Power analysis of approximation methods for parameter estimation in Cox regression model with longitudinal covariate and tied survival times

Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interact...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 53; no. 3; pp. 1089 - 1106
Main Authors Bahçecitapar, Melike, Yıldırım, Elif, Karasoy, Duru
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.03.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2023.2236342

Cover

Abstract Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interaction indicates the relationship between longitudinal covariate and survival time. Unlike previous studies, we calculate the statistical power of Wald χ 2 statistics to test the interaction term based on Monte Carlo (MC) simulations when Breslow, Efron, Discrete, and Exact approximation methods are used for handling tied survival times. A linear mixed effect model (LMM) is used to generate longitudinal covariate such as time-varying covariate in simulations. A numerical example is provided to illustrate the CRM with the interaction term between longitudinal covariate and survival time. Using extensive MC simulations under different conditions for censored proportion, type I error, and number of subjects, statistical power of Wald χ 2 statistics is calculated using four different methods in the CRM. Statistical power value calculated using Breslow method is usually lower than statistical power values calculated when the other three methods are used. The proportion of censored observations in survival analysis has an important effect on power calculations.
AbstractList Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interaction indicates the relationship between longitudinal covariate and survival time. Unlike previous studies, we calculate the statistical power of Wald χ 2 statistics to test the interaction term based on Monte Carlo (MC) simulations when Breslow, Efron, Discrete, and Exact approximation methods are used for handling tied survival times. A linear mixed effect model (LMM) is used to generate longitudinal covariate such as time-varying covariate in simulations. A numerical example is provided to illustrate the CRM with the interaction term between longitudinal covariate and survival time. Using extensive MC simulations under different conditions for censored proportion, type I error, and number of subjects, statistical power of Wald χ 2 statistics is calculated using four different methods in the CRM. Statistical power value calculated using Breslow method is usually lower than statistical power values calculated when the other three methods are used. The proportion of censored observations in survival analysis has an important effect on power calculations.
Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal variables on survival. In this paper, tied survival refers to units in which different subjects have the same survival time, while the term interaction indicates the relationship between longitudinal covariate and survival time. Unlike previous studies, we calculate the statistical power of Wald χ2 statistics to test the interaction term based on Monte Carlo (MC) simulations when Breslow, Efron, Discrete, and Exact approximation methods are used for handling tied survival times. A linear mixed effect model (LMM) is used to generate longitudinal covariate such as time-varying covariate in simulations. A numerical example is provided to illustrate the CRM with the interaction term between longitudinal covariate and survival time. Using extensive MC simulations under different conditions for censored proportion, type I error, and number of subjects, statistical power of Wald χ2 statistics is calculated using four different methods in the CRM. Statistical power value calculated using Breslow method is usually lower than statistical power values calculated when the other three methods are used. The proportion of censored observations in survival analysis has an important effect on power calculations.
Author Bahçecitapar, Melike
Yıldırım, Elif
Karasoy, Duru
Author_xml – sequence: 1
  givenname: Melike
  orcidid: 0000-0002-5443-6278
  surname: Bahçecitapar
  fullname: Bahçecitapar, Melike
  organization: Department of Statistics, Hacettepe University
– sequence: 2
  givenname: Elif
  orcidid: 0000-0002-3171-655X
  surname: Yıldırım
  fullname: Yıldırım, Elif
  organization: Statistics, Career Center, Konya Technical University
– sequence: 3
  givenname: Duru
  orcidid: 0000-0002-2258-4479
  surname: Karasoy
  fullname: Karasoy, Duru
  organization: Department of Statistics, Hacettepe University
BookMark eNp9kM1OAjEUhRujiaA-gkkT14P9mc60Ow3xLzHRBfvmMtNCyTDFtoC8gw9tEdi6am76nXPvOUN03vveIHRLyYgSSe4JryhRVI4YYXzEGK94yc7QgArOipKW9BwN9kyxhy7RMMYFIYTLUg7Qz6ffmoChh24XXcTeYlitgv92S0jO93hp0ty3EVsf8AoC5DnzJqYT4Ho89t84mFkwMf5JfGs6vHVpjjvfz1xaty7748ZvIDhIJq9rcXKmxXEdNm6T_7KdidfowkIXzc3xvUKT56fJ-LV4_3h5Gz--Fw2TVSqgUUQqpQijQjWm4VVLSC2gqqyCRjBRSUtByCkRlteqpK2UHGpRTy0vS8Gv0N3BNuf8WucoeuHXIV8YNVOc1VUtS5UpcaCa4GMMxupVyJnDTlOi973rU-9637s-9p51Dwed63NnS9j60LU6wa7zwQboGxc1_9_iF6evjgc
Cites_doi 10.1016/j.laa.2011.04.015
10.1002/bimj.201100052
10.1002/9780470094778
10.1016/j.csda.2014.01.018
10.1177/0962280218764193
10.2307/2533670
10.2147/JMDH.S269558
10.1080/01621459.1995.10476485
10.2307/2533118
10.1111/1467-9876.00237
10.1016/j.csda.2011.09.007
10.1111/j.2517-6161.1972.tb00899.x
10.1177/0969141315579119
10.1093/biomet/60.2.267
10.1198/0003130042854
10.1002/sim.1083
10.17093/alphanumeric.323833
10.1186/s12874-016-0248-6
10.1002/9781118032985
10.1093/biomet/88.2.447
10.1080/01621459.1977.10480613
10.1002/sim.7964
10.1007/978-1-4757-1229-2_11
10.22237/jmasm/1446350880
10.1002/sim.4263
10.1111/j.1467-9868.2008.00704.x
10.1007/s10985-019-09478-w
10.1111/j.1541-0420.2007.00983.x
10.2307/2529876
10.1080/00949655.2017.1397151
10.1080/03610918.2017.1283699
10.2307/2529620
10.2307/2533573
10.1155/2012/986176
10.1093/biomet/81.3.607
10.1056/NEJM199403103301001
10.1186/1745-6215-14-S1-O108
10.2307/2531021
ContentType Journal Article
Copyright 2023 Taylor & Francis Group, LLC 2023
2023 Taylor & Francis Group, LLC
Copyright_xml – notice: 2023 Taylor & Francis Group, LLC 2023
– notice: 2023 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2023.2236342
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 1106
ExternalDocumentID 10_1080_03610918_2023_2236342
2236342
Genre Research Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
AMVHM
CITATION
K1G
TASJS
TOXWX
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c286t-ac90899902159cec36d0075a66f9ac52568f1a58b05f37941d883a757bf34453
ISSN 0361-0918
IngestDate Wed Aug 13 09:41:41 EDT 2025
Wed Oct 01 02:52:18 EDT 2025
Wed Dec 25 09:06:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-ac90899902159cec36d0075a66f9ac52568f1a58b05f37941d883a757bf34453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3171-655X
0000-0002-5443-6278
0000-0002-2258-4479
PQID 2932767849
PQPubID 186203
PageCount 18
