012.743565 – ident: CIT0027 doi: 10.18637/jss.v067.i01 – volume-title: R: A language and environment for statistical computing year: 2020 ident: CIT0025 – ident: CIT0022 doi: 10.18637/jss.v033.i02 – ident: CIT0003 doi: 10.1016/j.applanim.2018.08.001 – ident: CIT0035 doi: 10.1177/1471082X20936017 – ident: CIT0036 doi: 10.1017/CBO9781107741973 – ident: CIT0001 doi: 10.2307/2841583 – ident: CIT0002 doi: 10.2307/2344614 – ident: CIT0004 doi: 10.1002/bimj.201000076 – ident: CIT0030 doi: 10.1111/j.1469-1809.1934.tb02105.x – ident: CIT0029 – ident: CIT0032 doi: 10.1080/01621459.1993.10594284 – ident: CIT0005 doi: 10.1080/02664763.2014.922168 – volume: 18 start-page: 5595 issue: 1 year: 2017 ident: CIT0037 publication-title: J Mach Learn Res – ident: CIT0013 doi: 10.1111/rssc.12145 – ident: CIT0007 doi: 10.1002/env.1036 – volume-title: Econometric analysis of count data year: 2008 ident: CIT0017 – ident: CIT0033 doi: 10.1002/env.2375 – ident: CIT0006 doi: 10.1177/1471082X17715718 – ident: CIT0041 – ident: CIT0009 doi: 10.1111/j.1467-9876.2005.00474.x – ident: CIT0045 doi: 10.32614/CRAN.package.gamlss.ggplots – ident: CIT0034 doi: 10.1080/01621459.1986.10478240 – ident: CIT0018 – volume: 58 start-page: 619 issue: 4 year: 1996 ident: CIT0024 publication-title: J R Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1996.tb02105.x – ident: CIT0011 doi: 10.18637/jss.v027.i08 – ident: CIT0012 – ident: CIT0031 doi: 10.1016/j.jmva.2017.12.010 – ident: CIT0008 doi: 10.1007/s10182-015-0250-z – volume: 61 start-page: 439 issue: 3 year: 1974 ident: CIT0019 publication-title: Biometrika – ident: CIT0026 doi: 10.32614/RJ-2017-066 – ident: CIT0015 doi: 10.1017/S0013091500024135 – ident: CIT0043 doi: 10.1007/s10651-017-0372-4 – ident: CIT0038 doi: 10.18637/jss.v070.i05 – ident: CIT0028 – ident: CIT0020 doi: 10.1093/biomet/73.1.13 – ident: CIT0014 doi: 10.1002/wics.1398 – ident: CIT0039 doi: 10.1007/s10463-019-00732-4 – ident: CIT0046 doi: 10.1016/j.jmaa.2011.11.042 – volume: 30 start-page: 205 issue: 2 year: 1968 ident: CIT0023 publication-title: J R Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1968.tb00722.x |
SSID | ssj0001152 |
Score | 2.31834 |
Snippet | Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2410 |
SubjectTerms | Algorithms automatic differentiation Correlation coefficients Covariance matrix Criteria Dispersion Generalized linear models Goodness of fit Laplace approximation Maximum likelihood estimation Multivariate analysis multivariate models Normal distribution optimization Parameter estimation Regression analysis Regression models Specifications Standard error Statistical analysis Statistical models template model builder Variables |
Title | Multivariate generalized linear mixed models for underdispersed count data |
URI | https://www.tandfonline.com/doi/abs/10.1080/00949655.2023.2184474 https://www.proquest.com/docview/2850409497 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj5swELXS7GV76EfaqrvdVj70hoiCwQ4co35FkbaHTaquekEYjIS0CRWQVbU_cH9XZ2xDSBOpXxcUQAHkeQzP1sx7hLwNFM9yFQUun2bcDXJ402XGIBn6HtDlKGdpjr3Dl5_F_EuwuObXg8F9r2pp28hxene0r-RfogrHIK7YJfsXke0uCgfgN8QXthBh2P5RjHX37C3MdoEwohcyri8Vd0AhkTsmlbMufsCONrvRsgva9BYQgergtcJ-tu2mcWx72jGOiu1GWslZq4ig_4PBi15tL9bW-qsNWpY4y-LmVtPRT9viBuCwVsBRq0oVVZf-sRNbJdrx28EWCS0gO8NC-LTIyl2qxjYjU-t8BfevstK5Sur1tq57zWuFhCuXzqJqixxLY0-2AdCX_QUN5mP1BdtNf1cH3iL9_A2oioQR9h0rm7KF73LPpkmb043rYovdoJ-hA1tGq-yukSY4-JK0pZcRCurzMT7oGKfDgTEV-kWk2555QE7YVAg2JCez-ftvXztO4Bnvp-75214yVHk_dos9lrSnoXvAGTQRWj0hjyw66MzA8SkZqM2IPG7dQaj9WIzIw8tOEbgekdNlC6X6GVn0gUt7wKUGuFQDlxrgUngqug9cqoFLEbjPyfLjh9W7uWtNPdyUhaJxMyUzj4ep0NRIMJYqmKNImQoJUxWZwDTKk-l0ooBFRaHHcy5y6YsI3RYT339Bhptyo14SmuQRfHsUD2F6GKQqCdMsTDyhJnwi4Tg7I-N2COPvRrkl9jpBXDPmMY55bMf8jET9gY4bDcTcYDD2f_PfizYqsU0QdcxCPsHlk2h6_h-XfkVOd2_JBRk21Va9BiLcyDcWZT8BNzCzog |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSDj1XxbQ5eW9u0ybZHEWV97F5U8BaaNBERV9mtIv56Z5p28YF48NiGhDxnvoSZ7wM4SK0onc3TQHRLEaQOT7ouORrDJEa4nDtuHOUO9weyd5Oe34rbT7kwFFZJd2jniSJqW02Hmx6j25C4QwqHy6UQIWl_h3RJSbvpNMwKYhqhNI5oMLHGsVfdoSoB1WmzeH5r5ot_-sJe-sNa1y7odAlM23kfefIQvlQ6NO_feB3_N7plWGwQKjvyW2oFpuywA0ut-gNrjEEHFvoTxtdxB-YJtXrS51U4r9N6X_EajkiW3Xlm6_t3WzLqTzFij_dv-FGr8IwZjp1RKhtuVaItH2NJrWDBKHp1Da5OT66Pe0Ej2hAYnskqKK0uY5EZWbs-ybmxiEG1NlIjFNUFwuRYm25k0UvmWSyckE4nMic1vSJJ1mFm-DS0G8AKl6NtsSJD-J8aW2SmzIpY2khEGv_zTQjbhVLPnplDxRPCUz-FiqZQNVO4Cfnn5VRV_STivH6JSv6ou9OuvWoO-VjxTER0Pc67W_9oeh_metf9S3V5NrjYhnkqongUzndgphq92F0EPZXeq3f1B4kE8-A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xIk3wsLJuCEZhfthrssSJ3eRxAiooazVpm7Q3K3ZsVCFKRQJC_PW7i5OKDk088JhEtvzz7rvo7vsAvqRWlM7maSBGpQhShzddlxyNYRIjXM4dN45qh6czefY7nfwRXTZh1aZVUgztPFFEY6vpci9L12XEfaVsuFwKEZL0d0gxSjpK38CmpDpTquKIZitjHHvRHWoSUJuuiOd_3ay5pzXy0mfGuvFA4z7obuw-8eQqvKt1aB7_oXV81eR24F2LT9k3f6Dew4ZdDKDfaT-w1hQMYHu64nutBrBFmNVTPn-ASVPUe49BOOJYdul5reePtmQ0nOKWXc8f8KHR4KkYTp1RIRseVCItr_BLo1_BKHf1I_wcn_46PgtayYbA8EzWQWl1GYvMyMbxSc6NRQSqtZEagaguECTH2owiiz4yz2LhhHQ6kTlp6RVJsgu9xc3C7gErXI6WxYoMwX9qbJGZMitiaSMRaXzP9yHs9kktPS-Hild0p34JFS2hapdwH_Knu6nq5oeI8-olKnmh7bDbetVe8UrxTEQUHOejT6_o-jO8_XEyVt_PZxcHsEVfKBmF8yH06ts7e4iIp9ZHzZn-C6T68o0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+generalized+linear+mixed+models+for+underdispersed+count+data&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=da+Silva%2C+Guilherme+Parreira&rft.au=Laureano%2C+Henrique+Aparecido&rft.au=Petterle%2C+Ricardo+Rasmussen&rft.au=Ribeiro+Jr%2C+Paulo+Justiniano&rft.date=2023-09-22&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=93&rft.issue=14&rft.spage=2410&rft.epage=2427&rft_id=info:doi/10.1080%2F00949655.2023.2184474&rft.externalDocID=2184474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon |