Power analysis of approximation methods for parameter estimation in Cox regression model with longitudinal covariate and tied survival times
Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interact...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 53; no. 3; pp. 1089 - 1106 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.03.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2023.2236342 |
Cover
Abstract | Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interaction indicates the relationship between longitudinal covariate and survival time. Unlike previous studies, we calculate the statistical power of Wald
χ
2
statistics to test the interaction term based on Monte Carlo (MC) simulations when Breslow, Efron, Discrete, and Exact approximation methods are used for handling tied survival times. A linear mixed effect model (LMM) is used to generate longitudinal covariate such as time-varying covariate in simulations. A numerical example is provided to illustrate the CRM with the interaction term between longitudinal covariate and survival time. Using extensive MC simulations under different conditions for censored proportion, type I error, and number of subjects, statistical power of Wald
χ
2
statistics is calculated using four different methods in the CRM. Statistical power value calculated using Breslow method is usually lower than statistical power values calculated when the other three methods are used. The proportion of censored observations in survival analysis has an important effect on power calculations. |
---|---|
AbstractList | Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interaction indicates the relationship between longitudinal covariate and survival time. Unlike previous studies, we calculate the statistical power of Wald
χ
2
statistics to test the interaction term based on Monte Carlo (MC) simulations when Breslow, Efron, Discrete, and Exact approximation methods are used for handling tied survival times. A linear mixed effect model (LMM) is used to generate longitudinal covariate such as time-varying covariate in simulations. A numerical example is provided to illustrate the CRM with the interaction term between longitudinal covariate and survival time. Using extensive MC simulations under different conditions for censored proportion, type I error, and number of subjects, statistical power of Wald
χ
2
statistics is calculated using four different methods in the CRM. Statistical power value calculated using Breslow method is usually lower than statistical power values calculated when the other three methods are used. The proportion of censored observations in survival analysis has an important effect on power calculations. Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interaction indicates the relationship between longitudinal covariate and survival time. Unlike previous studies, we calculate the statistical power of Wald χ2 statistics to test the interaction term based on Monte Carlo (MC) simulations when Breslow, Efron, Discrete, and Exact approximation methods are used for handling tied survival times. A linear mixed effect model (LMM) is used to generate longitudinal covariate such as time-varying covariate in simulations. A numerical example is provided to illustrate the CRM with the interaction term between longitudinal covariate and survival time. Using extensive MC simulations under different conditions for censored proportion, type I error, and number of subjects, statistical power of Wald χ2 statistics is calculated using four different methods in the CRM. Statistical power value calculated using Breslow method is usually lower than statistical power values calculated when the other three methods are used. The proportion of censored observations in survival analysis has an important effect on power calculations. |