ParticipantIDs crossref_primary_10_1080_03610918_2023_2236342
informaworld_taylorfrancis_310_1080_03610918_2023_2236342
proquest_journals_2932767849
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-03
PublicationDateYYYYMMDD 2024-03-03
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-03
  day: 03
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_1_22_1
e_1_3_1_23_1
e_1_3_1_24_1
e_1_3_1_25_1
e_1_3_1_9_1
e_1_3_1_40_1
e_1_3_1_8_1
e_1_3_1_41_1
e_1_3_1_20_1
e_1_3_1_42_1
e_1_3_1_21_1
e_1_3_1_5_1
e_1_3_1_7_1
SAS Institute Inc. (e_1_3_1_29_1) 2013
e_1_3_1_6_1
e_1_3_1_26_1
e_1_3_1_27_1
e_1_3_1_3_1
e_1_3_1_28_1
e_1_3_1_2_1
e_1_3_1_10_1
e_1_3_1_33_1
e_1_3_1_34_1
e_1_3_1_35_1
e_1_3_1_36_1
Allison P. D. (e_1_3_1_4_1) 2010
e_1_3_1_14_1
e_1_3_1_13_1
e_1_3_1_30_1
e_1_3_1_12_1
e_1_3_1_31_1
e_1_3_1_11_1
e_1_3_1_32_1
e_1_3_1_18_1
e_1_3_1_17_1
e_1_3_1_16_1
e_1_3_1_15_1
e_1_3_1_37_1
e_1_3_1_38_1
e_1_3_1_39_1
e_1_3_1_19_1
References_xml – ident: e_1_3_1_14_1
  doi: 10.1016/j.laa.2011.04.015
– ident: e_1_3_1_34_1
  doi: 10.1002/bimj.201100052
– ident: e_1_3_1_16_1
  doi: 10.1002/9780470094778
– ident: e_1_3_1_38_1
  doi: 10.1016/j.csda.2014.01.018
– ident: e_1_3_1_30_1
  doi: 10.1177/0962280218764193
– ident: e_1_3_1_11_1
  doi: 10.2307/2533670
– ident: e_1_3_1_23_1
  doi: 10.2147/JMDH.S269558
– ident: e_1_3_1_36_1
  doi: 10.1080/01621459.1995.10476485
– ident: e_1_3_1_39_1
  doi: 10.2307/2533118
– ident: e_1_3_1_22_1
  doi: 10.1111/1467-9876.00237
– ident: e_1_3_1_28_1
  doi: 10.1016/j.csda.2011.09.007
– ident: e_1_3_1_10_1
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: e_1_3_1_25_1
  doi: 10.1177/0969141315579119
– ident: e_1_3_1_18_1
  doi: 10.1093/biomet/60.2.267
– ident: e_1_3_1_15_1
  doi: 10.1198/0003130042854
– ident: e_1_3_1_8_1
  doi: 10.1002/sim.1083
– ident: e_1_3_1_20_1
  doi: 10.17093/alphanumeric.323833
– volume-title: SAS/STAT 9.4 user’s guide
  year: 2013
  ident: e_1_3_1_29_1
– ident: e_1_3_1_24_1
  doi: 10.1186/s12874-016-0248-6
– ident: e_1_3_1_19_1
  doi: 10.1002/9781118032985
– ident: e_1_3_1_35_1
  doi: 10.1093/biomet/88.2.447
– ident: e_1_3_1_13_1
  doi: 10.1080/01621459.1977.10480613
– ident: e_1_3_1_32_1
  doi: 10.1002/sim.7964
– ident: e_1_3_1_33_1
  doi: 10.1007/978-1-4757-1229-2_11
– ident: e_1_3_1_3_1
  doi: 10.22237/jmasm/1446350880
– ident: e_1_3_1_40_1
– ident: e_1_3_1_9_1
  doi: 10.1002/sim.4263
– ident: e_1_3_1_27_1
  doi: 10.1111/j.1467-9868.2008.00704.x
– ident: e_1_3_1_42_1
  doi: 10.1007/s10985-019-09478-w
– ident: e_1_3_1_41_1
  doi: 10.1111/j.1541-0420.2007.00983.x
– ident: e_1_3_1_21_1
  doi: 10.2307/2529876
– volume-title: Survival analysis using SAS: A practical guide Second Edition
  year: 2010
  ident: e_1_3_1_4_1
– ident: e_1_3_1_5_1
  doi: 10.1080/00949655.2017.1397151
– ident: e_1_3_1_6_1
  doi: 10.1080/03610918.2017.1283699
– ident: e_1_3_1_7_1
  doi: 10.2307/2529620
– ident: e_1_3_1_17_1
  doi: 10.2307/2533573
– ident: e_1_3_1_37_1
  doi: 10.1155/2012/986176
– ident: e_1_3_1_12_1
  doi: 10.1093/biomet/81.3.607
– ident: e_1_3_1_2_1
  doi: 10.1056/NEJM199403103301001
– ident: e_1_3_1_26_1
  doi: 10.1186/1745-6215-14-S1-O108
– ident: e_1_3_1_31_1
  doi: 10.2307/2531021
SSID ssj0003848
Score 2.3342807
Snippet Cox regression model (CRM) with time-varying covariates is widely used in medical and health related studies to investigate the effects of longitudinal...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 1089
SubjectTerms Approximation
Chi-square test
Cox model
Longitudinal covariate
Parameter estimation
Regression models
