A general algorithm for non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data
In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make t...
        Saved in:
      
    
          | Published in | Communications in statistics. Simulation and computation Vol. 48; no. 3; pp. 807 - 818 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia
          Taylor & Francis
    
        16.03.2019
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0361-0918 1532-4141  | 
| DOI | 10.1080/03610918.2017.1400052 | 
Cover
| Abstract | In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe (
1985
). | 
    
|---|---|
| AbstractList | In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe (
1985
). In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe (1985).  | 
    
| Author | Lim, J. Son, W. Kim, Y. Kuo, H.-C.  | 
    
| Author_xml | – sequence: 1 givenname: W. surname: Son fullname: Son, W. organization: Department of Statistics, Seoul National University – sequence: 2 givenname: Y. surname: Kim fullname: Kim, Y. organization: Department of Statistics, Seoul National University – sequence: 3 givenname: J. surname: Lim fullname: Lim, J. email: johanlim@snu.ac.kr organization: Department of Statistics, Seoul National University – sequence: 4 givenname: H.-C. surname: Kuo fullname: Kuo, H.-C. organization: Department of Statistics, National Chengchi University  | 
    
| BookMark | eNp9kM1u1DAURi1UJKaFR0CyxDqDfxNnR1VBQarEBtbWre10XBJ7uHYK8xy8MI6mbFlZuj7fd3XPJblIOQVC3nK258yw90z2nI3c7AXjw54rxpgWL8iOayk6xRW_ILuN6TboFbks5bEh0iizI3-u6UNIAWGmMD9kjPWw0CkjbTu6IyAsoWJ0dIHfcVkXOscfYY6HnD0NpcYFamPzREvN7gBt4mCeTzSjDxg8LSs-xadWPq3J1ZhToRPmhToogQoaUw3YvjsXUslbwEOF1-TlBHMJb57fK_L908dvN5-7u6-3X26u7zonTF87NxnFTYDeewB9rxWTmmuhmFCjFEb1XhhhhskbwYMGzvX9OMqhBymYdKqXV-TdufeI-efazrGPecXUVloh2MB7NoyqUfpMOcylYJjsEdvdeLKc2c2__effbv7ts_-W-3DOxdR8LvAr4-xthdOccUJILhYr_1_xFwnWkA8 | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Taylor & Francis Group, LLC 2017 2017 Taylor & Francis Group, LLC  | 
    
| Copyright_xml | – notice: 2017 Taylor & Francis Group, LLC 2017 – notice: 2017 Taylor & Francis Group, LLC  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1080/03610918.2017.1400052 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Statistics Mathematics Computer Science  | 
    
| EISSN | 1532-4141 | 
    
| EndPage | 818 | 
    
| ExternalDocumentID | 10_1080_03610918_2017_1400052 1400052  | 
    
| Genre | Article | 
    
| GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P K1G KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c286t-cf8418ea6ddaa5b540351524024932846d28287fd821e5a115b99376a3203c463 | 
    
| ISSN | 0361-0918 | 
    
| IngestDate | Wed Aug 13 09:39:08 EDT 2025 Wed Oct 01 03:49:49 EDT 2025 Mon Oct 20 23:49:38 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c286t-cf8418ea6ddaa5b540351524024932846d28287fd821e5a115b99376a3203c463 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2207160794 | 
    
| PQPubID | 186203 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_primary_10_1080_03610918_2017_1400052 informaworld_taylorfrancis_310_1080_03610918_2017_1400052 proquest_journals_2207160794  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-03-16 | 
    
| PublicationDateYYYYMMDD | 2019-03-16 | 
    
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-16 day: 16  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Philadelphia | 
    
| PublicationPlace_xml | – name: Philadelphia | 
    
| PublicationTitle | Communications in statistics. Simulation and computation | 
    
| PublicationYear | 2019 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | Efron B. (cit0003) Wellner J. A. (cit0017); 27 Lehmann E. L. (cit0010); 26 Groeneboom P. (cit0006); 36 Jongbloed G. (cit0008); 7 Rojo J. (cit0013); 11 Dykstra R. (cit0002); 19 Finkelstein D. M. (cit0004); 41 Lim J. (cit0011); 18 Mukerjee H. (cit0012); 91 Groeneboom P. (cit0007) Turnbull B. W. (cit0016); 38 Kiefer J. (cit0009); 27 Sun L. (cit0015); 33 Rojo J. (cit0014); 88 Wellner J. A. (cit0018); 92 Ayer M. (cit0001); 26 Gentleman R. (cit0005); 81  | 
    
| References_xml | – volume: 27 start-page: 271 volume-title: 1995 ident: cit0017 – volume: 7 start-page: 310 ident: cit0008 publication-title: 1998 – volume: 27 start-page: 887 ident: cit0009 publication-title: 1956 – volume: 18 start-page: 978 ident: cit0011 publication-title: 2009 – volume: 38 start-page: 290 ident: cit0016 publication-title: 1976 – volume: 36 start-page: 1064 ident: cit0006 publication-title: 2008 – volume: 19 start-page: 870 ident: cit0002 publication-title: 1991 – volume: 26 start-page: 641 ident: cit0001 publication-title: 1955 – volume: 41 start-page: 933 ident: cit0004 publication-title: 1985 – volume-title: 1992 ident: cit0007 – volume: 26 start-page: 399 ident: cit0010 publication-title: 1955 – volume: 33 start-page: 637 ident: cit0015 publication-title: 2006 – volume: 81 start-page: 618 ident: cit0005 publication-title: 1994 – volume: 88 start-page: 566 ident: cit0014 publication-title: 1993 – volume: 92 start-page: 945 ident: cit0018 publication-title: 1997 – volume: 11 start-page: 267 ident: cit0013 publication-title: 1991 – start-page: 831 volume-title: 1967 ident: cit0003 – volume: 91 start-page: 1684 ident: cit0012 publication-title: 1996  | 
    
| SSID | ssj0003848 | 
    
| Score | 2.145635 | 
    
| Snippet | In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Index Database Publisher  | 
    
| StartPage | 807 | 
    
| SubjectTerms | Algorithms Economic models Interval-censored data Linear order constraints Maximum likelihood estimators Monte Carlo simulation Non-parametric maximum likelihood estimator Nonparametric statistics Quadratic equations Quadratic programming Regression analysis Stochastic ordering Survival  | 
    
| Title | A general algorithm for non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2017.1400052 https://www.proquest.com/docview/2207160794  | 
    
| Volume | 48 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1532-4141 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0003848 issn: 0361-0918 databaseCode: AMVHM dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-4141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003848 issn: 0361-0918 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9FIOPAKIQkF74GatZe_a7uYYVaCoIlzSQjlZfqxp1JhUTYyAv8Fv4_8wsw_bIRVQLla0ide25svOzHq-bwh5JStZgiutWB5UBYvAxGycxIKFPKsqNLjQrPfZu2R6Fp2cx-eDwc9e1VKzyf3i-428kv-xKoyBXZElewvLtpPCAHwG-8IRLAzHf7LxBBsg46aSly0_rSDNv6h12SCk9Aw1vWtsl1V4dfZ1UTe1t1xcquVC6xijtkaN-TYGixD_FRfZWu9qL795Wo0T4tB1A8vIFyQ4gu8zBXOajFKA4_O4Fpq4hq9ZAZnwCk-wPLdO-aBPPtF1t0hfMsrQvjeHezKFeI5bd9Vs1wXMTUXAB78rFNDo_dgOvDUDJ90vGr31O_XZsd_f0EAOlWCGb9kSuUIGYYxZlpVblzmLQqOR5RbuSPYAKnqrsDSNdJ1DNzPt-ApbXClQcD7UVX5H4Df0u8_OObqCgN98ZlvJGDqJVTtNitOkdpo7ZI-DswmGZG8yez-dtSGCkLqtW_ukjlqGou833c9W0LQlqbsTQui46PQBuWcTGjox6HxIBurziNx3zUKo9R0jcnfWCgSvR2R_3iLhEfkxoRbHtMUxhYvTbRxTi2Pa4Zi2OKarim7jmFocU4dj2uKYIo4p4phyuoNjijh-TM7evD49njLbLIQVXCYbVlQyCqXKkrLMsjiHRERAqI7vDiNIUSDKLnFz4agqJQ9VnEEilGNonmSCB6KIEvGEDOGp1FNCVRwrUUpVYB9rHvAxTJyHKijjUuSyHB8Q31kjvTKaMOkfcXBAxn2bpRu9GVeZzjmp-Mu5h87AqV161innkBkkAfjSZ7e9l-dkv_vTHZLh5rpRLyCu3uQvLUp_AbGSyYc | 
    
