Global Uniqueness and Stability in Determining the Damping Coefficient of an Inverse Hyperbolic Problem with NonHomogeneous Neumann B.C. through an Additional Dirichlet Boundary Trace
We consider a second-order hyperbolic equation on an open bounded domain $\Omega$ in $\mathbb{R}^n$ for $n\geq2$, with $C^2$-boundary $\Gamma=\partial\Omega=\overline{\Gamma_0\cup\Gamma_1}$, $\Gamma_0\cap\Gamma_1=\emptyset$, subject to nonhomogeneous Neumann boundary conditions on the entire boundar...
Saved in:
Published in | SIAM journal on mathematical analysis Vol. 43; no. 4; pp. 1631 - 1666 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.01.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0036-1410 1095-7154 |
DOI | 10.1137/100808988 |
Cover
Abstract | We consider a second-order hyperbolic equation on an open bounded domain $\Omega$ in $\mathbb{R}^n$ for $n\geq2$, with $C^2$-boundary $\Gamma=\partial\Omega=\overline{\Gamma_0\cup\Gamma_1}$, $\Gamma_0\cap\Gamma_1=\emptyset$, subject to nonhomogeneous Neumann boundary conditions on the entire boundary $\Gamma$. We then study the inverse problem of determining the interior damping coefficient of the equation by means of an additional measurement of the Dirichlet boundary trace of the solution, in a suitable, explicit subportion $\Gamma_1$ of the boundary $\Gamma$, and over a computable time interval $T>0$. Under sharp conditions on the complementary part $\Gamma_0= \Gamma\backslash\Gamma_1$, and $T>0$, and under weak regularity requirements on the data, we establish the two canonical results in inverse problems: (i) global uniqueness and (ii) Lipschitz stability (at the $L^2$-level). The latter is the main result of this paper. Our proof relies on three main ingredients: (a) sharp Carleman estimates at the $H^1 \times L_2$-level for second-order hyperbolic equations [I. Lasiecka, R. Triggiani, and X. Zhang, Contemp. Math., 268 (2000), pp. 227-325]; (b) a correspondingly implied continuous observability inequality at the same energy level [I. Lasiecka, R. Triggiani, and X. Zhang, Contemp. Math., 268 (2000), pp. 227-325]; (c) sharp interior and boundary regularity theory for second-order hyperbolic equations with Neumann boundary data [I. Lasiecka and R. Triggiani, Ann. Mat. Pura. Appl. (4), 157 (1990), pp. 285-367], [I. Lasiecka and R. Triggiani, J. Differential Equations, 94 (1991), pp. 112-164], [I. Lasiecka and R. Triggiani, Recent advances in regularity of second-order hyperbolic mixed problems, and applications, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 3, Springer-Verlag, Berlin, 1994, pp. 104-158], [D. Tataru, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), pp. 185-206]. The proof of the linear uniqueness result (section 4, step 5) also takes advantage of a convenient tactical route "post-Carleman estimates" suggested by Isakov in [V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed., Springer, New York, 2006, Thm.,8.2.2, p.,231]. |
---|---|
AbstractList | We consider a second-order hyperbolic equation on an open bounded domain $\Omega$ in $\mathbb{R}^n$ for $n\geq2$, with $C^2$-boundary $\Gamma=\partial\Omega=\overline{\Gamma_0\cup\Gamma_1}$, $\Gamma_0\cap\Gamma_1=\emptyset$, subject to nonhomogeneous Neumann boundary conditions on the entire boundary $\Gamma$. We then study the inverse problem of determining the interior damping coefficient of the equation by means of an additional measurement of the Dirichlet boundary trace of the solution, in a suitable, explicit subportion $\Gamma_1$ of the boundary $\Gamma$, and over a computable time interval $T>0$. Under sharp conditions on the complementary part $\Gamma_0= \Gamma\backslash\Gamma_1$, and $T>0$, and under weak regularity requirements on the data, we establish the two canonical results in inverse problems: (i) global uniqueness and (ii) Lipschitz stability (at the $L^2$-level). The latter is the main result of this paper. Our proof relies on three main ingredients: (a) sharp Carleman estimates at the $H^1 \times L_2$-level for second-order hyperbolic equations [I. Lasiecka, R. Triggiani, and X. Zhang, Contemp. Math., 268 (2000), pp. 227-325]; (b) a correspondingly implied continuous observability inequality at the same energy level [I. Lasiecka, R. Triggiani, and X. Zhang, Contemp. Math., 268 (2000), pp. 227-325]; (c) sharp interior and boundary regularity theory for second-order hyperbolic equations with Neumann boundary data [I. Lasiecka and R. Triggiani, Ann. Mat. Pura. Appl. (4), 157 (1990), pp. 285-367], [I. Lasiecka and R. Triggiani, J. Differential Equations, 94 (1991), pp. 112-164], [I. Lasiecka and R. Triggiani, Recent advances in regularity of second-order hyperbolic mixed problems, and applications, in Dynamics Reported: Expositions in Dynamical Systems, Vol. 3, Springer-Verlag, Berlin, 1994, pp. 104-158], [D. Tataru, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), pp. 185-206]. The proof of the linear uniqueness result (section 4, step 5) also takes advantage of a convenient tactical route "post-Carleman estimates" suggested by Isakov in [V. Isakov, Inverse Problems for Partial Differential Equations, 2nd ed., Springer, New York, 2006, Thm.,8.2.2, p.,231]. |
Author | Liu, Shitao Triggiani, Roberto |
Author_xml | – sequence: 1 givenname: Shitao surname: Liu fullname: Liu, Shitao – sequence: 2 givenname: Roberto surname: Triggiani fullname: Triggiani, Roberto |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24618006$$DView record in Pascal Francis |
BookMark | eNplkcFO3DAQhq0KpC7QQ9_AqtRDD1nsxHHiI-y2LBICpMI5mjiTXSPH3toO1T5ZX49EQA_taebw_9_8M3NCjpx3SMhnzpacF9U5Z6xmtarrD2TBmSqzipfiiCwYK2TGBWcfyUmMT4xxKRRbkD9X1rdg6aMzv0Z0GCMF19GfCVpjTTpQ4-gaE4bBOOO2NO2QrmHYz_3KY98bbdAl6vvJR6_dM4aIdHPYY2i9NZreB99aHOhvk3b01ruNH_x2GuTHSG9xHMA5erlcLSdy8ON2N2Muus4k492Ua22C0TuLiV760XUQDvQhgMYzctyDjfjprZ6Sxx_fH1ab7Obu6np1cZPpvJYpAyg6lZcVA8FyLHQFWmNbIGjRKa5zwUTFuwqU1C3WvOQKCtUKXbXYlrKQxSn58srdBz8dKKbmyY9hShYbxWWpZCnFJPr6JoKowfYBnDax2QczTIGbXEheMzbDzl91OvgYA_aNNgnmTVMAYxvOmvmJzd8nTo5v_zjeof9rXwBrGKAl |
CitedBy_id | crossref_primary_10_1088_1361_6420_acf408 crossref_primary_10_1080_00036811_2011_618125 crossref_primary_10_3934_eect_2013_2_355 crossref_primary_10_3934_ipi_2015_9_301 crossref_primary_10_3934_dcds_2013_33_5217 crossref_primary_10_3934_ipi_2021055 crossref_primary_10_1088_1361_6420_aafe8f crossref_primary_10_1090_tran_6332 crossref_primary_10_1137_16M1076708 |
Cites_doi | 10.1081/PDE-100106139 10.1007/BF01442108 10.1090/conm/268/04314 10.1088/0266-5611/8/4/009 10.57262/die/1370979316 10.1007/BF01765322 10.57262/die/1370378427 10.1007/s00028-006-0267-6 10.1007/BF01443625 10.1007/BF01182480 10.1007/BF01448390 10.1137/0327018 10.1007/BF01215993 10.1515/156939403770862802 10.1016/S0021-7824(99)80010-5 10.1090/conm/268/04315 10.1016/0022-0396(91)90106-J 10.1016/0022-247X(90)90207-V 10.1007/BF01448201 10.1007/s00245-002-0751-5 10.1088/0266-5611/17/4/310 10.1215/kjm/1250523319 10.1080/03605308808820539 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS [Copyright] © 2011 Society for Industrial and Applied Mathematics |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: [Copyright] © 2011 Society for Industrial and Applied Mathematics |
DBID | AAYXX CITATION IQODW 3V. 7RQ 7WY 7WZ 7X2 7XB 87Z 88A 88F 88I 88K 8AL 8FE 8FG 8FH 8FK 8FL 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI CCPQU D1I DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- KB. L.- L6V LK8 M0C M0K M0N M1Q M2O M2P M2T M7P M7S MBDVC P5Z P62 PATMY PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U U9A |
DOI | 10.1137/100808988 |
DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Career & Technical Education Database ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Biology Database (Alumni Edition) Military Database (Alumni Edition) Science Database (Alumni Edition) Telecommunications (Alumni Edition) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database Materials Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Biological Sciences ABI/INFORM Global Agriculture Science Database Computing Database Military Database Research Library Science Database Telecommunications Database Biological Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Business Collection (Alumni Edition) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Military Collection ProQuest Central China ABI/INFORM Complete ProQuest Telecommunications ProQuest One Applied & Life Sciences Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Career and Technical Education (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Telecommunications (Alumni Edition) Biological Science Database ProQuest Business Collection Environmental Science Collection ProQuest Career and Technical Education ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Research Library ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest Military Collection (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1095-7154 |
EndPage | 1666 |
ExternalDocumentID | 2563682591 24618006 10_1137_100808988 |
GroupedDBID | --Z -~X 123 186 4.4 6TJ 7RQ 7WY 7X2 7XC 85S 88I 8CJ 8FE 8FG 8FH 8FL 8G5 AALVN AASXH AAYXX ABDBF ABDPE ABEHJ ABJCF ABKAD ABMZU ABUWG ACBEA ACGFO ACGOD ACIWK ACNCT ACPRK ACUHS ADBBV AENEX AFFNX AFKRA AFRAH ALMA_UNASSIGNED_HOLDINGS ANXRF ARAPS ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BPHCQ CCPQU CITATION CS3 CZ9 D1I D1J D1K DQ2 DU5 DWQXO EAP EBS EJD EMK EST ESX FRNLG GNUQQ GUQSH H13 HCIFZ H~9 I-F K6- K60 K6V K6~ K7- KB. KC. L6V LK5 LK8 M0C M0K M1Q M2O M2P M7P M7R M7S MVM NHB P1Q P2P P62 PATMY PDBOC PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY RJG RNS RSI TN5 TUS UQL VOH XOL YNT YYP ZY4 IQODW PQGLB 3V. 7XB 88A 88K 8AL 8FK JQ2 L.- M0N M2T MBDVC PKEHL PQEST PQUKI PRINS Q9U U9A |
ID | FETCH-LOGICAL-c286t-aa3d92570a402e3c7acceb3eac4d91c240471d7a96cbe81519a39b4c7beb56363 |
IEDL.DBID | 8FG |
ISSN | 0036-1410 |
IngestDate | Fri Jul 25 10:46:40 EDT 2025 Mon Jul 21 09:12:11 EDT 2025 Thu Apr 24 23:13:12 EDT 2025 Tue Jul 01 02:24:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Damping Second order equation Neumann problem inverse PDE-problems Differential equation 35R30 Dynamical system Boundary condition Partial differential equation 35L10 Inverse problem Carleman estimate 49K20 Energy Mathematical analysis uniqueness Hyperbolic equation Time interval Observability Regularity Boundary theory Numerical stability stability |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c286t-aa3d92570a402e3c7acceb3eac4d91c240471d7a96cbe81519a39b4c7beb56363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
PQID | 916596564 |
PQPubID | 666308 |
PageCount | 36 |
ParticipantIDs | proquest_journals_916596564 pascalfrancis_primary_24618006 crossref_citationtrail_10_1137_100808988 crossref_primary_10_1137_100808988 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-01 |
PublicationDateYYYYMMDD | 2011-01-01 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: Philadelphia |
PublicationTitle | SIAM journal on mathematical analysis |
PublicationYear | 2011 |
Publisher | Society for Industrial and Applied Mathematics |
Publisher_xml | – name: Society for Industrial and Applied Mathematics |
References | Lasiecka I. (R18) 1986; 65 Miyatake S. (R38) 1973; 13 R41 R21 R20 R42 R23 R45 R22 R47 R24 R46 Lasiecka I. (R31) 1992; 5 Carleman T. (R7) 1939; 26 R29 Lasiecka I. (R19) 1993; 6 R30 Tataru D. (R43) 1996; 75 R10 R32 Tataru D. (R44) 1998; 26 R11 R33 R14 Bukhgeim A. (R6) 1981; 24 R16 R15 Lasiecka I. (R26) 1996; 76 R39 |
References_xml | – ident: R11 doi: 10.1081/PDE-100106139 – volume: 76 start-page: 277 year: 1996 ident: R26 publication-title: Special volume of Zeits, Angerwandte Math. Mech. (ZAMM), Akademie Verlag, Berlin, ICIAM 1995 – ident: R20 doi: 10.1007/BF01442108 – ident: R14 doi: 10.1090/conm/268/04314 – ident: R16 doi: 10.1088/0266-5611/8/4/009 – volume: 5 start-page: 521 issn: 0893-4983 year: 1992 ident: R31 publication-title: Differential Integral Equations doi: 10.57262/die/1370979316 – ident: R23 doi: 10.1007/BF01765322 – volume: 6 start-page: 507 issn: 0893-4983 year: 1993 ident: R19 publication-title: Differential Integral Equations doi: 10.57262/die/1370378427 – ident: R32 doi: 10.1007/s00028-006-0267-6 – volume: 24 start-page: 244 issn: 0197-6788 year: 1981 ident: R6 publication-title: Soviet Math. Dokl. – ident: R45 doi: 10.1007/BF01443625 – ident: R30 doi: 10.1007/BF01182480 – ident: R21 doi: 10.1007/BF01448390 – ident: R29 doi: 10.1137/0327018 – ident: R42 doi: 10.1007/BF01215993 – volume: 26 start-page: 185 year: 1998 ident: R44 publication-title: Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) – ident: R15 doi: 10.1515/156939403770862802 – ident: R47 doi: 10.1016/S0021-7824(99)80010-5 – volume: 26 start-page: 1 issn: 0365-4133 year: 1939 ident: R7 publication-title: Ark. Mat. Astr. Fys. – ident: R33 doi: 10.1090/conm/268/04315 – ident: R24 doi: 10.1016/0022-0396(91)90106-J – ident: R41 doi: 10.1016/0022-247X(90)90207-V – ident: R22 doi: 10.1007/BF01448201 – ident: R46 doi: 10.1007/s00245-002-0751-5 – volume: 75 start-page: 367 issn: 0021-7824 year: 1996 ident: R43 publication-title: J. Math. Pures Appl. (9) – ident: R10 doi: 10.1088/0266-5611/17/4/310 – volume: 13 start-page: 435 issn: 0023-608X year: 1973 ident: R38 publication-title: J. Math. Kyoto Univ. doi: 10.1215/kjm/1250523319 – ident: R39 doi: 10.1080/03605308808820539 – volume: 65 start-page: 149 issn: 0021-7824 year: 1986 ident: R18 publication-title: J. Math. Pures Appl. (9) |
SSID | ssj0016490 |
Score | 2.018637 |
Snippet | We consider a second-order hyperbolic equation on an open bounded domain $\Omega$ in $\mathbb{R}^n$ for $n\geq2$, with $C^2$-boundary... |
SourceID | proquest pascalfrancis crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 1631 |
SubjectTerms | Applied mathematics Boundary conditions Estimates Exact sciences and technology Global analysis, analysis on manifolds Inverse problems Mathematical analysis Mathematics Numerical analysis Numerical analysis in abstract spaces Numerical analysis. Scientific computation Ordinary differential equations Partial differential equations Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
Title | Global Uniqueness and Stability in Determining the Damping Coefficient of an Inverse Hyperbolic Problem with NonHomogeneous Neumann B.C. through an Additional Dirichlet Boundary Trace |
URI | https://www.proquest.com/docview/916596564 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9RAEB60fVHEalU8q8cgPviSeunuJtknudz1PIQeRTzoW9hsNvTAJtfL9aG_rH_PmWQvIi2FQCDZ5CEzmflmdvf7AL7o0AljoyRIrJXcrSqC3OWjwIZupAqpCCHwbuSzRTRfyp8X6sKvzWn8sspdTGwDdVFb7pF_IxijNIEP-X19HbBoFE-uegWNp7AfnlCq5Y3isx_9JEIk9WjHucvLGT2xUCh4tzkhpUS3eiv_0tGLtWnoy5SdpMW96NymnNkreOmxIo47476GJ646hAOPG9H_lc0hPD_ruVebN3DX0fjjsqVm5UiGpqLh246R-xZXFU79IhjKW0iP4tRc8b4pnNSupZSgTIR1Sc8h83BsGodzqlc3OZMI43mnQYPcwsVFXc3rq5rc0NU3DS4cTwpUmB5PjtFrAPFrxkWx6rqOSEF2ZS_JXTBtJZ02t0gJ07q3sJyd_p7MAy_PENiTJNoGxohCswieoRrUCRsba6k0p0guCx1aggqU-IrY6MjmLiFkoY3QubQxOYOKRCTewV5VV-49oFOlyIUaUZmfSCVLU9qSLoWlCmPrlBnA152VMuu5y1lC40_W1jAiznqDDuBzP3TdEXY8NGj4n6n7kcyuRxA6GsDRzvaZ_6mbrHfBD4_ePYJnXeOZj4-wt93cuE-EXLb5sPXPIeyP02k6o3N6ujj_9Rc2sPNl |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9AAI8VFAhEIZIZC4uMRZrz8OFWqSVi5togo1Um9mvV6LSNQOcSqUX8aJ_8aMvTZCIG6VcnLWK1mzO29mduc9gDeRa4TSfuiEWntcrcqc1KQDR7tmIDNPUoTA3cjTmR_PvY-X8nILfra9MHytsvWJtaPOSs018vcUxsiIgg_vw_Kbw6JRfLjaKmgoq6yQHdQMY7av49RsvlMGVx2cTMjcb4fD46OLcexYkQFHD0N_7Sglsoil3BRlUkbogOaiBJP8kZdFribAI_edBSrydWpCwsdIiSj1dECfJH3hC5r3Fmx7XD_pwfboaHb-qTvG8L1o0LL-8oVKS23kCu53p1gtjGrFl9-AeG-pKrJN3ohq_IUPNegdP4T7NlrFw2Z5PYItU-zAAxu5ovUL1Q7cnXbsr9Vj-NEICeC8JodlX4qqoOHrhhN8g4sCJ_YaDiEn0qs4UVfcuYXj0tSkFoSFWOb0HjITyKoyGFPGvEqZxhjPGxUc5CIyzsoiLq9K2gimvK5wZvhYosDR_ngfrQoRT3OYZYum7onk5hf6Cy1YHNWiUqsNEmRr8wTmN2K7p9ArysI8AzQyF6mQA5MSXksvV7nO6ZGbSzfQRqo-vGutlGjLns4iHl-TOosSQdIZtA-vu6HLhjLkX4P2_jB1N5L5_SiI9_uw29o-sW6lSrpN8Py__76C2_HF9Cw5O5md7sKdpgzOvxfQW6-uzUuKo9bpnl2tCJ9veoP8AqieNKU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Uniqueness+and+Stability+in+Determining+the+Damping+Coefficient+of+an+Inverse+Hyperbolic+Problem+with+NonHomogeneous+Neumann+B.C.+through+an+Additional+Dirichlet+Boundary+Trace&rft.jtitle=SIAM+journal+on+mathematical+analysis&rft.au=Liu%2C+Shitao&rft.au=Triggiani%2C+Roberto&rft.date=2011-01-01&rft.issn=0036-1410&rft.eissn=1095-7154&rft.volume=43&rft.issue=4&rft.spage=1631&rft.epage=1666&rft_id=info:doi/10.1137%2F100808988&rft.externalDBID=n%2Fa&rft.externalDocID=10_1137_100808988 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-1410&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-1410&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-1410&client=summon |