Analytical O(h2) CFD error annihilation theory: FREE O(h4) upgrade for second-order numerics codes

Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretiza...

Full description

Saved in:
Bibliographic Details
Published inNumerical heat transfer. Part B, Fundamentals Vol. 71; no. 5; pp. 397 - 424
Main Authors Baker, A. J., Orzechowski, Joe
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 04.05.2017
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1040-7790
1521-0626
DOI10.1080/10407782.2017.1309156

Cover

Abstract Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretizations inject an O(h 2 ) dispersive error mechanism, h the mesh measure, inducing code algebraic destabilization for practical Reynolds numbers (Re). Code universal resolution is PDE discretization augmentation with a (usually) difference algebra derived numerical diffusion scheme to render O(h 2 ) dispersion error destabilization nonpathological. The penalty of such schemes is artificial diffusion compromising of sharp fronts and/or discontinuities and generation of nonmonotone CFD approximations. Such legacy practices are now rendered obsolete by a totally analytical theory that rigorously identifies, in the continuum (!), the O(h 2 ) truncation error terms resident but unspecified in NS/RaNS/LES PDE system second-order CFD spatial discretizations. The theory removes identified O(h 2 ) error terms by alteration of the continuum appearance of NS/RaNS/LES PDE systems with nonlinear vector differential calculus operators. Theory is amenable to any second-order "tri-diagonal stencil" equivalent CFD discretization and, upon implementation, elevates the original second-order numerics code to O(h 4 ) with no further action. This Taylor series error estimate is weak form theory formalized to a regular solution adapted nonuniform mesh refinement O(h 4 ) asymptotic error estimate. Theory implementation in a linear basis optimal Galerkin criterion weak form algorithm CFD code enables a posteriori data generation validating annihilation of O(h 2 ) dispersive error mechanisms for reduced NS, full NS, and RaNS PDE systems. In every instance, theory implementation leads to CFD monotone solution distributions free from artificial diffusion influence on sufficiently refined meshes. Differential definition Galerkin weak forms, code post-processed, quantify theory annihilated O(h 2 ) dispersion error spectra, RaNS state variable member specific.
AbstractList Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretizations inject an O(h 2 ) dispersive error mechanism, h the mesh measure, inducing code algebraic destabilization for practical Reynolds numbers (Re). Code universal resolution is PDE discretization augmentation with a (usually) difference algebra derived numerical diffusion scheme to render O(h 2 ) dispersion error destabilization nonpathological. The penalty of such schemes is artificial diffusion compromising of sharp fronts and/or discontinuities and generation of nonmonotone CFD approximations. Such legacy practices are now rendered obsolete by a totally analytical theory that rigorously identifies, in the continuum (!), the O(h 2 ) truncation error terms resident but unspecified in NS/RaNS/LES PDE system second-order CFD spatial discretizations. The theory removes identified O(h 2 ) error terms by alteration of the continuum appearance of NS/RaNS/LES PDE systems with nonlinear vector differential calculus operators. Theory is amenable to any second-order "tri-diagonal stencil" equivalent CFD discretization and, upon implementation, elevates the original second-order numerics code to O(h 4 ) with no further action. This Taylor series error estimate is weak form theory formalized to a regular solution adapted nonuniform mesh refinement O(h 4 ) asymptotic error estimate. Theory implementation in a linear basis optimal Galerkin criterion weak form algorithm CFD code enables a posteriori data generation validating annihilation of O(h 2 ) dispersive error mechanisms for reduced NS, full NS, and RaNS PDE systems. In every instance, theory implementation leads to CFD monotone solution distributions free from artificial diffusion influence on sufficiently refined meshes. Differential definition Galerkin weak forms, code post-processed, quantify theory annihilated O(h 2 ) dispersion error spectra, RaNS state variable member specific.
Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretizations inject an O(h2) dispersive error mechanism, h the mesh measure, inducing code algebraic destabilization for practical Reynolds numbers (Re). Code universal resolution is PDE discretization augmentation with a (usually) difference algebra derived numerical diffusion scheme to render O(h2) dispersion error destabilization nonpathological. The penalty of such schemes is artificial diffusion compromising of sharp fronts and/or discontinuities and generation of nonmonotone CFD approximations. Such legacy practices are now rendered obsolete by a totally analytical theory that rigorously identifies, in the continuum (!), the O(h2) truncation error terms resident but unspecified in NS/RaNS/LES PDE system second-order CFD spatial discretizations. The theory removes identified O(h2) error terms by alteration of the continuum appearance of NS/RaNS/LES PDE systems with nonlinear vector differential calculus operators. Theory is amenable to any second-order "tri-diagonal stencil" equivalent CFD discretization and, upon implementation, elevates the original second-order numerics code to O(h4) with no further action. This Taylor series error estimate is weak form theory formalized to a regular solution adapted nonuniform mesh refinement O(h4) asymptotic error estimate. Theory implementation in a linear basis optimal Galerkin criterion weak form algorithm CFD code enables a posteriori data generation validating annihilation of O(h2) dispersive error mechanisms for reduced NS, full NS, and RaNS PDE systems. In every instance, theory implementation leads to CFD monotone solution distributions free from artificial diffusion influence on sufficiently refined meshes. Differential definition Galerkin weak forms, code post-processed, quantify theory annihilated O(h2) dispersion error spectra, RaNS state variable member specific.
Author Orzechowski, Joe
Baker, A. J.
Author_xml – sequence: 1
  givenname: A. J.
  surname: Baker
  fullname: Baker, A. J.
  email: ajbaker@utk.edu
  organization: UT CFD Laboratory, University of Tennessee
– sequence: 2
  givenname: Joe
  surname: Orzechowski
  fullname: Orzechowski, Joe
  organization: UT CFD Laboratory, University of Tennessee
BookMark eNp9kE1LAzEQhoMo-PkThIAXPWydZJP98KTUVgVBED2HbD7syjapky3Sf29K9epcZg7PO_A-x2Q_xOAIOWcwYdDANQMBdd3wCQdWT1gJLZPVHjlikrMCKl7t5zszRV23cEiOU_qEPKIUR6S7C3rYjL3RA325XPArOp3fU4cYkeoQ-kU_6LGPgY4LF3FzQ-evs9mWFFd0vfpAbR31mU3OxGCLiNYhDeulw94kaqJ16ZQceD0kd_a7T8j7fPY2fSyeXx6epnfPheFNNRbGN5UF7zrRSSMkiMb5spO2bXnnK9vVlgkvraut1EYw0I03HXctBy7bqoHyhFzs_q4wfq1dGtVnXGOulxRrgeXCgslMyR1lMKaEzqsV9kuNG8VAbXWqP51qq1P96sy5212uD7nvUn9HHKwa9WaI6FEH0ydV_v_iB6DJfH4
Cites_doi 10.1006/jcph.2001.6893
10.1002/9781118369920
10.1016/0045-7825(82)90071-8
10.2514/1.J051778
10.1002/(SICI)1097-0363(19970615)24:11<1159::AID-FLD534>3.0.CO;2-R
10.1002/9781118402719
10.1017/S0022112083002839
10.1016/0045-7825(91)90041-4
10.1080/10407790.2016.1215710
10.1002/fld.1650070505
10.1016/0021-9991(82)90058-4
ContentType Journal Article
Copyright 2017 Taylor & Francis 2017
2017 Taylor & Francis
Copyright_xml – notice: 2017 Taylor & Francis 2017
– notice: 2017 Taylor & Francis
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/10407782.2017.1309156
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1521-0626
EndPage 424
ExternalDocumentID 10_1080_10407782_2017_1309156
1309156
Genre Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-cf86d0feb4b5c45048ef3b5d992bf6db7d14f5de7d5ac410a8fcb2e9202596803
ISSN 1040-7790
IngestDate Wed Aug 13 06:20:32 EDT 2025
Wed Oct 01 04:01:30 EDT 2025
Mon Oct 20 23:44:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-cf86d0feb4b5c45048ef3b5d992bf6db7d14f5de7d5ac410a8fcb2e9202596803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1901004415
PQPubID 52956
PageCount 28
ParticipantIDs proquest_journals_1901004415
informaworld_taylorfrancis_310_1080_10407782_2017_1309156
crossref_primary_10_1080_10407782_2017_1309156
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-04
PublicationDateYYYYMMDD 2017-05-04
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-04
  day: 04
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Numerical heat transfer. Part B, Fundamentals
PublicationYear 2017
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0011
Tannehill J. C. (CIT0003) 1997
Jameson A. (CIT0001) 2012
Williams P. T. (CIT0014) 1996; 29
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
Wilcox D. C. (CIT0017) 2006
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0009
  doi: 10.1006/jcph.2001.6893
– ident: CIT0012
  doi: 10.1002/9781118369920
– ident: CIT0004
  doi: 10.1016/0045-7825(82)90071-8
– ident: CIT0007
  doi: 10.2514/1.J051778
– ident: CIT0016
  doi: 10.1002/(SICI)1097-0363(19970615)24:11<1159::AID-FLD534>3.0.CO;2-R
– ident: CIT0013
– volume-title: Reflections on Four Decades of CFD—A Personal Perspective.
