Analytical O(h2) CFD error annihilation theory: FREE O(h4) upgrade for second-order numerics codes
Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretiza...
Saved in:
| Published in | Numerical heat transfer. Part B, Fundamentals Vol. 71; no. 5; pp. 397 - 424 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Philadelphia
Taylor & Francis
04.05.2017
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1040-7790 1521-0626 |
| DOI | 10.1080/10407782.2017.1309156 |
Cover
| Abstract | Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretizations inject an O(h
2
) dispersive error mechanism, h the mesh measure, inducing code algebraic destabilization for practical Reynolds numbers (Re). Code universal resolution is PDE discretization augmentation with a (usually) difference algebra derived numerical diffusion scheme to render O(h
2
) dispersion error destabilization nonpathological. The penalty of such schemes is artificial diffusion compromising of sharp fronts and/or discontinuities and generation of nonmonotone CFD approximations. Such legacy practices are now rendered obsolete by a totally analytical theory that rigorously identifies, in the continuum (!), the O(h
2
) truncation error terms resident but unspecified in NS/RaNS/LES PDE system second-order CFD spatial discretizations. The theory removes identified O(h
2
) error terms by alteration of the continuum appearance of NS/RaNS/LES PDE systems with nonlinear vector differential calculus operators. Theory is amenable to any second-order "tri-diagonal stencil" equivalent CFD discretization and, upon implementation, elevates the original second-order numerics code to O(h
4
) with no further action. This Taylor series error estimate is weak form theory formalized to a regular solution adapted nonuniform mesh refinement O(h
4
) asymptotic error estimate. Theory implementation in a linear basis optimal Galerkin criterion weak form algorithm CFD code enables a posteriori data generation validating annihilation of O(h
2
) dispersive error mechanisms for reduced NS, full NS, and RaNS PDE systems. In every instance, theory implementation leads to CFD monotone solution distributions free from artificial diffusion influence on sufficiently refined meshes. Differential definition Galerkin weak forms, code post-processed, quantify theory annihilated O(h
2
) dispersion error spectra, RaNS state variable member specific. |
|---|---|
| AbstractList | Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretizations inject an O(h
2
) dispersive error mechanism, h the mesh measure, inducing code algebraic destabilization for practical Reynolds numbers (Re). Code universal resolution is PDE discretization augmentation with a (usually) difference algebra derived numerical diffusion scheme to render O(h
2
) dispersion error destabilization nonpathological. The penalty of such schemes is artificial diffusion compromising of sharp fronts and/or discontinuities and generation of nonmonotone CFD approximations. Such legacy practices are now rendered obsolete by a totally analytical theory that rigorously identifies, in the continuum (!), the O(h
2
) truncation error terms resident but unspecified in NS/RaNS/LES PDE system second-order CFD spatial discretizations. The theory removes identified O(h
2
) error terms by alteration of the continuum appearance of NS/RaNS/LES PDE systems with nonlinear vector differential calculus operators. Theory is amenable to any second-order "tri-diagonal stencil" equivalent CFD discretization and, upon implementation, elevates the original second-order numerics code to O(h
4
) with no further action. This Taylor series error estimate is weak form theory formalized to a regular solution adapted nonuniform mesh refinement O(h
4
) asymptotic error estimate. Theory implementation in a linear basis optimal Galerkin criterion weak form algorithm CFD code enables a posteriori data generation validating annihilation of O(h
2
) dispersive error mechanisms for reduced NS, full NS, and RaNS PDE systems. In every instance, theory implementation leads to CFD monotone solution distributions free from artificial diffusion influence on sufficiently refined meshes. Differential definition Galerkin weak forms, code post-processed, quantify theory annihilated O(h
2
) dispersion error spectra, RaNS state variable member specific. Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES) partial differential equation (PDE) systems are invariably based on second-order discrete numerics. Resulting nonlinear convection term discretizations inject an O(h2) dispersive error mechanism, h the mesh measure, inducing code algebraic destabilization for practical Reynolds numbers (Re). Code universal resolution is PDE discretization augmentation with a (usually) difference algebra derived numerical diffusion scheme to render O(h2) dispersion error destabilization nonpathological. The penalty of such schemes is artificial diffusion compromising of sharp fronts and/or discontinuities and generation of nonmonotone CFD approximations. Such legacy practices are now rendered obsolete by a totally analytical theory that rigorously identifies, in the continuum (!), the O(h2) truncation error terms resident but unspecified in NS/RaNS/LES PDE system second-order CFD spatial discretizations. The theory removes identified O(h2) error terms by alteration of the continuum appearance of NS/RaNS/LES PDE systems with nonlinear vector differential calculus operators. Theory is amenable to any second-order "tri-diagonal stencil" equivalent CFD discretization and, upon implementation, elevates the original second-order numerics code to O(h4) with no further action. This Taylor series error estimate is weak form theory formalized to a regular solution adapted nonuniform mesh refinement O(h4) asymptotic error estimate. Theory implementation in a linear basis optimal Galerkin criterion weak form algorithm CFD code enables a posteriori data generation validating annihilation of O(h2) dispersive error mechanisms for reduced NS, full NS, and RaNS PDE systems. In every instance, theory implementation leads to CFD monotone solution distributions free from artificial diffusion influence on sufficiently refined meshes. Differential definition Galerkin weak forms, code post-processed, quantify theory annihilated O(h2) dispersion error spectra, RaNS state variable member specific. |
| Author | Orzechowski, Joe Baker, A. J. |
| Author_xml | – sequence: 1 givenname: A. J. surname: Baker fullname: Baker, A. J. email: ajbaker@utk.edu organization: UT CFD Laboratory, University of Tennessee – sequence: 2 givenname: Joe surname: Orzechowski fullname: Orzechowski, Joe organization: UT CFD Laboratory, University of Tennessee |
| BookMark | eNp9kE1LAzEQhoMo-PkThIAXPWydZJP98KTUVgVBED2HbD7syjapky3Sf29K9epcZg7PO_A-x2Q_xOAIOWcwYdDANQMBdd3wCQdWT1gJLZPVHjlikrMCKl7t5zszRV23cEiOU_qEPKIUR6S7C3rYjL3RA325XPArOp3fU4cYkeoQ-kU_6LGPgY4LF3FzQ-evs9mWFFd0vfpAbR31mU3OxGCLiNYhDeulw94kaqJ16ZQceD0kd_a7T8j7fPY2fSyeXx6epnfPheFNNRbGN5UF7zrRSSMkiMb5spO2bXnnK9vVlgkvraut1EYw0I03HXctBy7bqoHyhFzs_q4wfq1dGtVnXGOulxRrgeXCgslMyR1lMKaEzqsV9kuNG8VAbXWqP51qq1P96sy5212uD7nvUn9HHKwa9WaI6FEH0ydV_v_iB6DJfH4 |
| Cites_doi | 10.1006/jcph.2001.6893 10.1002/9781118369920 10.1016/0045-7825(82)90071-8 10.2514/1.J051778 10.1002/(SICI)1097-0363(19970615)24:11<1159::AID-FLD534>3.0.CO;2-R 10.1002/9781118402719 10.1017/S0022112083002839 10.1016/0045-7825(91)90041-4 10.1080/10407790.2016.1215710 10.1002/fld.1650070505 10.1016/0021-9991(82)90058-4 |
| ContentType | Journal Article |
| Copyright | 2017 Taylor & Francis 2017 2017 Taylor & Francis |
| Copyright_xml | – notice: 2017 Taylor & Francis 2017 – notice: 2017 Taylor & Francis |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| DOI | 10.1080/10407782.2017.1309156 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1521-0626 |
| EndPage | 424 |
| ExternalDocumentID | 10_1080_10407782_2017_1309156 1309156 |
| Genre | Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADMLS ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 DGEBU DKSSO EBS EJD E~A E~B GEVLZ GTTXZ H13 HF~ HZ~ H~P J.P KYCEM M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 H8D JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c286t-cf86d0feb4b5c45048ef3b5d992bf6db7d14f5de7d5ac410a8fcb2e9202596803 |
| ISSN | 1040-7790 |
| IngestDate | Wed Aug 13 06:20:32 EDT 2025 Wed Oct 01 04:01:30 EDT 2025 Mon Oct 20 23:44:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c286t-cf86d0feb4b5c45048ef3b5d992bf6db7d14f5de7d5ac410a8fcb2e9202596803 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1901004415 |
| PQPubID | 52956 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_1901004415 informaworld_taylorfrancis_310_1080_10407782_2017_1309156 crossref_primary_10_1080_10407782_2017_1309156 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-05-04 |
| PublicationDateYYYYMMDD | 2017-05-04 |
| PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | Philadelphia |
| PublicationPlace_xml | – name: Philadelphia |
| PublicationTitle | Numerical heat transfer. Part B, Fundamentals |
| PublicationYear | 2017 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0012 CIT0011 Tannehill J. C. (CIT0003) 1997 Jameson A. (CIT0001) 2012 Williams P. T. (CIT0014) 1996; 29 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 Wilcox D. C. (CIT0017) 2006 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0009 doi: 10.1006/jcph.2001.6893 – ident: CIT0012 doi: 10.1002/9781118369920 – ident: CIT0004 doi: 10.1016/0045-7825(82)90071-8 – ident: CIT0007 doi: 10.2514/1.J051778 – ident: CIT0016 doi: 10.1002/(SICI)1097-0363(19970615)24:11<1159::AID-FLD534>3.0.CO;2-R – ident: CIT0013 – volume-title: Reflections on Four Decades of CFD—A Personal Perspective. year: 2012 ident: CIT0001 – ident: CIT0008 doi: 10.1002/9781118402719 – ident: CIT0015 doi: 10.1017/S0022112083002839 – ident: CIT0005 doi: 10.1016/0045-7825(91)90041-4 – ident: CIT0010 – volume-title: Turbulence Modeling for CFD year: 2006 ident: CIT0017 – volume: 29 year: 1996 ident: CIT0014 publication-title: J. Numer. Heat Transf. Part B Fundam. – ident: CIT0018 doi: 10.1080/10407790.2016.1215710 – ident: CIT0011 doi: 10.1002/fld.1650070505 – ident: CIT0019 – ident: CIT0002 doi: 10.1016/0021-9991(82)90058-4 – volume-title: Computational Fluid Mechanics and Heat Transfer year: 1997 ident: CIT0003 |
| SSID | ssj0000434 |
| Score | 2.0972097 |
| Snippet | Worldwide, computational fluid dynamics (CFD) codes for Navier-Stokes (NS), Reynolds-averaged Navier-Stokes (RaNS), and/or large eddy simulation NS (LES)... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 397 |
| SubjectTerms | Algorithms Computational fluid dynamics Destabilization Differential calculus Diffusion Discretization Error analysis Fluid dynamics Fluid flow Galerkin method Grid refinement (mathematics) Heat transfer Large eddy simulation Mathematical analysis Navier-Stokes equations Nonlinear systems Operators (mathematics) Partial differential equations Reynolds averaged Navier-Stokes method Reynolds number Simulation Taylor series Truncation errors |
| Title | Analytical O(h2) CFD error annihilation theory: FREE O(h4) upgrade for second-order numerics codes |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10407782.2017.1309156 https://www.proquest.com/docview/1901004415 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1521-0626 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0000434 issn: 1040-7790 databaseCode: ADMLS dateStart: 19980701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1521-0626 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000434 issn: 1040-7790 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbKEBIcEAwQGwP5wIGpSkgcOz-4jdFqqkQnoU7aLYpjm-7STUkqpGl_PM9-zprRSfy6RG3iJpHf5-fP7vfeI-S9ESyXJo0CHRsZcJGZQKZFHfAkU5pnJhfSbuh_nacnZ3x2Ls5Ho5thdEknw_r63riSf7EqnAO72ijZv7Ds7U3hBHwG-8IRLAzHP7KxyyiCm9GnwBSXzK7xj6dfxrppnDhydbG8QLEbRiy69E7Tb5MJtue2_frqe1MpzP3d2uWxClw-zvFq7f7Nacc27L0dstg5XsEwys6WmQDyq5sQ-GjTjT87QmwjTLBwwGYjvvISjqNwPAtvt3ebaw0--IcvoD271MOdCJjdrO5vsxO52CoKMvCrTriYYWXQUHtfy6zoCgPme2eM9Vg86MTAsyYo4_WTNMfA6y3_j4JJ-7QMqI9V7mW23nURi1_ybeMCCK88IA8ZzAm28EcSzTfzOEdNQv_qffxXHn289wF3mM2dvLdb87wjL4tn5KlfddAjhNBzMtKrXfJkkItylzxyWuC6fUHkBlb09MOSHVKAFHWQokNIUYTUJ2oBZVvyQ-rBROGt6BBMtAcTdWB6Sc6mk8XxSeBLcQQ1y9MuqE2eqshoyaWouQC3r00ihSoKBiNdyUzF3AilMyWqmsdRlZtaMl0woNRFmkfJK7Kzulzp14RGtZJGVQnwTMkz-yWpZFQwLjTLuKn2SNh3Y3mFGVfK2Cey7fu9tP1e-n7fI8Wws8vO4dAgBMvkN7896C1T-oHdlpYjW6FDLPb_49ZvyOPNIDkgO12z1m-BwHbyncPZT_jvkNE |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS-xAEC58ijw9uIu7ffCghwxZurN4E51h3EYQBW9NelMRRkkyB_31dnUSHBXx4CmEJE16q67lq68A9gwLU2Fi39OBER5lifFEnEmPRonSNDEpE-jQvxzE_Vt6dsfuxnJhEFaJNrSpiSKcrMbNjc7oFhJnr9YMsUcbIrMSrGecWSvkH0wxq-xjFYPIH3xIY1pHlh1yLsn8Novnp2Y-nU-f2Eu_SWt3BPXmQbY_XyNPnjqjSnTk2xdex7_1bgHmGg2VHNVLahEm9HAJZsd4C5dg2uFGZbkMwpGaOH84udp_CA_Ice-E6KJ4LghWQ3p4rLF2xCVMvh6S3nW3i2_SAzJ6uS9ypYntOynRLleeIwIlw5ELI5UE8-3LFbjtdW-O-15TtsGTYRpXnjRprHyjBRVMUmZFhDaRYCrLQrsqlEhUQA1TOlEslzTw89RIEeostOpXFqd-tAqTw-ehXgPiSyWMyiOrkwia4E2UC9-ajExba9rk69BpJ4u_1OwcPGhIT9th5DiMvBnGdcjGp5RXzi1i6homPPrl2612_nmz0UuO-hQGxQO28Yemd-F__-bygl-cDs43YQYfOVAl3YLJqhjpbav4VGLHrex3zXT0Vg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAFH64oOjBXazrHDzYQ0qWmSzexDa4VhEFb0NmsyK0JUkP-uudmSS4IR48hZBkyGxv3vK97wEcKuLHTIWuIz3FHEwi5bAw4Q4OIiFxpGLCjEP_uh-ePeCLR9KgCYsaVmlsaFURRVhZbTb3WKgGEaev2grRJ5sBZkWmnHGijZBpmA1NVMxkcbj9D2GMq8CyBc5Fidsk8fzWzJfj6Qt56Q9hbU-gdBlY8-8V8OSlMylZh799o3X8V-dWYKnWT9FJtaBWYUoO12DxE2vhGsxZ1Cgv1oFZShPrDUc3RwO_jU7TLpJ5PsqRqYU0eK6QdsimS74eo_Su1zNv4jaajJ_yTEiku44KY5ULx9KAouHEBpEKZLLtiw14SHv3p2dOXbTB4X4clg5XcShcJRlmhGOiBYRUASMiSXy9JgSLhIcVETISJOPYc7NYcebLxNfKVxLGbrAJM8PRUG4BcrlgSmSB1kgYjsxNkDFXG4xEaltaZS3oNHNFxxU3B_VqytNmGKkZRloPYwuSzzNKS-sUUVUFExr88e1uM_203uYFNdqUCYl7ZPsfTR_A_G03pVfn_csdWDBPLKIS78JMmU_kntZ6SrZv1_U7yuPy-g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analytical+O%28h2%29+CFD+error+annihilation+theory%3A+FREE+O%28h4%29+upgrade+for+second-order+numerics+codes&rft.jtitle=Numerical+heat+transfer.+Part+B%2C+Fundamentals&rft.au=Baker%2C+A.+J.&rft.au=Orzechowski%2C+Joe&rft.date=2017-05-04&rft.pub=Taylor+%26+Francis&rft.issn=1040-7790&rft.eissn=1521-0626&rft.volume=71&rft.issue=5&rft.spage=397&rft.epage=424&rft_id=info:doi/10.1080%2F10407782.2017.1309156&rft.externalDocID=1309156 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-7790&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-7790&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-7790&client=summon |