Author | Bahçecitapar, Melike Yıldırım, Elif Karasoy, Duru |
Author_xml | – sequence: 1 givenname: Melike orcidid: 0000-0002-5443-6278 surname: Bahçecitapar fullname: Bahçecitapar, Melike organization: Department of Statistics, Hacettepe University – sequence: 2 givenname: Elif orcidid: 0000-0002-3171-655X surname: Yıldırım fullname: Yıldırım, Elif organization: Statistics, Career Center, Konya Technical University – sequence: 3 givenname: Duru orcidid: 0000-0002-2258-4479 surname: Karasoy fullname: Karasoy, Duru organization: Department of Statistics, Hacettepe University |
BookMark | eNp9kM1OAjEUhRujiaA-gkkT14P9mc60Ow3xLzHRBfvmMtNCyTDFtoC8gw9tEdi6am76nXPvOUN03vveIHRLyYgSSe4JryhRVI4YYXzEGK94yc7QgArOipKW9BwN9kyxhy7RMMYFIYTLUg7Qz6ffmoChh24XXcTeYlitgv92S0jO93hp0ty3EVsf8AoC5DnzJqYT4Ho89t84mFkwMf5JfGs6vHVpjjvfz1xaty7748ZvIDhIJq9rcXKmxXEdNm6T_7KdidfowkIXzc3xvUKT56fJ-LV4_3h5Gz--Fw2TVSqgUUQqpQijQjWm4VVLSC2gqqyCRjBRSUtByCkRlteqpK2UHGpRTy0vS8Gv0N3BNuf8WucoeuHXIV8YNVOc1VUtS5UpcaCa4GMMxupVyJnDTlOi973rU-9637s-9p51Dwed63NnS9j60LU6wa7zwQboGxc1_9_iF6evjgc |
Cites_doi | 10.1016/j.laa.2011.04.015 10.1002/bimj.201100052 10.1002/9780470094778 10.1016/j.csda.2014.01.018 10.1177/0962280218764193 10.2307/2533670 10.2147/JMDH.S269558 10.1080/01621459.1995.10476485 10.2307/2533118 10.1111/1467-9876.00237 10.1016/j.csda.2011.09.007 10.1111/j.2517-6161.1972.tb00899.x 10.1177/0969141315579119 10.1093/biomet/60.2.267 10.1198/0003130042854 10.1002/sim.1083 10.17093/alphanumeric.323833 10.1186/s12874-016-0248-6 10.1002/9781118032985 10.1093/biomet/88.2.447 10.1080/01621459.1977.10480613 10.1002/sim.7964 10.1007/978-1-4757-1229-2_11 10.22237/jmasm/1446350880 10.1002/sim.4263 10.1111/j.1467-9868.2008.00704.x 10.1007/s10985-019-09478-w 10.1111/j.1541-0420.2007.00983.x 10.2307/2529876 10.1080/00949655.2017.1397151 10.1080/03610918.2017.1283699 10.2307/2529620 10.2307/2533573 10.1155/2012/986176 10.1093/biomet/81.3.607 10.1056/NEJM199403103301001 10.1186/1745-6215-14-S1-O108 10.2307/2531021 |
ContentType | Journal Article |
Copyright | 2023 Taylor & Francis Group, LLC 2023 2023 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2023 Taylor & Francis Group, LLC 2023 – notice: 2023 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2023.2236342 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 1106 |
ExternalDocumentID | 10_1080_03610918_2023_2236342 2236342 |
Genre | Research Article |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX AFRVT AIYEW AMVHM CITATION K1G TASJS TOXWX 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c286t-ac90899902159cec36d0075a66f9ac52568f1a58b05f37941d883a757bf34453 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 09:41:41 EDT 2025 Wed Oct 01 02:52:18 EDT 2025 Wed Dec 25 09:06:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-ac90899902159cec36d0075a66f9ac52568f1a58b05f37941d883a757bf34453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3171-655X 0000-0002-5443-6278 0000-0002-2258-4479 |
PQID | 2932767849 |
PQPubID | 186203 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1080_03610918_2023_2236342 informaworld_taylorfrancis_310_1080_03610918_2023_2236342 proquest_journals_2932767849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-03 |
PublicationDateYYYYMMDD | 2024-03-03 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_1_22_1 e_1_3_1_23_1 e_1_3_1_24_1 e_1_3_1_25_1 e_1_3_1_9_1 e_1_3_1_40_1 e_1_3_1_8_1 e_1_3_1_41_1 e_1_3_1_20_1 e_1_3_1_42_1 e_1_3_1_21_1 e_1_3_1_5_1 e_1_3_1_7_1 SAS Institute Inc. (e_1_3_1_29_1) 2013 e_1_3_1_6_1 e_1_3_1_26_1 e_1_3_1_27_1 e_1_3_1_3_1 e_1_3_1_28_1 e_1_3_1_2_1 e_1_3_1_10_1 e_1_3_1_33_1 e_1_3_1_34_1 e_1_3_1_35_1 e_1_3_1_36_1 Allison P. D. (e_1_3_1_4_1) 2010 e_1_3_1_14_1 e_1_3_1_13_1 e_1_3_1_30_1 e_1_3_1_12_1 e_1_3_1_31_1 e_1_3_1_11_1 e_1_3_1_32_1 e_1_3_1_18_1 e_1_3_1_17_1 e_1_3_1_16_1 e_1_3_1_15_1 e_1_3_1_37_1 e_1_3_1_38_1 e_1_3_1_39_1 e_1_3_1_19_1 |
References_xml | – ident: e_1_3_1_14_1 doi: 10.1016/j.laa.2011.04.015 – ident: e_1_3_1_34_1 doi: 10.1002/bimj.201100052 – ident: e_1_3_1_16_1 doi: 10.1002/9780470094778 – ident: e_1_3_1_38_1 doi: 10.1016/j.csda.2014.01.018 – ident: e_1_3_1_30_1 doi: 10.1177/0962280218764193 – ident: e_1_3_1_11_1 doi: 10.2307/2533670 – ident: e_1_3_1_23_1 doi: 10.2147/JMDH.S269558 – ident: e_1_3_1_36_1 doi: 10.1080/01621459.1995.10476485 – ident: e_1_3_1_39_1 doi: 10.2307/2533118 – ident: e_1_3_1_22_1 doi: 10.1111/1467-9876.00237 – ident: e_1_3_1_28_1 doi: 10.1016/j.csda.2011.09.007 – ident: e_1_3_1_10_1 doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: e_1_3_1_25_1 doi: 10.1177/0969141315579119 – ident: e_1_3_1_18_1 doi: 10.1093/biomet/60.2.267 – ident: e_1_3_1_15_1 doi: 10.1198/0003130042854 – ident: e_1_3_1_8_1 doi: 10.1002/sim.1083 – ident: e_1_3_1_20_1 doi: 10.17093/alphanumeric.323833 – volume-title: SAS/STAT 9.4 user’s guide year: 2013 ident: e_1_3_1_29_1 – ident: e_1_3_1_24_1 doi: 10.1186/s12874-016-0248-6 – ident: e_1_3_1_19_1 doi: 10.1002/9781118032985 – ident: e_1_3_1_35_1 doi: 10.1093/biomet/88.2.447 – ident: e_1_3_1_13_1 doi: 10.1080/01621459.1977.10480613 – ident: e_1_3_1_32_1 doi: 10.1002/sim.7964 – ident: e_1_3_1_33_1 doi: 10.1007/978-1-4757-1229-2_11 – ident: e_1_3_1_3_1 doi: 10.22237/jmasm/1446350880 – ident: e_1_3_1_40_1 – ident: e_1_3_1_9_1 doi: 10.1002/sim.4263 – ident: e_1_3_1_27_1 doi: 10.1111/j.1467-9868.2008.00704.x – ident: e_1_3_1_42_1 doi: 10.1007/s10985-019-09478-w – ident: e_1_3_1_41_1 doi: 10.1111/j.1541-0420.2007.00983.x – ident: e_1_3_1_21_1 doi: 10.2307/2529876 – volume-title: Survival analysis using SAS: A practical guide Second Edition year: 2010 ident: e_1_3_1_4_1 – ident: e_1_3_1_5_1 doi: 10.1080/00949655.2017.1397151 – ident: e_1_3_1_6_1 doi: 10.1080/03610918.2017.1283699 – ident: e_1_3_1_7_1 doi: 10.2307/2529620 – ident: e_1_3_1_17_1 doi: 10.2307/2533573 – ident: e_1_3_1_37_1 doi: 10.1155/2012/986176 – ident: e_1_3_1_12_1 doi: 10.1093/biomet/81.3.607 – ident: e_1_3_1_2_1 doi: 10.1056/NEJM199403103301001 – ident: e_1_3_1_26_1 doi: 10.1186/1745-6215-14-S1-O108 – ident: e_1_3_1_31_1 doi: 10.2307/2531021 |
SSID | ssj0003848 |
Score | 2.3342807 |
Snippet | Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1089 |
SubjectTerms | Approximation Chi-square test Cox model Longitudinal covariate Parameter estimation Regression models Satistical power Simulation Statistical analysis Statistical power Statistical tests Survival Survival analysis Tied survival times |
Title | Power analysis of approximation methods for parameter estimation in Cox regression model with longitudinal covariate and tied survival times |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2023.2236342 https://www.proquest.com/docview/2932767849 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-4141 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003848 issn: 0361-0918 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKclkOPAqIhQX5wC1KFceJkxxZHlohdYW0RVpOkeM4ENGmqzZZrfgN_FJ-BeNXmkAFLJekilrX0XyZ-ezMfIPQy6IQvEjhAUy4ZH6URdIvIAz7iQSAcABModX152fs9GP0_iK-mEx-DLKWuraYiW9760r-x6pwDeyqqmRvYNl-ULgAn8G-cAQLw_GfbPxBtTjz-EBXREuEX9emHtG2h9aKC57S-F6p3BdP6WrYL-iSv2tvIz-bdNjGdMYxu7PLtepl1JW6b5ZYX8GqGoipSblUxHXbgZu50mUnrozESR4Mq050wq2qWzKS0DPvvF7ZnmGuqO6yGycEnPAv-gV-IkXdQjTXqJrLZf21h-EnxYJPyLI05405rWymWtXHEbjrrdlufNNtuuEeRxjpJC86cIWUER-YjfHU0rnq0I-Ikc1yvjymA8zSgWMmgelUZIM8kB62N4DYjEuqVOiJSv0L6QwYFKNGA2ws2P1LIO3TG4nTXbXD5GqY3A5zC90OE8ZUtw0anPWsgaa601t_p67aTOnA75vNiEeNVHZ_YxWaKi3uo7t2jYNfGcA-QBPZTNE91z8E23AyRXfmvWbwdooOz3uMPETfNbSxgzZeV3gEbWyhjWFCuIc23kEb1w0GaOMdtLGGNlbQxkNo4x7a8HclVtDGDtpYQ_sRWrx7u3h96tvGIb4IU9b6XOi32Znis5mQgrJSUWPOWJVxEQPLTyvC47QI4opCQCJlmlKexElR0SiK6WN00Kwb-QThgAQc-FwpmaiisiRpKkUhMqVrWsFKJThCM2eF_NLIw-R_tP4Ryoa2ylu9L1eZJjo5_ctvj51hc-uFtjnQdYBTkkbZ05vO5Rk63D1sx-ig3XTyOVDstnihsfkT2dXN_Q |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2h9kA5UFhAFArMgWuW3bWTOEdUtVqgu-KwSL1ZtmOjinaDmiyq-A390Z2xk6oFIQ49RonzIY_fPDvj9wDeW-uMVTQAS-OLTFbSZ5bScFZ6ChBDAWOjuv5iWcy_yc8n-cmtvTBcVslz6JCEIiJW8-DmxeihJO4DoS7rWXJl1kyMKcEVQhIMb-esNMLbOCbLGzQWKjpocZOM2wy7eP51mzv56Y566V9oHVPQ0S644eVT5cmP8aazY_f7D13H-33dE3jcM1T8mELqKTzw6xHsDu4P2IPBCB4tbhRf2xHsMGtNos_P4Oore6-h6QVPsAkYtcsvT9NGSUy-1S3SZyOLj59zUQ6y4Ed_wekaD5pLvPDfU50uNWHLHuRlYzxr2GRpU7OhF7rmF033iTHT42rsiFFjuyH8oxFER-e-fQ6ro8PVwTzrbR8yN1NFlxkX_0VWzEYq550oaiY2pihCZVxOHE2FqcmVneRBEJxMa6WEKfPSBiFlLl7A1rpZ-5eANNc0lI1rX7gg63qqlHfWVaxKGYhnTvZgPPS1_pnEPfR00Ezte0FzL-i-F_aguh0RuourKiFZoGjxn7b7Q_joHidaTWRrVhJfkNWre9z6HTycrxbH-vjT8str2KFTMpbJiX3Y6i42_g3xps6-jQPjGvoEDNE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQK1XlQOkCorTQOXDNsrt2HOdYtawKpaseisTNsh0bVaWbqsmiit_Aj2bGdioKQhx6jBLnQx6_eXbG7zH21lpnrMIBWBkvC1ELX1hMw0XlMUAMBoyN6vqnC3n8WXz8Ug7VhF0uq6Q5dEhCERGraXBfN2GoiHuHoEtyllSYNeNjzG-SC0ThdUn7TGkXx2RxB8ZcRQMtalJQm2ETz79ucy893RMv_QusYwaabzE7vHsqPLkcr3o7dj_-kHV80Mc9ZU8yP4WDFFDb7JFfjtjW4P0AGQpG7PHpnd5rN2KbxFmT5PMz9vOMnNfAZLkTaANE5fLbi7RNEpJrdQf41UDS41dUkgMk95EvuFjCYXsLN_5rqtLFJmTYA7RoDN9aslhaNWTnBa79jpN95Mv4uAZ65NPQrRD9cPzg0ZXvnrPz-fvzw-Mimz4UbqZkXxgX_0TWxEVq5x2XDdEaI2WojSuRoakwNaWykzJwBJNpoxQ3VVnZwIUo-Qu2tmyX_iUDnGkazMWNly6Ippkq5Z11NWlSBmSZkx02HrpaXydpDz0dFFNzL2jqBZ17YYfVvweE7uOaSkgGKJr_p-3eED06o0SnkWrNKmQLon71gFvvs42zo7n-9GFxsss28YyINXJ8j631Nyv_GklTb9_EYfELvIULfg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+analysis+of+approximation+methods+for+parameter+estimation+in+Cox+regression+model+with+longitudinal+covariate+and+tied+survival+times&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Bah%C3%A7ecitapar%2C+Melike&rft.au=Y%C4%B1ld%C4%B1r%C4%B1m%2C+Elif&rft.au=Karasoy%2C+Duru&rft.date=2024-03-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=53&rft.issue=3&rft.spage=1089&rft.epage=1106&rft_id=info:doi/10.1080%2F03610918.2023.2236342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2023_2236342 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |