Forensic Characterization of Tires by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Machine Learning Algorithms

Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with machine learning algorithms. The infrared spectra were obtained from 187 truck, sedan, motorbike, and passenger car tires. Weighted k nearest...

Full description

Saved in:
Bibliographic Details
Published inAnalytical letters Vol. 56; no. 10; pp. 1551 - 1565
Main Author Du, Haojun
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.07.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0003-2719
1532-236X
DOI10.1080/00032719.2022.2138422

Cover

Abstract Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with machine learning algorithms. The infrared spectra were obtained from 187 truck, sedan, motorbike, and passenger car tires. Weighted k nearest neighbor analysis (WKNN), support vector machine (SVM), random forest (RF), and logistic regression (LR) were used and compared for modeling. The influences of the k value, kernel function, number of estimators, maximum depth, minimum sample leaf, and other parameters affecting recognition performance were optimized. The results show that the recognition performance of four models was SVM > LR > WKNN > RF. The SVM model (polynomial kernel function, C = 20, gamma = 1) was considered to be optimal. All samples had a recognition accuracy of 100% based on the tire type with a training set value of 96.9% and test set value of 92.3%. Hence, the developed procedure is suitable for the characterization of tires.
AbstractList Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy with machine learning algorithms. The infrared spectra were obtained from 187 truck, sedan, motorbike, and passenger car tires. Weighted k nearest neighbor analysis (WKNN), support vector machine (SVM), random forest (RF), and logistic regression (LR) were used and compared for modeling. The influences of the k value, kernel function, number of estimators, maximum depth, minimum sample leaf, and other parameters affecting recognition performance were optimized. The results show that the recognition performance of four models was SVM > LR > WKNN > RF. The SVM model (polynomial kernel function, C = 20, gamma = 1) was considered to be optimal. All samples had a recognition accuracy of 100% based on the tire type with a training set value of 96.9% and test set value of 92.3%. Hence, the developed procedure is suitable for the characterization of tires.
Author Du, Haojun
Author_xml – sequence: 1
  givenname: Haojun
  surname: Du
  fullname: Du, Haojun
  organization: Department of Traffic Management, Hunan Police College
BookMark eNp9kU9rGzEQxUVJoE7Sj1AQ9NIe1tUf7672VmPqxuBScLbQm5iVtLHCWnJHMsX9Hvm-3cXJtae5_N6bmfduyFWIwRHynrM5Z4p9ZoxJUfNmLpgQc8GlWgjxhsx4KUUhZPXriswmppigt-QmpSfGuFCCz8jzOqILyRu62gOCyQ79X8g-Bhp72np0iXZnuszZhRNkZ2kbMwx05_rBmQzBuGIdT-gd0hYhpD7igW5Cj4Aj_HHZ7op1u9l9og_HkceYTDyeKQRLv4PZ--Do1gEGHx7pcniM6PP-kO7IdQ9Dcu9e5i35uf7aru6L7Y9vm9VyWxihqlx0da8s62tQi97V1na27AxnTWUV2Kq00qqq6WoFvLaLpmSlVaaBbiGqxlSikfKWfLj4HjH-PrmU9dP4SxhXaqGY5KwUXIxUeaHMeH5C1-sj-gPgWXOmpwb0awN6akC_NDDqvlx0PkypwJ-Ig9UZzkPEMZ9gfNLy_xb_AF7lkK4
Cites_doi 10.1177/0003702821995585
10.1016/j.jpba.2019.01.015
10.1016/j.saa.2020.118665
10.1021/acs.est.8b05238
10.1016/j.molliq.2021.115917
10.1016/j.compositesb.2018.03.024
10.1016/j.jece.2021.105975
10.1080/00032719.2019.1668947
10.1021/acs.analchem.1c05458
10.1038/s41598-020-73543-w
10.1016/j.jhazmat.2020.122151
10.1080/00032719.2013.800536
10.1016/j.microc.2021.106052
10.1080/00032719.2020.1758125
10.1016/j.microc.2020.105853
10.1016/j.engfailanal.2017.06.033
10.1109/ACCESS.2021.3066489
10.3390/s21134384
10.1016/j.talanta.2019.05.092
10.1016/j.matpr.2022.02.552
10.1155/2022/9393188
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1080/00032719.2022.2138422
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1532-236X
EndPage 1565
ExternalDocumentID 10_1080_00032719_2022_2138422
2138422
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
23M
2DF
30N
4.4
5GY
5VS
6J9
A8Z
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACBEA
ACGEJ
ACGFO
ACGFS
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEGXH
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
B0M
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EAP
EAS
EBC
EBD
EBS
EMK
EPL
EST
ESTFP
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
ML-
NA5
NW0
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TCY
TDBHL
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
~02
~S~
AAYXX
CITATION
7U5
8FD
ADYSH
L7M
ID FETCH-LOGICAL-c286t-b7f8d0f7a84fe7ddbd5bc1096d8ad65d3d869b78a17d49505d8c9ab4269c62933
ISSN 0003-2719
IngestDate Fri Jul 25 01:17:25 EDT 2025
Wed Oct 01 03:00:46 EDT 2025
Mon Oct 20 23:46:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-b7f8d0f7a84fe7ddbd5bc1096d8ad65d3d869b78a17d49505d8c9ab4269c62933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2803105212
PQPubID 2045318
PageCount 15
ParticipantIDs proquest_journals_2803105212
informaworld_taylorfrancis_310_1080_00032719_2022_2138422
crossref_primary_10_1080_00032719_2022_2138422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-03
PublicationDateYYYYMMDD 2023-07-03
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-03
  day: 03
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Analytical letters
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0021
CIT0020
CIT0001
CIT0012
CIT0011
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0011
  doi: 10.1177/0003702821995585
– ident: CIT0006
  doi: 10.1016/j.jpba.2019.01.015
– ident: CIT0009
  doi: 10.1016/j.saa.2020.118665
– ident: CIT0001
  doi: 10.1021/acs.est.8b05238
– ident: CIT0012
  doi: 10.1016/j.molliq.2021.115917
– ident: CIT0021
  doi: 10.1016/j.compositesb.2018.03.024
– ident: CIT0015
  doi: 10.1016/j.jece.2021.105975
– ident: CIT0007
  doi: 10.1080/00032719.2019.1668947
– ident: CIT0016
  doi: 10.1021/acs.analchem.1c05458
– ident: CIT0017
  doi: 10.1038/s41598-020-73543-w
– ident: CIT0020
  doi: 10.1016/j.jhazmat.2020.122151
– ident: CIT0018
  doi: 10.1080/00032719.2013.800536
– ident: CIT0004
  doi: 10.1016/j.microc.2021.106052
– ident: CIT0008
  doi: 10.1080/00032719.2020.1758125
– ident: CIT0010
  doi: 10.1016/j.microc.2020.105853
– ident: CIT0014
  doi: 10.1016/j.engfailanal.2017.06.033
– ident: CIT0019
  doi: 10.1109/ACCESS.2021.3066489
– ident: CIT0013
  doi: 10.3390/s21134384
– ident: CIT0002
  doi: 10.1016/j.talanta.2019.05.092
– ident: CIT0005
  doi: 10.1016/j.matpr.2022.02.552
– ident: CIT0003
  doi: 10.1155/2022/9393188
SSID ssj0012821
Score 2.3508377
Snippet Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy with...
Rapid and nondestructive recognition method of tire rubber is reported by attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy with...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1551
SubjectTerms Algorithms
Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy
forensic tire analysis
Fourier transforms
Infrared spectra
Infrared spectroscopy
Kernel functions
logistic regression (LR)
Machine learning
Motorcycles
Nondestructive testing
Polynomials
random forest (RF)
Recognition
Reflectance
support vector machine (SVM)
Support vector machines
Tires
weighted k-nearest neighbor (KNN) analysis
Title Forensic Characterization of Tires by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy and Machine Learning Algorithms
URI https://www.tandfonline.com/doi/abs/10.1080/00032719.2022.2138422
https://www.proquest.com/docview/2803105212
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1532-236X
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0012821
  issn: 0003-2719
  databaseCode: ABDBF
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1532-236X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0012821
  issn: 0003-2719
  databaseCode: A8Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012821
  issn: 0003-2719
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-236X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012821
  issn: 0003-2719
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgs4AN4ikGBuQFCxBy1TycOMtooCpIsBhlxIhN5Ec8gKpm1EkXnf_gf7l2bCedqcRrE1WJ6kg5J9fnOr7nIvQqAkmRiEKTXAhBUk414Y2SROa0kVSojDNT4Pzpc7Y4TT-e0bNhVclWl3RiKq_21pX8C6pwDnA1VbJ_gWwYFE7Ab8AXjoAwHP8IY9NXcwWP2X40722Xr4IErCCYXRp1WXagizfcSMuq7ayZvjaL9QZvMnc96yovYCFi6LXdlQ7as6xOyLz6cGLWDkyn-s54X7YXW7c9w-zDbLxF6_nbcnnerr9335wBerBo5sttv2K-tLVDQyv7jZ34ePtjsxqvPsSJ3amaBL5UNxqB7ATbhMS5i4iNj68xiRPbvDAE4N5Z3BNtNgqnRs-NpmbINenesB_2SSbmfpD1x_E0jhKW9jXP1xy13ZXb6CCGqWA2QQfl4t3XL-HjE2ShodGiGc8XfhlL9n232JE0O4a3NyZ4q1qq--ieSzdw2XPnAbrVrB6iO8e-y98j9NNzCF_nEG41thzCYosHDmHLIbyHQzhwCHsO4deeQW_wmD8Y-IMdf7DnDx748xidzt9XxwviWnUQGbOsIyLXTM10zlmqm1wpoaiQEaTHinGVUZUolhUiZzzKFaTkM6qYLLgwddQyA8WZPEGTVbtqniLMaZMWKYDANU2liJhkWgJQLOMwV_D8EE39064vekeWOgpGtz08tYGndvAcomKMSd1ZzuqernXym_8eeQBr9-Jf1qahW2SL3p_9x9DP0d3hhTpCk269aV6AwO3ES0fIXyZMo74
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQOZQLb0RpC3PgAAdH2fV67T1GUaOkNDmErdSb5WdBwKZKNof2f_B_Ge8jaqkQh55XttYee_yNPd98hHxMEFIwUwQqjDE00zxQ7Z2lVnBvuXG5lpHgPF_k0_Ps9IJf3OLCxLTKGEOHtlBE46vj5o6X0X1KXGQfsFQkkWeSpoM0YTJL0Q0_5gj2o4oBGy52LwkYUuxU82KbnsXzr27unE93qpfe89bNETR5Rmz_823myY_BtjYDe_NXXceHje45edohVBi1S-oFeeSrl2R_3AvDvSK_o5xnhdaF8a7ac0vmhFWAEn3oBsw1jGqE41uEsg7KFUJ8WPoQ3wjiMqOTVioPyh43w6wK65gMD59G5ZJOytnyM3y9ajR6InPmGnBAMG9SPz10VWEvYfTzcrX-Xn_7tXlNzicn5XhKO3UHalOZ19SIIN0wCC2z4IVzxnFjE4yonNQu5445mRdGSJ0Ih1HckDtpC20i9dbmCFLYG7JXrSr_loDmPisyNLUOPLMmkVYGm2IglWt0L1ockEFvU3XVFvFQya42ajvbKs626mb7gBS3La_q5vYktFIniv2n7VG_TFTnDzYqaoAlDU_63QO6_kD2p-X8TJ3NFl8OyRP8xJrMYXZE9ur11h8jPqrN-2YD_AE_-gSg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqVipcgPIQhdLOgQMcHGUfXnuPUcqqoW2EwlbiZvnZImATJZtD-R_9v_XsI6JFiEN_gK21Zzz-Zj3ffIS8jwKkSHTuKdda01QxT5WzhhrOnGHaZkogwfl8mp1cpJ-_sb6acNWVVWIO7dtGEU2sxsO9sL6viEPyQRLzCGkmcTyIo0SkcYjCOxm-iiGLYzjdPCSEjGIjmodjehLPv6a5cz3daV76V7BubqDiKdH9t7eFJz8G61oPzO97bR0ftLhn5EmHT2HUOtQe2XLVc_Jo3MvCvSA3KOZZBdvCeNPruaVywtxDGSLoCvQ1jOoAxtcByFoo5wHgw8x5fCFAJ6NFK5QHZY-aYVL5JZbCw4dROaNFOZl9hK-LRqEHeTPXENYD503hp4OuJ-wljH5ezpff66tfq5fkovhUjk9op-1ATSyymmruhR16rkTqHbdWW6ZNFPIpK5TNmE2syHLNhYq4DTnckFlhcqWReGuyAFGSV2S7mlfuNQHFXJqnwdLKs9ToSBjhTRzSqEyF4KL4Phn0JpWLtoWHjDadUdvdlrjbstvtfZL_aXhZN_9OfCt0IpP_jD3ovUR20WAlUQEsaljSbx4w9RHZ_XJcyLPJ9PQteYyy903ZcHJAtuvl2r0L4KjWh4373wIEgwNE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forensic+Characterization+of+Tires+by+Attenuated+Total+Reflectance-Fourier+Transform+Infrared+%28ATR-FTIR%29+Spectroscopy+and+Machine+Learning+Algorithms&rft.jtitle=Analytical+letters&rft.au=Du%2C+Haojun&rft.date=2023-07-03&rft.pub=Taylor+%26+Francis&rft.issn=0003-2719&rft.eissn=1532-236X&rft.volume=56&rft.issue=10&rft.spage=1551&rft.epage=1565&rft_id=info:doi/10.1080%2F00032719.2022.2138422&rft.externalDocID=2138422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2719&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2719&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2719&client=summon