Satistical power
Simulation
Statistical analysis
Statistical power
Statistical tests
Survival
Survival analysis
Tied survival times
Title Power analysis of approximation methods for parameter estimation in Cox regression model with longitudinal covariate and tied survival times
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2023.2236342
https://www.proquest.com/docview/2932767849
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-4141
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003848
  issn: 0361-0918
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKclkOPAqIhQX5wC1KFceJkxxZHlohdYW0RVpOkeM4ENGmqzZZrfgN_FJ-BeNXmkAFLJekilrX0XyZ-ezMfIPQy6IQvEjhAUy4ZH6URdIvIAz7iQSAcABModX152fs9GP0_iK-mEx-DLKWuraYiW9760r-x6pwDeyqqmRvYNl-ULgAn8G-cAQLw_GfbPxBtTjz-EBXREuEX9emHtG2h9aKC57S-F6p3BdP6WrYL-iSv2tvIz-bdNjGdMYxu7PLtepl1JW6b5ZYX8GqGoipSblUxHXbgZu50mUnrozESR4Mq050wq2qWzKS0DPvvF7ZnmGuqO6yGycEnPAv-gV-IkXdQjTXqJrLZf21h-EnxYJPyLI05405rWymWtXHEbjrrdlufNNtuuEeRxjpJC86cIWUER-YjfHU0rnq0I-Ikc1yvjymA8zSgWMmgelUZIM8kB62N4DYjEuqVOiJSv0L6QwYFKNGA2ws2P1LIO3TG4nTXbXD5GqY3A5zC90OE8ZUtw0anPWsgaa601t_p67aTOnA75vNiEeNVHZ_YxWaKi3uo7t2jYNfGcA-QBPZTNE91z8E23AyRXfmvWbwdooOz3uMPETfNbSxgzZeV3gEbWyhjWFCuIc23kEb1w0GaOMdtLGGNlbQxkNo4x7a8HclVtDGDtpYQ_sRWrx7u3h96tvGIb4IU9b6XOi32Znis5mQgrJSUWPOWJVxEQPLTyvC47QI4opCQCJlmlKexElR0SiK6WN00Kwb-QThgAQc-FwpmaiisiRpKkUhMqVrWsFKJThCM2eF_NLIw-R_tP4Ryoa2ylu9L1eZJjo5_ctvj51hc-uFtjnQdYBTkkbZ05vO5Rk63D1sx-ig3XTyOVDstnihsfkT2dXN_Q
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB2h9kA5UFhAFArMgWuW3bWTOEdUtVqgu-KwSL1ZtmOjinaDmiyq-A390Z2xk6oFIQ49RonzIY_fPDvj9wDeW-uMVTQAS-OLTFbSZ5bScFZ6ChBDAWOjuv5iWcy_yc8n-cmtvTBcVslz6JCEIiJW8-DmxeihJO4DoS7rWXJl1kyMKcEVQhIMb-esNMLbOCbLGzQWKjpocZOM2wy7eP51mzv56Y566V9oHVPQ0S644eVT5cmP8aazY_f7D13H-33dE3jcM1T8mELqKTzw6xHsDu4P2IPBCB4tbhRf2xHsMGtNos_P4Oore6-h6QVPsAkYtcsvT9NGSUy-1S3SZyOLj59zUQ6y4Ed_wekaD5pLvPDfU50uNWHLHuRlYzxr2GRpU7OhF7rmF033iTHT42rsiFFjuyH8oxFER-e-fQ6ro8PVwTzrbR8yN1NFlxkX_0VWzEYq550oaiY2pihCZVxOHE2FqcmVneRBEJxMa6WEKfPSBiFlLl7A1rpZ-5eANNc0lI1rX7gg63qqlHfWVaxKGYhnTvZgPPS1_pnEPfR00Ezte0FzL-i-F_aguh0RuourKiFZoGjxn7b7Q_joHidaTWRrVhJfkNWre9z6HTycrxbH-vjT8str2KFTMpbJiX3Y6i42_g3xps6-jQPjGvoEDNE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVQK1XlQOkCorTQOXDNsrt2HOdYtawKpaseisTNsh0bVaWbqsmiit_Aj2bGdioKQhx6jBLnQx6_eXbG7zH21lpnrMIBWBkvC1ELX1hMw0XlMUAMBoyN6vqnC3n8WXz8Ug7VhF0uq6Q5dEhCERGraXBfN2GoiHuHoEtyllSYNeNjzG-SC0ThdUn7TGkXx2RxB8ZcRQMtalJQm2ETz79ucy893RMv_QusYwaabzE7vHsqPLkcr3o7dj_-kHV80Mc9ZU8yP4WDFFDb7JFfjtjW4P0AGQpG7PHpnd5rN2KbxFmT5PMz9vOMnNfAZLkTaANE5fLbi7RNEpJrdQf41UDS41dUkgMk95EvuFjCYXsLN_5rqtLFJmTYA7RoDN9aslhaNWTnBa79jpN95Mv4uAZ65NPQrRD9cPzg0ZXvnrPz-fvzw-Mimz4UbqZkXxgX_0TWxEVq5x2XDdEaI2WojSuRoakwNaWykzJwBJNpoxQ3VVnZwIUo-Qu2tmyX_iUDnGkazMWNly6Ippkq5Z11NWlSBmSZkx02HrpaXydpDz0dFFNzL2jqBZ17YYfVvweE7uOaSkgGKJr_p-3eED06o0SnkWrNKmQLon71gFvvs42zo7n-9GFxsss28YyINXJ8j631Nyv_GklTb9_EYfELvIULfg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+analysis+of+approximation+methods+for+parameter+estimation+in+Cox+regression+model+with+longitudinal+covariate+and+tied+survival+times&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Bah%C3%A7ecitapar%2C+Melike&rft.au=Y%C4%B1ld%C4%B1r%C4%B1m%2C+Elif&rft.au=Karasoy%2C+Duru&rft.date=2024-03-03&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=53&rft.issue=3&rft.spage=1089&rft.epage=1106&rft_id=info:doi/10.1080%2F03610918.2023.2236342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2023_2236342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon