Forensic Characterization of Tires by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Machine Learning Algorithms
Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with machine learning algorithms. The infrared spectra were obtained from 187 truck, sedan, motorbike, and passenger car tires. Weighted k nearest...
Saved in:
| Published in | Analytical letters Vol. 56; no. 10; pp. 1551 - 1565 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
03.07.2023
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-2719 1532-236X |
| DOI | 10.1080/00032719.2022.2138422 |
Cover
| Abstract | Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with machine learning algorithms. The infrared spectra were obtained from 187 truck, sedan, motorbike, and passenger car tires. Weighted k nearest neighbor analysis (WKNN), support vector machine (SVM), random forest (RF), and logistic regression (LR) were used and compared for modeling. The influences of the k value, kernel function, number of estimators, maximum depth, minimum sample leaf, and other parameters affecting recognition performance were optimized. The results show that the recognition performance of four models was SVM > LR > WKNN > RF. The SVM model (polynomial kernel function, C = 20, gamma = 1) was considered to be optimal. All samples had a recognition accuracy of 100% based on the tire type with a training set value of 96.9% and test set value of 92.3%. Hence, the developed procedure is suitable for the characterization of tires. |
|---|---|
| AbstractList | Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy with machine learning algorithms. The infrared spectra were obtained from 187 truck, sedan, motorbike, and passenger car tires. Weighted k nearest neighbor analysis (WKNN), support vector machine (SVM), random forest (RF), and logistic regression (LR) were used and compared for modeling. The influences of the k value, kernel function, number of estimators, maximum depth, minimum sample leaf, and other parameters affecting recognition performance were optimized. The results show that the recognition performance of four models was SVM > LR > WKNN > RF. The SVM model (polynomial kernel function, C = 20, gamma = 1) was considered to be optimal. All samples had a recognition accuracy of 100% based on the tire type with a training set value of 96.9% and test set value of 92.3%. Hence, the developed procedure is suitable for the characterization of tires. |
| Author | Du, Haojun |
| Author_xml | – sequence: 1 givenname: Haojun surname: Du fullname: Du, Haojun organization: Department of Traffic Management, Hunan Police College |
| BookMark | eNp9kU9rGzEQxUVJoE7Sj1AQ9NIe1tUf7672VmPqxuBScLbQm5iVtLHCWnJHMsX9Hvm-3cXJtae5_N6bmfduyFWIwRHynrM5Z4p9ZoxJUfNmLpgQc8GlWgjxhsx4KUUhZPXriswmppigt-QmpSfGuFCCz8jzOqILyRu62gOCyQ79X8g-Bhp72np0iXZnuszZhRNkZ2kbMwx05_rBmQzBuGIdT-gd0hYhpD7igW5Cj4Aj_HHZ7op1u9l9og_HkceYTDyeKQRLv4PZ--Do1gEGHx7pcniM6PP-kO7IdQ9Dcu9e5i35uf7aru6L7Y9vm9VyWxihqlx0da8s62tQi97V1na27AxnTWUV2Kq00qqq6WoFvLaLpmSlVaaBbiGqxlSikfKWfLj4HjH-PrmU9dP4SxhXaqGY5KwUXIxUeaHMeH5C1-sj-gPgWXOmpwb0awN6akC_NDDqvlx0PkypwJ-Ig9UZzkPEMZ9gfNLy_xb_AF7lkK4 |
| Cites_doi | 10.1177/0003702821995585 10.1016/j.jpba.2019.01.015 10.1016/j.saa.2020.118665 10.1021/acs.est.8b05238 10.1016/j.molliq.2021.115917 10.1016/j.compositesb.2018.03.024 10.1016/j.jece.2021.105975 10.1080/00032719.2019.1668947 10.1021/acs.analchem.1c05458 10.1038/s41598-020-73543-w 10.1016/j.jhazmat.2020.122151 10.1080/00032719.2013.800536 10.1016/j.microc.2021.106052 10.1080/00032719.2020.1758125 10.1016/j.microc.2020.105853 10.1016/j.engfailanal.2017.06.033 10.1109/ACCESS.2021.3066489 10.3390/s21134384 10.1016/j.talanta.2019.05.092 10.1016/j.matpr.2022.02.552 10.1155/2022/9393188 |
| ContentType | Journal Article |
| Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7U5 8FD L7M |
| DOI | 10.1080/00032719.2022.2138422 |
| DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1532-236X |
| EndPage | 1565 |
| ExternalDocumentID | 10_1080_00032719_2022_2138422 2138422 |
| Genre | Research Article |
| GroupedDBID | -~X .7F .QJ 0BK 0R~ 23M 2DF 30N 4.4 5GY 5VS 6J9 A8Z AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACBEA ACGEJ ACGFO ACGFS ACTIO ACUHS ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ B0M BLEHA CCCUG CE4 CS3 DGEBU DKSSO EAP EAS EBC EBD EBS EMK EPL EST ESTFP ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z ML- NA5 NW0 O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TCY TDBHL TFL TFT TFW TTHFI TUROJ TUS TWF TWZ UPT UT5 UU3 WH7 ZGOLN ~02 ~S~ AAYXX CITATION 7U5 8FD ADYSH L7M |
| ID | FETCH-LOGICAL-c286t-b7f8d0f7a84fe7ddbd5bc1096d8ad65d3d869b78a17d49505d8c9ab4269c62933 |
| ISSN | 0003-2719 |
| IngestDate | Fri Jul 25 01:17:25 EDT 2025 Wed Oct 01 03:00:46 EDT 2025 Mon Oct 20 23:46:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c286t-b7f8d0f7a84fe7ddbd5bc1096d8ad65d3d869b78a17d49505d8c9ab4269c62933 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2803105212 |
| PQPubID | 2045318 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2803105212 informaworld_taylorfrancis_310_1080_00032719_2022_2138422 crossref_primary_10_1080_00032719_2022_2138422 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-03 |
| PublicationDateYYYYMMDD | 2023-07-03 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Analytical letters |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0021 CIT0020 CIT0001 CIT0012 CIT0011 CIT0003 CIT0014 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0011 doi: 10.1177/0003702821995585 – ident: CIT0006 doi: 10.1016/j.jpba.2019.01.015 – ident: CIT0009 doi: 10.1016/j.saa.2020.118665 – ident: CIT0001 doi: 10.1021/acs.est.8b05238 – ident: CIT0012 doi: 10.1016/j.molliq.2021.115917 – ident: CIT0021 doi: 10.1016/j.compositesb.2018.03.024 – ident: CIT0015 doi: 10.1016/j.jece.2021.105975 – ident: CIT0007 doi: 10.1080/00032719.2019.1668947 – ident: CIT0016 doi: 10.1021/acs.analchem.1c05458 – ident: CIT0017 doi: 10.1038/s41598-020-73543-w – ident: CIT0020 doi: 10.1016/j.jhazmat.2020.122151 – ident: CIT0018 doi: 10.1080/00032719.2013.800536 – ident: CIT0004 doi: 10.1016/j.microc.2021.106052 – ident: CIT0008 doi: 10.1080/00032719.2020.1758125 – ident: CIT0010 doi: 10.1016/j.microc.2020.105853 – ident: CIT0014 doi: 10.1016/j.engfailanal.2017.06.033 – ident: CIT0019 doi: 10.1109/ACCESS.2021.3066489 – ident: CIT0013 doi: 10.3390/s21134384 – ident: CIT0002 doi: 10.1016/j.talanta.2019.05.092 – ident: CIT0005 doi: 10.1016/j.matpr.2022.02.552 – ident: CIT0003 doi: 10.1155/2022/9393188 |
| SSID | ssj0012821 |
| Score | 2.3508377 |
| Snippet | Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with... Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy with... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 1551 |
| SubjectTerms | Algorithms Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy forensic tire analysis Fourier transforms Infrared spectra Infrared spectroscopy Kernel functions logistic regression (LR) Machine learning Motorcycles Nondestructive testing Polynomials random forest (RF) Recognition Reflectance support vector machine (SVM) Support vector machines Tires weighted k-nearest neighbor (KNN) analysis |
| Title | Forensic Characterization of Tires by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Machine Learning Algorithms |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00032719.2022.2138422 https://www.proquest.com/docview/2803105212 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1532-236X dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: ABDBF dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1532-236X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: A8Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-236X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012821 issn: 0003-2719 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgs4AN4ikGBuQFCxBy1TycOMtooCpIsBhlxIhN5Ec8gKpm1EkXnf_gf7l2bCedqcRrE1WJ6kg5J9fnOr7nIvQqAkmRiEKTXAhBUk414Y2SROa0kVSojDNT4Pzpc7Y4TT-e0bNhVclWl3RiKq_21pX8C6pwDnA1VbJ_gWwYFE7Ab8AXjoAwHP8IY9NXcwWP2X40722Xr4IErCCYXRp1WXagizfcSMuq7ayZvjaL9QZvMnc96yovYCFi6LXdlQ7as6xOyLz6cGLWDkyn-s54X7YXW7c9w-zDbLxF6_nbcnnerr9335wBerBo5sttv2K-tLVDQyv7jZ34ePtjsxqvPsSJ3amaBL5UNxqB7ATbhMS5i4iNj68xiRPbvDAE4N5Z3BNtNgqnRs-NpmbINenesB_2SSbmfpD1x_E0jhKW9jXP1xy13ZXb6CCGqWA2QQfl4t3XL-HjE2ShodGiGc8XfhlL9n232JE0O4a3NyZ4q1qq--ieSzdw2XPnAbrVrB6iO8e-y98j9NNzCF_nEG41thzCYosHDmHLIbyHQzhwCHsO4deeQW_wmD8Y-IMdf7DnDx748xidzt9XxwviWnUQGbOsIyLXTM10zlmqm1wpoaiQEaTHinGVUZUolhUiZzzKFaTkM6qYLLgwddQyA8WZPEGTVbtqniLMaZMWKYDANU2liJhkWgJQLOMwV_D8EE39064vekeWOgpGtz08tYGndvAcomKMSd1ZzuqernXym_8eeQBr9-Jf1qahW2SL3p_9x9DP0d3hhTpCk269aV6AwO3ES0fIXyZMo74 |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQOZQLb0RpC3PgAAdH2fV67T1GUaOkNDmErdSb5WdBwKZKNof2f_B_Ge8jaqkQh55XttYee_yNPd98hHxMEFIwUwQqjDE00zxQ7Z2lVnBvuXG5lpHgPF_k0_Ps9IJf3OLCxLTKGEOHtlBE46vj5o6X0X1KXGQfsFQkkWeSpoM0YTJL0Q0_5gj2o4oBGy52LwkYUuxU82KbnsXzr27unE93qpfe89bNETR5Rmz_823myY_BtjYDe_NXXceHje45edohVBi1S-oFeeSrl2R_3AvDvSK_o5xnhdaF8a7ac0vmhFWAEn3oBsw1jGqE41uEsg7KFUJ8WPoQ3wjiMqOTVioPyh43w6wK65gMD59G5ZJOytnyM3y9ajR6InPmGnBAMG9SPz10VWEvYfTzcrX-Xn_7tXlNzicn5XhKO3UHalOZ19SIIN0wCC2z4IVzxnFjE4yonNQu5445mRdGSJ0Ih1HckDtpC20i9dbmCFLYG7JXrSr_loDmPisyNLUOPLMmkVYGm2IglWt0L1ockEFvU3XVFvFQya42ajvbKs626mb7gBS3La_q5vYktFIniv2n7VG_TFTnDzYqaoAlDU_63QO6_kD2p-X8TJ3NFl8OyRP8xJrMYXZE9ur11h8jPqrN-2YD_AE_-gSg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqVipcgPIQhdLOgQMcHGUfXnuPUcqqoW2EwlbiZvnZImATJZtD-R_9v_XsI6JFiEN_gK21Zzz-Zj3ffIS8jwKkSHTuKdda01QxT5WzhhrOnGHaZkogwfl8mp1cpJ-_sb6acNWVVWIO7dtGEU2sxsO9sL6viEPyQRLzCGkmcTyIo0SkcYjCOxm-iiGLYzjdPCSEjGIjmodjehLPv6a5cz3daV76V7BubqDiKdH9t7eFJz8G61oPzO97bR0ftLhn5EmHT2HUOtQe2XLVc_Jo3MvCvSA3KOZZBdvCeNPruaVywtxDGSLoCvQ1jOoAxtcByFoo5wHgw8x5fCFAJ6NFK5QHZY-aYVL5JZbCw4dROaNFOZl9hK-LRqEHeTPXENYD503hp4OuJ-wljH5ezpff66tfq5fkovhUjk9op-1ATSyymmruhR16rkTqHbdWW6ZNFPIpK5TNmE2syHLNhYq4DTnckFlhcqWReGuyAFGSV2S7mlfuNQHFXJqnwdLKs9ToSBjhTRzSqEyF4KL4Phn0JpWLtoWHjDadUdvdlrjbstvtfZL_aXhZN_9OfCt0IpP_jD3ovUR20WAlUQEsaljSbx4w9RHZ_XJcyLPJ9PQteYyy903ZcHJAtuvl2r0L4KjWh4373wIEgwNE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forensic+Characterization+of+Tires+by+Attenuated+Total+Reflectance-Fourier+Transform+Infrared+%28ATR-FTIR%29+Spectroscopy+and+Machine+Learning+Algorithms&rft.jtitle=Analytical+letters&rft.au=Du%2C+Haojun&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0003-2719&rft.eissn=1532-236X&rft.volume=56&rft.issue=10&rft.spage=1551&rft.epage=1565&rft_id=info:doi/10.1080%2F00032719.2022.2138422&rft.externalDocID=2138422 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2719&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2719&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2719&client=summon |