A general algorithm for non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data

In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make t...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 48; no. 3; pp. 807 - 818
Main Authors Son, W., Kim, Y., Lim, J., Kuo, H.-C.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 16.03.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2017.1400052

Cover

Abstract In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe ( 1985 ).
AbstractList In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe ( 1985 ).
In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data. The algorithm, simply denoted by SQP (sequential quadratic programming), re-parameterizes the likelihood function to make the order constraints as a set of linear constraints, approximates the log-likelihood function as a quadratic function, and updates the estimate by solving a quadratic programming. We particularly consider two stochastic orderings, simple and uniform orderings, although the algorithm can also be applied to many other stochastic orderings. We illustrate the algorithm using the breast cancer data reported in Finkelstein and Wolfe (1985).
Author Lim, J.
Son, W.
Kim, Y.
Kuo, H.-C.
Author_xml – sequence: 1
  givenname: W.
  surname: Son
  fullname: Son, W.
  organization: Department of Statistics, Seoul National University
– sequence: 2
  givenname: Y.
  surname: Kim
  fullname: Kim, Y.
  organization: Department of Statistics, Seoul National University
– sequence: 3
  givenname: J.
  surname: Lim
  fullname: Lim, J.
  email: johanlim@snu.ac.kr
  organization: Department of Statistics, Seoul National University
– sequence: 4
  givenname: H.-C.
  surname: Kuo
  fullname: Kuo, H.-C.
  organization: Department of Statistics, National Chengchi University
BookMark eNp9kM1u1DAURi1UJKaFR0CyxDqDfxNnR1VBQarEBtbWre10XBJ7uHYK8xy8MI6mbFlZuj7fd3XPJblIOQVC3nK258yw90z2nI3c7AXjw54rxpgWL8iOayk6xRW_ILuN6TboFbks5bEh0iizI3-u6UNIAWGmMD9kjPWw0CkjbTu6IyAsoWJ0dIHfcVkXOscfYY6HnD0NpcYFamPzREvN7gBt4mCeTzSjDxg8LSs-xadWPq3J1ZhToRPmhToogQoaUw3YvjsXUslbwEOF1-TlBHMJb57fK_L908dvN5-7u6-3X26u7zonTF87NxnFTYDeewB9rxWTmmuhmFCjFEb1XhhhhskbwYMGzvX9OMqhBymYdKqXV-TdufeI-efazrGPecXUVloh2MB7NoyqUfpMOcylYJjsEdvdeLKc2c2__effbv7ts_-W-3DOxdR8LvAr4-xthdOccUJILhYr_1_xFwnWkA8
ContentType Journal Article
Copyright 2017 Taylor & Francis Group, LLC 2017
2017 Taylor & Francis Group, LLC
Copyright_xml – notice: 2017 Taylor & Francis Group, LLC 2017
– notice: 2017 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2017.1400052
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 818
ExternalDocumentID 10_1080_03610918_2017_1400052
1400052
Genre Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
K1G
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-cf8418ea6ddaa5b540351524024932846d28287fd821e5a115b99376a3203c463
ISSN 0361-0918
IngestDate Wed Aug 13 09:39:08 EDT 2025
Wed Oct 01 03:49:49 EDT 2025
Mon Oct 20 23:49:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-cf8418ea6ddaa5b540351524024932846d28287fd821e5a115b99376a3203c463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2207160794
PQPubID 186203
PageCount 12
ParticipantIDs crossref_primary_10_1080_03610918_2017_1400052
informaworld_taylorfrancis_310_1080_03610918_2017_1400052
proquest_journals_2207160794
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-16
PublicationDateYYYYMMDD 2019-03-16
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-16
  day: 16
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Efron B. (cit0003)
Wellner J. A. (cit0017); 27
Lehmann E. L. (cit0010); 26
Groeneboom P. (cit0006); 36
Jongbloed G. (cit0008); 7
Rojo J. (cit0013); 11
Dykstra R. (cit0002); 19
Finkelstein D. M. (cit0004); 41
Lim J. (cit0011); 18
Mukerjee H. (cit0012); 91
Groeneboom P. (cit0007)
Turnbull B. W. (cit0016); 38
Kiefer J. (cit0009); 27
Sun L. (cit0015); 33
Rojo J. (cit0014); 88
Wellner J. A. (cit0018); 92
Ayer M. (cit0001); 26
Gentleman R. (cit0005); 81
References_xml – volume: 27
  start-page: 271
  volume-title: 1995
  ident: cit0017
– volume: 7
  start-page: 310
  ident: cit0008
  publication-title: 1998
– volume: 27
  start-page: 887
  ident: cit0009
  publication-title: 1956
– volume: 18
  start-page: 978
  ident: cit0011
  publication-title: 2009
– volume: 38
  start-page: 290
  ident: cit0016
  publication-title: 1976
– volume: 36
  start-page: 1064
  ident: cit0006
  publication-title: 2008
– volume: 19
  start-page: 870
  ident: cit0002
  publication-title: 1991
– volume: 26
  start-page: 641
  ident: cit0001
  publication-title: 1955
– volume: 41
  start-page: 933
  ident: cit0004
  publication-title: 1985
– volume-title: 1992
  ident: cit0007
– volume: 26
  start-page: 399
  ident: cit0010
  publication-title: 1955
– volume: 33
  start-page: 637
  ident: cit0015
  publication-title: 2006
– volume: 81
  start-page: 618
  ident: cit0005
  publication-title: 1994
– volume: 88
  start-page: 566
  ident: cit0014
  publication-title: 1993
– volume: 92
  start-page: 945
  ident: cit0018
  publication-title: 1997
– volume: 11
  start-page: 267
  ident: cit0013
  publication-title: 1991
– start-page: 831
  volume-title: 1967
  ident: cit0003
– volume: 91
  start-page: 1684
  ident: cit0012
  publication-title: 1996
SSID ssj0003848
Score 2.145635
Snippet In this paper, we study an algorithm to compute the non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 807
SubjectTerms Algorithms
Economic models
Interval-censored data
Linear order constraints
Maximum likelihood estimators
Monte Carlo simulation
Non-parametric maximum likelihood estimator
Nonparametric statistics
Quadratic equations
Quadratic programming
Regression analysis
Stochastic ordering
Survival
Title A general algorithm for non-parametric maximum likelihood estimator of stochastically ordered survival functions from case 2 interval-censored data
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2017.1400052
https://www.proquest.com/docview/2207160794
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: AMVHM
  dateStart: 20010201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9FIOPAKIQkF74GatZe_a7uYYVaCoIlzSQjlZfqxp1JhUTYyAv8Fv4_8wsw_bIRVQLla0ide25svOzHq-bwh5JStZgiutWB5UBYvAxGycxIKFPKsqNLjQrPfZu2R6Fp2cx-eDwc9e1VKzyf3i-428kv-xKoyBXZElewvLtpPCAHwG-8IRLAzHf7LxBBsg46aSly0_rSDNv6h12SCk9Aw1vWtsl1V4dfZ1UTe1t1xcquVC6xijtkaN-TYGixD_FRfZWu9qL795Wo0T4tB1A8vIFyQ4gu8zBXOajFKA4_O4Fpq4hq9ZAZnwCk-wPLdO-aBPPtF1t0hfMsrQvjeHezKFeI5bd9Vs1wXMTUXAB78rFNDo_dgOvDUDJ90vGr31O_XZsd_f0EAOlWCGb9kSuUIGYYxZlpVblzmLQqOR5RbuSPYAKnqrsDSNdJ1DNzPt-ApbXClQcD7UVX5H4Df0u8_OObqCgN98ZlvJGDqJVTtNitOkdpo7ZI-DswmGZG8yez-dtSGCkLqtW_ukjlqGou833c9W0LQlqbsTQui46PQBuWcTGjox6HxIBurziNx3zUKo9R0jcnfWCgSvR2R_3iLhEfkxoRbHtMUxhYvTbRxTi2Pa4Zi2OKarim7jmFocU4dj2uKYIo4p4phyuoNjijh-TM7evD49njLbLIQVXCYbVlQyCqXKkrLMsjiHRERAqI7vDiNIUSDKLnFz4agqJQ9VnEEilGNonmSCB6KIEvGEDOGp1FNCVRwrUUpVYB9rHvAxTJyHKijjUuSyHB8Q31kjvTKaMOkfcXBAxn2bpRu9GVeZzjmp-Mu5h87AqV161innkBkkAfjSZ7e9l-dkv_vTHZLh5rpRLyCu3uQvLUp_AbGSyYc
linkProvider EBSCOhost
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgHCgHCguIQoE5cPWS2EnqHCtEtUB3T63Um-X4o42a7KJuVmr5G_xhZpykakGIQ8_RWLHGM_M8nnnD2EcVlMNQGniVBMszVDEvi1zyVJgQSOEydr3PF8XsJPt2mp_e6oWhskq6Q4eeKCL6ajJuSkaPJXGf0OsSn2WszNpHW4_vVQ_ZoxzBPk0xkMnixhtLFSdokQgnmbGL51_L3IlPd9hL__LWMQQd7jA7_nxfeXIx3XTV1P78g9fxfrt7xp4OCBUO-iP1nD3wywnbGac_wOAMJuzJ_IbxdT1h24Rae9LnF-zXAZz1dNZgmrPVZd2dt4BbhOVqyYlsvKU5XhZac1W3mxaa-sI3NREsA5F-tJQIgFUABKb23Kxjur25hkgT6h2sN-jf0EKAgnK0G6AuGbAYkUFAHcs4TcMtXtFXJEBlsC_ZyeGX488zPkx_4FaoouM2qCxV3hTOGZNXiCwlYi96DMoQcyJscnRb3A9OidTnBpFtRVirMFIk0maFfMW2cFf-NQOf51465S0NJhaJKHHhKvWJy52slCt32XTUuf7Rk3zodOROHbShSRt60MYuK2-fDN3F7EroR6Fo-R_ZvfEY6cFfrLUQCPWKBJ3jm3ss_YE9nh3Pj_TR18X3t2wbP5VULpcWe2yru9z4d4ifuup9NJDfumoNxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWgSKgcKCxUFArMgauXxElc51gBq_LRFQcqcbMcf7RRk92qyUrA3-APM-MkFQUhDj1HtmKN582zPfOGsVcqKIehNPAqCZbnaGJeyiLjqTAhkMGzWPV-vJRHJ_mHr8WUTdiNaZV0hg6DUETEanLuCxemjLjXCLokZxkTsw7Q1eNz1W12R9KrGFVxJMsrMM5UbKBFQziNmYp4_jXNtfB0Tbz0L7COEWixw6rp34fEk_P5pq_m9scfso43WtwDdn_kp3A4bKiH7JZfzdjO1PsBRiiYsXvHV3qv3YxtE2cdJJ8fsZ-HcDqIWYNpTteXdX_WAq4QVusVJ6nxlrp4WWjNt7rdtNDU576pSV4ZSPKjpWsAWAdAWmrPTBcv25vvEEVCvYNug-iG_gEUkqPXANXIgMV4DALqmMRpGm7xgL6mAZQE-5idLN59eXPEx94P3Aole26DylPljXTOmKJCXom2LegpKEfGiaTJ0VnxIDglUl8Y5LUVMS1pMpFkNpfZLtvCVfknDHxR-Mwpb6ktsUhEiRNXqU9c4bJKuXKPzSeT64tB4kOnk3LqaA1N1tCjNfZY-fvG0H28WwlDIxSd_Wfs_rSL9IgWnRYCiZ5MEBqf3mDql-zu57cL_en98uMzto1fSsqVS-U-2-ovN_45kqe-ehHd4xdZAgxr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+algorithm+for+non-parametric+maximum+likelihood+estimator+of+stochastically+ordered+survival+functions+from+case+2+interval-censored+data&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Son%2C+W.&rft.au=Kim%2C+Y.&rft.au=Lim%2C+J.&rft.au=Kuo%2C+H.-C.&rft.date=2019-03-16&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=48&rft.issue=3&rft.spage=807&rft.epage=818&rft_id=info:doi/10.1080%2F03610918.2017.1400052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2017_1400052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon