Multivariate generalized linear mixed models for underdispersed count data

Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one res...

Full description

Saved in:
Bibliographic Details
Published inJournal of statistical computation and simulation Vol. 93; no. 14; pp. 2410 - 2427
Main Authors da Silva, Guilherme Parreira, Laureano, Henrique Aparecido, Petterle, Ricardo Rasmussen, Ribeiro Jr, Paulo Justiniano, Bonat, Wagner Hugo
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 22.09.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0094-9655
1563-5163
DOI10.1080/00949655.2023.2184474

Cover

Abstract Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one response variable at a time. Moreover, it is not possible to directly calculate from the regression model a correlation measure between the response variables. In this article, we employed the Multivariate Generalized Linear Mixed Models framework, which allows the specification of a set of response variables and calculates the correlation between them through a random effect structure that follows a multivariate normal distribution. We used the maximum likelihood estimation framework to estimate all model parameters using Laplace approximation to integrate out the random effects. The derivatives are provided by automatic differentiation. The outer maximization was made using a general-purpose algorithm such as PORT and Broyden-Fletcher-Goldfarb-Shanno algorithm ( BFGS ). We delimited this problem by studying count response variables with the following distributions: Poisson, negative binomial, Conway-Maxwell-Poisson (COM-Poisson), and double Poisson. While the first distribution can model only equidispersed data, the second models equi and overdispersed, and the third and fourth models all types of dispersion (i.e. including underdispersion). The models were implemented on software R with package TMB , based on C++ templates. Besides the full specification, models with simpler structures in the covariance matrix were considered (fixed and common variance, and ρ set to 0) and fixed dispersion. These models were applied to a dataset from the National Health and Nutrition Examination Survey, where two response variables are underdispersed and one can be considered equidispersed that were measured at 1281 subjects. The double Poisson full model specification overcame the other three competitors considering three goodness-of-fit measures: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and maximized log-likelihood. Consequently, it estimated parameters with smaller standard error and a greater number of significant correlation coefficients. Therefore, the proposed model can deal with multivariate count responses and measures the correlation between them taking into account the effects of the covariates.
AbstractList Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one response variable at a time. Moreover, it is not possible to directly calculate from the regression model a correlation measure between the response variables. In this article, we employed the Multivariate Generalized Linear Mixed Models framework, which allows the specification of a set of response variables and calculates the correlation between them through a random effect structure that follows a multivariate normal distribution. We used the maximum likelihood estimation framework to estimate all model parameters using Laplace approximation to integrate out the random effects. The derivatives are provided by automatic differentiation. The outer maximization was made using a general-purpose algorithm such as PORT and Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS). We delimited this problem by studying count response variables with the following distributions: Poisson, negative binomial, Conway-Maxwell-Poisson (COM-Poisson), and double Poisson. While the first distribution can model only equidispersed data, the second models equi and overdispersed, and the third and fourth models all types of dispersion (i.e. including underdispersion). The models were implemented on software R with package TMB, based on C++ templates. Besides the full specification, models with simpler structures in the covariance matrix were considered (fixed and common variance, and ρ set to 0) and fixed dispersion. These models were applied to a dataset from the National Health and Nutrition Examination Survey, where two response variables are underdispersed and one can be considered equidispersed that were measured at 1281 subjects. The double Poisson full model specification overcame the other three competitors considering three goodness-of-fit measures: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and maximized log-likelihood. Consequently, it estimated parameters with smaller standard error and a greater number of significant correlation coefficients. Therefore, the proposed model can deal with multivariate count responses and measures the correlation between them taking into account the effects of the covariates.
Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use of regression analysis, either linear or generalized linear models, is largely applied. However, such models only allow users to model one response variable at a time. Moreover, it is not possible to directly calculate from the regression model a correlation measure between the response variables. In this article, we employed the Multivariate Generalized Linear Mixed Models framework, which allows the specification of a set of response variables and calculates the correlation between them through a random effect structure that follows a multivariate normal distribution. We used the maximum likelihood estimation framework to estimate all model parameters using Laplace approximation to integrate out the random effects. The derivatives are provided by automatic differentiation. The outer maximization was made using a general-purpose algorithm such as PORT and Broyden-Fletcher-Goldfarb-Shanno algorithm ( BFGS ). We delimited this problem by studying count response variables with the following distributions: Poisson, negative binomial, Conway-Maxwell-Poisson (COM-Poisson), and double Poisson. While the first distribution can model only equidispersed data, the second models equi and overdispersed, and the third and fourth models all types of dispersion (i.e. including underdispersion). The models were implemented on software R with package TMB , based on C++ templates. Besides the full specification, models with simpler structures in the covariance matrix were considered (fixed and common variance, and ρ set to 0) and fixed dispersion. These models were applied to a dataset from the National Health and Nutrition Examination Survey, where two response variables are underdispersed and one can be considered equidispersed that were measured at 1281 subjects. The double Poisson full model specification overcame the other three competitors considering three goodness-of-fit measures: Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and maximized log-likelihood. Consequently, it estimated parameters with smaller standard error and a greater number of significant correlation coefficients. Therefore, the proposed model can deal with multivariate count responses and measures the correlation between them taking into account the effects of the covariates.
Author Petterle, Ricardo Rasmussen
Bonat, Wagner Hugo
Ribeiro Jr, Paulo Justiniano
da Silva, Guilherme Parreira
Laureano, Henrique Aparecido
Author_xml – sequence: 1
  givenname: Guilherme Parreira
  orcidid: 0000-0001-6040-6465
  surname: da Silva
  fullname: da Silva, Guilherme Parreira
  email: guilhermeparreira.silva@gmail.com
  organization: Paraná Federal University
– sequence: 2
  givenname: Henrique Aparecido
  orcidid: 0000-0003-1654-8356
  surname: Laureano
  fullname: Laureano, Henrique Aparecido
  organization: Paraná Federal University
– sequence: 3
  givenname: Ricardo Rasmussen
  orcidid: 0000-0001-7735-1077
  surname: Petterle
  fullname: Petterle, Ricardo Rasmussen
  organization: Paraná Federal University
– sequence: 4
  givenname: Paulo Justiniano
  orcidid: 0000-0001-5302-9446
  surname: Ribeiro Jr
  fullname: Ribeiro Jr, Paulo Justiniano
  organization: Paraná Federal University
– sequence: 5
  givenname: Wagner Hugo
  orcidid: 0000-0002-0349-7054
  surname: Bonat
  fullname: Bonat, Wagner Hugo
  organization: Paraná Federal University
BookMark eNp9kMtOwzAQRS1UJNrCJyBFYp1iO7Fj70AVTxWxgL3lV5Arxy52ApSvJ1Fhy2o0M_fe0ZwFmIUYLADnCK4QZPASQl5zSsgKQ1ytMGJ13dRHYI4IrUqCaDUD80lTTqITsMh5CyFEiOA5eHwafO8-ZHKyt8WbDTZJ776tKbwLVqaic19j00VjfS7amIohGJuMyzub8rjRcQh9YWQvT8FxK322Z791CV5ub17X9-Xm-e5hfb0pNWa0L41VBhGmKYNoHGCsLedcKU0V50hJhhRSuoGWNowzRFpCW1VRjkkDZVUtwcUhdZfi-2BzL7ZxSGE8KDAjsJ5YNKOKHFQ6xZyTbcUuuU6mvUBQTNDEHzQxQRO_0Ebf1cHnwvhrJz9j8kb0cu9japMM2mVR_R_xA1FndTU
Cites_doi 10.1080/01621459.1986.10478327
10.32614/RJ-2018-017
10.1145/567806.567807
10.1177/1471082X17697749
10.1080/03610926.2012.743565
10.18637/jss.v067.i01
10.18637/jss.v033.i02
10.1016/j.applanim.2018.08.001
10.1177/1471082X20936017
10.1017/CBO9781107741973
10.2307/2841583
10.2307/2344614
10.1002/bimj.201000076
10.1111/j.1469-1809.1934.tb02105.x
10.1080/01621459.1993.10594284
10.1080/02664763.2014.922168
10.1111/rssc.12145
10.1002/env.1036
10.1002/env.2375
10.1177/1471082X17715718
10.1111/j.1467-9876.2005.00474.x
10.32614/CRAN.package.gamlss.ggplots
10.1080/01621459.1986.10478240
10.1111/j.2517-6161.1996.tb02105.x
10.18637/jss.v027.i08
10.1016/j.jmva.2017.12.010
10.1007/s10182-015-0250-z
10.32614/RJ-2017-066
10.1017/S0013091500024135
10.1007/s10651-017-0372-4
10.18637/jss.v070.i05
10.1093/biomet/73.1.13
10.1002/wics.1398
10.1007/s10463-019-00732-4
10.1016/j.jmaa.2011.11.042
10.1111/j.2517-6161.1968.tb00722.x
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00949655.2023.2184474
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1563-5163
EndPage 2427
ExternalDocumentID 10_1080_00949655_2023_2184474
2184474
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
29L
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
YQT
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
CITATION
TASJS
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-debd158c680128622ce999bbc6b991ba81b1bc70e6789815f56fb3692570a33
ISSN 0094-9655
IngestDate Fri Jul 25 07:56:35 EDT 2025
Sun Aug 03 02:37:24 EDT 2025
Wed Apr 16 06:52:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-debd158c680128622ce999bbc6b991ba81b1bc70e6789815f56fb3692570a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5302-9446
0000-0001-6040-6465
0000-0001-7735-1077
0000-0002-0349-7054
0000-0003-1654-8356
PQID 2850409497
PQPubID 53118
PageCount 18
ParticipantIDs proquest_journals_2850409497
informaworld_taylorfrancis_310_1080_00949655_2023_2184474
crossref_primary_10_1080_00949655_2023_2184474
PublicationCentury 2000
PublicationDate 2023-09-22
PublicationDateYYYYMMDD 2023-09-22
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-22
  day: 22
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of statistical computation and simulation
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
Lee Y (CIT0024) 1996; 58
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
R Core Team (CIT0025) 2020
CIT0014
Wedderburn RW. (CIT0019) 1974; 61
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0018
CIT0039
CIT0041
CIT0040
Winkelmann R. (CIT0017) 2008
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0045
CIT0022
Baydin AG (CIT0037) 2017; 18
CIT0044
Dempster AP. (CIT0023) 1968; 30
CIT0003
CIT0002
CIT0046
CIT0005
CIT0027
CIT0004
CIT0026
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0010
  doi: 10.1080/01621459.1986.10478327
– ident: CIT0040
– ident: CIT0021
  doi: 10.32614/RJ-2018-017
– ident: CIT0042
  doi: 10.1145/567806.567807
– ident: CIT0044
  doi: 10.1177/1471082X17697749
– ident: CIT0016
  doi: 10.1080/03610926.2012.743565
– ident: CIT0027
  doi: 10.18637/jss.v067.i01
– volume-title: R: A language and environment for statistical computing
  year: 2020
  ident: CIT0025
– ident: CIT0022
  doi: 10.18637/jss.v033.i02
– ident: CIT0003
  doi: 10.1016/j.applanim.2018.08.001
– ident: CIT0035
  doi: 10.1177/1471082X20936017
– ident: CIT0036
  doi: 10.1017/CBO9781107741973
– ident: CIT0001
  doi: 10.2307/2841583
– ident: CIT0002
  doi: 10.2307/2344614
– ident: CIT0004
  doi: 10.1002/bimj.201000076
– ident: CIT0030
  doi: 10.1111/j.1469-1809.1934.tb02105.x
– ident: CIT0029
– ident: CIT0032
  doi: 10.1080/01621459.1993.10594284
– ident: CIT0005
  doi: 10.1080/02664763.2014.922168
– volume: 18
  start-page: 5595
  issue: 1
  year: 2017
  ident: CIT0037
  publication-title: J Mach Learn Res
– ident: CIT0013
  doi: 10.1111/rssc.12145
– ident: CIT0007
  doi: 10.1002/env.1036
– volume-title: Econometric analysis of count data
  year: 2008
  ident: CIT0017
– ident: CIT0033
  doi: 10.1002/env.2375
– ident: CIT0006
  doi: 10.1177/1471082X17715718
– ident: CIT0041
– ident: CIT0009
  doi: 10.1111/j.1467-9876.2005.00474.x
– ident: CIT0045
  doi: 10.32614/CRAN.package.gamlss.ggplots
– ident: CIT0034
  doi: 10.1080/01621459.1986.10478240
– ident: CIT0018
– volume: 58
  start-page: 619
  issue: 4
  year: 1996
  ident: CIT0024
  publication-title: J R Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02105.x
– ident: CIT0011
  doi: 10.18637/jss.v027.i08
– ident: CIT0012
– ident: CIT0031
  doi: 10.1016/j.jmva.2017.12.010
– ident: CIT0008
  doi: 10.1007/s10182-015-0250-z
– volume: 61
  start-page: 439
  issue: 3
  year: 1974
  ident: CIT0019
  publication-title: Biometrika
– ident: CIT0026
  doi: 10.32614/RJ-2017-066
– ident: CIT0015
  doi: 10.1017/S0013091500024135
– ident: CIT0043
  doi: 10.1007/s10651-017-0372-4
– ident: CIT0038
  doi: 10.18637/jss.v070.i05
– ident: CIT0028
– ident: CIT0020
  doi: 10.1093/biomet/73.1.13
– ident: CIT0014
  doi: 10.1002/wics.1398
– ident: CIT0039
  doi: 10.1007/s10463-019-00732-4
– ident: CIT0046
  doi: 10.1016/j.jmaa.2011.11.042
– volume: 30
  start-page: 205
  issue: 2
  year: 1968
  ident: CIT0023
  publication-title: J R Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1968.tb00722.x
SSID ssj0001152
Score 2.31834
Snippet Researchers are often interested in understanding the relationship between a set of covariates and a set of response variables. To achieve this goal, the use...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 2410
SubjectTerms Algorithms
automatic differentiation
Correlation coefficients
Covariance matrix
Criteria
Dispersion
Generalized linear models
Goodness of fit
Laplace approximation
Maximum likelihood estimation
Multivariate analysis
multivariate models
Normal distribution
optimization
Parameter estimation
Regression analysis
Regression models
Specifications
Standard error
Statistical analysis
Statistical models
template model builder
Variables
Title Multivariate generalized linear mixed models for underdispersed count data
URI https://www.tandfonline.com/doi/abs/10.1080/00949655.2023.2184474
https://www.proquest.com/docview/2850409497
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj5swELXS7GV76EfaqrvdVj70hoiCwQ4co35FkbaHTaquekEYjIS0CRWQVbU_cH9XZ2xDSBOpXxcUQAHkeQzP1sx7hLwNFM9yFQUun2bcDXJ402XGIBn6HtDlKGdpjr3Dl5_F_EuwuObXg8F9r2pp28hxene0r-RfogrHIK7YJfsXke0uCgfgN8QXthBh2P5RjHX37C3MdoEwohcyri8Vd0AhkTsmlbMufsCONrvRsgva9BYQgergtcJ-tu2mcWx72jGOiu1GWslZq4ig_4PBi15tL9bW-qsNWpY4y-LmVtPRT9viBuCwVsBRq0oVVZf-sRNbJdrx28EWCS0gO8NC-LTIyl2qxjYjU-t8BfevstK5Sur1tq57zWuFhCuXzqJqixxLY0-2AdCX_QUN5mP1BdtNf1cH3iL9_A2oioQR9h0rm7KF73LPpkmb043rYovdoJ-hA1tGq-yukSY4-JK0pZcRCurzMT7oGKfDgTEV-kWk2555QE7YVAg2JCez-ftvXztO4Bnvp-75214yVHk_dos9lrSnoXvAGTQRWj0hjyw66MzA8SkZqM2IPG7dQaj9WIzIw8tOEbgekdNlC6X6GVn0gUt7wKUGuFQDlxrgUngqug9cqoFLEbjPyfLjh9W7uWtNPdyUhaJxMyUzj4ep0NRIMJYqmKNImQoJUxWZwDTKk-l0ooBFRaHHcy5y6YsI3RYT339Bhptyo14SmuQRfHsUD2F6GKQqCdMsTDyhJnwi4Tg7I-N2COPvRrkl9jpBXDPmMY55bMf8jET9gY4bDcTcYDD2f_PfizYqsU0QdcxCPsHlk2h6_h-XfkVOd2_JBRk21Va9BiLcyDcWZT8BNzCzog
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58HNSDj1XxbQ5eW9u0ybZHEWV97F5U8BaaNBERV9mtIv56Z5p28YF48NiGhDxnvoSZ7wM4SK0onc3TQHRLEaQOT7ouORrDJEa4nDtuHOUO9weyd5Oe34rbT7kwFFZJd2jniSJqW02Hmx6j25C4QwqHy6UQIWl_h3RJSbvpNMwKYhqhNI5oMLHGsVfdoSoB1WmzeH5r5ot_-sJe-sNa1y7odAlM23kfefIQvlQ6NO_feB3_N7plWGwQKjvyW2oFpuywA0ut-gNrjEEHFvoTxtdxB-YJtXrS51U4r9N6X_EajkiW3Xlm6_t3WzLqTzFij_dv-FGr8IwZjp1RKhtuVaItH2NJrWDBKHp1Da5OT66Pe0Ej2hAYnskqKK0uY5EZWbs-ybmxiEG1NlIjFNUFwuRYm25k0UvmWSyckE4nMic1vSJJ1mFm-DS0G8AKl6NtsSJD-J8aW2SmzIpY2khEGv_zTQjbhVLPnplDxRPCUz-FiqZQNVO4Cfnn5VRV_STivH6JSv6ou9OuvWoO-VjxTER0Pc67W_9oeh_metf9S3V5NrjYhnkqongUzndgphq92F0EPZXeq3f1B4kE8-A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6xIk3wsLJuCEZhfthrssSJ3eRxAiooazVpm7Q3K3ZsVCFKRQJC_PW7i5OKDk088JhEtvzz7rvo7vsAvqRWlM7maSBGpQhShzddlxyNYRIjXM4dN45qh6czefY7nfwRXTZh1aZVUgztPFFEY6vpci9L12XEfaVsuFwKEZL0d0gxSjpK38CmpDpTquKIZitjHHvRHWoSUJuuiOd_3ay5pzXy0mfGuvFA4z7obuw-8eQqvKt1aB7_oXV81eR24F2LT9k3f6Dew4ZdDKDfaT-w1hQMYHu64nutBrBFmNVTPn-ASVPUe49BOOJYdul5reePtmQ0nOKWXc8f8KHR4KkYTp1RIRseVCItr_BLo1_BKHf1I_wcn_46PgtayYbA8EzWQWl1GYvMyMbxSc6NRQSqtZEagaguECTH2owiiz4yz2LhhHQ6kTlp6RVJsgu9xc3C7gErXI6WxYoMwX9qbJGZMitiaSMRaXzP9yHs9kktPS-Hild0p34JFS2hapdwH_Knu6nq5oeI8-olKnmh7bDbetVe8UrxTEQUHOejT6_o-jO8_XEyVt_PZxcHsEVfKBmF8yH06ts7e4iIp9ZHzZn-C6T68o0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multivariate+generalized+linear+mixed+models+for+underdispersed+count+data&rft.jtitle=Journal+of+statistical+computation+and+simulation&rft.au=da+Silva%2C+Guilherme+Parreira&rft.au=Laureano%2C+Henrique+Aparecido&rft.au=Petterle%2C+Ricardo+Rasmussen&rft.au=Ribeiro+Jr%2C+Paulo+Justiniano&rft.date=2023-09-22&rft.pub=Taylor+%26+Francis&rft.issn=0094-9655&rft.eissn=1563-5163&rft.volume=93&rft.issue=14&rft.spage=2410&rft.epage=2427&rft_id=info:doi/10.1080%2F00949655.2023.2184474&rft.externalDocID=2184474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-9655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-9655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-9655&client=summon