  year: 2012
  ident: CIT0001
– ident: CIT0008
  doi: 10.1002/9781118402719
– ident: CIT0015
  doi: 10.1017/S0022112083002839
– ident: CIT0005
  doi: 10.1016/0045-7825(91)90041-4
– ident: CIT0010
– volume-title: Turbulence Modeling for CFD
  year: 2006
  ident: CIT0017
– volume: 29
  year: 1996
  ident: CIT0014
  publication-title: J. Numer. Heat Transf. Part B Fundam.
– ident: CIT0018
  doi: 10.1080/10407790.2016.1215710
– ident: CIT0011
  doi: 10.1002/fld.1650070505
– ident: CIT0019
– ident: CIT0002
  doi: 10.1016/0021-9991(82)90058-4
– volume-title: Computational Fluid Mechanics and Heat Transfer
  year: 1997
  ident: CIT0003
SSID ssj0000434
Score 2.0972097
Snippet Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES)...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 397
SubjectTerms Algorithms
Computational fluid dynamics
Destabilization
Differential calculus
Diffusion
Discretization
Error analysis
Fluid dynamics
Fluid flow
Galerkin method
Grid refinement (mathematics)
Heat transfer
Large eddy simulation
Mathematical analysis
Navier-Stokes equations
Nonlinear systems
Operators (mathematics)
Partial differential equations
Reynolds averaged Navier-Stokes method
Reynolds number
Simulation
Taylor series
Truncation errors
Title Analytical O(h2) CFD error annihilation theory: FREE O(h4) upgrade for second-order numerics codes
URI https://www.tandfonline.com/doi/abs/10.1080/10407782.2017.1309156
https://www.proquest.com/docview/1901004415
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1521-0626
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0000434
  issn: 1040-7790
  databaseCode: ADMLS
  dateStart: 19980701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1521-0626
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000434
  issn: 1040-7790
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbKEBIcEAwQGwP5wIGpSkgcOz-4jdFqqkQnoU7aLYpjm-7STUkqpGl_PM9-zprRSfy6RG3iJpHf5-fP7vfeI-S9ESyXJo0CHRsZcJGZQKZFHfAkU5pnJhfSbuh_nacnZ3x2Ls5Ho5thdEknw_r63riSf7EqnAO72ijZv7Ds7U3hBHwG-8IRLAzHP7KxyyiCm9GnwBSXzK7xj6dfxrppnDhydbG8QLEbRiy69E7Tb5MJtue2_frqe1MpzP3d2uWxClw-zvFq7f7Nacc27L0dstg5XsEwys6WmQDyq5sQ-GjTjT87QmwjTLBwwGYjvvISjqNwPAtvt3ebaw0--IcvoD271MOdCJjdrO5vsxO52CoKMvCrTriYYWXQUHtfy6zoCgPme2eM9Vg86MTAsyYo4_WTNMfA6y3_j4JJ-7QMqI9V7mW23nURi1_ybeMCCK88IA8ZzAm28EcSzTfzOEdNQv_qffxXHn289wF3mM2dvLdb87wjL4tn5KlfddAjhNBzMtKrXfJkkItylzxyWuC6fUHkBlb09MOSHVKAFHWQokNIUYTUJ2oBZVvyQ-rBROGt6BBMtAcTdWB6Sc6mk8XxSeBLcQQ1y9MuqE2eqshoyaWouQC3r00ihSoKBiNdyUzF3AilMyWqmsdRlZtaMl0woNRFmkfJK7Kzulzp14RGtZJGVQnwTMkz-yWpZFQwLjTLuKn2SNh3Y3mFGVfK2Cey7fu9tP1e-n7fI8Wws8vO4dAgBMvkN7896C1T-oHdlpYjW6FDLPb_49ZvyOPNIDkgO12z1m-BwHbyncPZT_jvkNE
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS-xAEC58ijw9uIu7ffCghwxZurN4E51h3EYQBW9NelMRRkkyB_31dnUSHBXx4CmEJE16q67lq68A9gwLU2Fi39OBER5lifFEnEmPRonSNDEpE-jQvxzE_Vt6dsfuxnJhEFaJNrSpiSKcrMbNjc7oFhJnr9YMsUcbIrMSrGecWSvkH0wxq-xjFYPIH3xIY1pHlh1yLsn8Novnp2Y-nU-f2Eu_SWt3BPXmQbY_XyNPnjqjSnTk2xdex7_1bgHmGg2VHNVLahEm9HAJZsd4C5dg2uFGZbkMwpGaOH84udp_CA_Ice-E6KJ4LghWQ3p4rLF2xCVMvh6S3nW3i2_SAzJ6uS9ypYntOynRLleeIwIlw5ELI5UE8-3LFbjtdW-O-15TtsGTYRpXnjRprHyjBRVMUmZFhDaRYCrLQrsqlEhUQA1TOlEslzTw89RIEeostOpXFqd-tAqTw-ehXgPiSyWMyiOrkwia4E2UC9-ajExba9rk69BpJ4u_1OwcPGhIT9th5DiMvBnGdcjGp5RXzi1i6homPPrl2612_nmz0UuO-hQGxQO28Yemd-F__-bygl-cDs43YQYfOVAl3YLJqhjpbav4VGLHrex3zXT0Vg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH64oOjBXazrHDzYQ0qWmSzexDa4VhEFb0NmsyK0JUkP-uudmSS4IR48hZBkyGxv3vK97wEcKuLHTIWuIz3FHEwi5bAw4Q4OIiFxpGLCjEP_uh-ePeCLR9KgCYsaVmlsaFURRVhZbTb3WKgGEaev2grRJ5sBZkWmnHGijZBpmA1NVMxkcbj9D2GMq8CyBc5Fidsk8fzWzJfj6Qt56Q9hbU-gdBlY8-8V8OSlMylZh799o3X8V-dWYKnWT9FJtaBWYUoO12DxE2vhGsxZ1Cgv1oFZShPrDUc3RwO_jU7TLpJ5PsqRqYU0eK6QdsimS74eo_Su1zNv4jaajJ_yTEiku44KY5ULx9KAouHEBpEKZLLtiw14SHv3p2dOXbTB4X4clg5XcShcJRlmhGOiBYRUASMiSXy9JgSLhIcVETISJOPYc7NYcebLxNfKVxLGbrAJM8PRUG4BcrlgSmSB1kgYjsxNkDFXG4xEaltaZS3oNHNFxxU3B_VqytNmGKkZRloPYwuSzzNKS-sUUVUFExr88e1uM_203uYFNdqUCYl7ZPsfTR_A_G03pVfn_csdWDBPLKIS78JMmU_kntZ6SrZv1_U7yuPy-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+O%28h2%29+CFD+error+annihilation+theory%3A+FREE+O%28h4%29+upgrade+for+second-order+numerics+codes&rft.jtitle=Numerical+heat+transfer.+Part+B%2C+Fundamentals&rft.au=Baker%2C+A.+J.&rft.au=Orzechowski%2C+Joe&rft.date=2017-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1040-7790&rft.eissn=1521-0626&rft.volume=71&rft.issue=5&rft.spage=397&rft.epage=424&rft_id=info:doi/10.1080%2F10407782.2017.1309156&rft.externalDocID=1309156
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7790&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7790&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7790&client=summon