| linkProvider | EBSCOhost | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHCgHCguIQoE5cPWS2EnqHCtEtUB3T63Um-X4o42a7KJuVmr5G_xhZpykakGIQ8_RWLHGM_M8nnnD2EcVlMNQGniVBMszVDEvi1zyVJgQSOEydr3PF8XsJPt2mp_e6oWhskq6Q4eeKCL6ajJuSkaPJXGf0OsSn2WszNpHW4_vVQ_ZoxzBPk0xkMnixhtLFSdokQgnmbGL51_L3IlPd9hL__LWMQQd7jA7_nxfeXIx3XTV1P78g9fxfrt7xp4OCBUO-iP1nD3wywnbGac_wOAMJuzJ_IbxdT1h24Rae9LnF-zXAZz1dNZgmrPVZd2dt4BbhOVqyYlsvKU5XhZac1W3mxaa-sI3NREsA5F-tJQIgFUABKb23Kxjur25hkgT6h2sN-jf0EKAgnK0G6AuGbAYkUFAHcs4TcMtXtFXJEBlsC_ZyeGX488zPkx_4FaoouM2qCxV3hTOGZNXiCwlYi96DMoQcyJscnRb3A9OidTnBpFtRVirMFIk0maFfMW2cFf-NQOf51465S0NJhaJKHHhKvWJy52slCt32XTUuf7Rk3zodOROHbShSRt60MYuK2-fDN3F7EroR6Fo-R_ZvfEY6cFfrLUQCPWKBJ3jm3ss_YE9nh3Pj_TR18X3t2wbP5VULpcWe2yru9z4d4ifuup9NJDfumoNxw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSKgcKCxUFArMgauXxElc51gBq_LRFQcqcbMcf7RRk92qyUrA3-APM-MkFQUhDj1HtmKN582zPfOGsVcqKIehNPAqCZbnaGJeyiLjqTAhkMGzWPV-vJRHJ_mHr8WUTdiNaZV0hg6DUETEanLuCxemjLjXCLokZxkTsw7Q1eNz1W12R9KrGFVxJMsrMM5UbKBFQziNmYp4_jXNtfB0Tbz0L7COEWixw6rp34fEk_P5pq_m9scfso43WtwDdn_kp3A4bKiH7JZfzdjO1PsBRiiYsXvHV3qv3YxtE2cdJJ8fsZ-HcDqIWYNpTteXdX_WAq4QVusVJ6nxlrp4WWjNt7rdtNDU576pSV4ZSPKjpWsAWAdAWmrPTBcv25vvEEVCvYNug-iG_gEUkqPXANXIgMV4DALqmMRpGm7xgL6mAZQE-5idLN59eXPEx94P3Aole26DylPljXTOmKJCXom2LegpKEfGiaTJ0VnxIDglUl8Y5LUVMS1pMpFkNpfZLtvCVfknDHxR-Mwpb6ktsUhEiRNXqU9c4bJKuXKPzSeT64tB4kOnk3LqaA1N1tCjNfZY-fvG0H28WwlDIxSd_Wfs_rSL9IgWnRYCiZ5MEBqf3mDql-zu57cL_en98uMzto1fSsqVS-U-2-ovN_45kqe-ehHd4xdZAgxr | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+algorithm+for+non-parametric+maximum+likelihood+estimator+of+stochastically+ordered+survival+functions+from+case+2+interval-censored+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Son%2C+W.&rft.au=Kim%2C+Y.&rft.au=Lim%2C+J.&rft.au=Kuo%2C+H.-C.&rft.date=2019-03-16&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=48&rft.issue=3&rft.spage=807&rft.epage=818&rft_id=info:doi/10.1080%2F03610918.2017.1400052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2017_1400052 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |